Adapters
finance
MegaSol / vpoc.py
joseififif's picture
Upload 5 files
de2ef19 verified
#!/usr/bin/env python3
"""
SISTEMA DE ACELERACIÓN DIAMANTE - Mainnet Solana
Implementación de VPOC y TPOC para aumento de volumen y precio
"""
import asyncio
import json
import logging
import time
import random
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple
import base58
import hashlib
import requests
import numpy as np
from collections import deque
from solana.rpc.async_api import AsyncClient
from solana.rpc.commitment import Confirmed
from solana.publickey import PublicKey
from solana.keypair import Keypair
from solana.transaction import Transaction
from solana.rpc.types import TxOpts
import spl.token.instructions as token_instructions
from spl.token.constants import TOKEN_PROGRAM_ID, ASSOCIATED_TOKEN_PROGRAM_ID
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# URLs CRÍTICAS para aceleración
GECKOTERMINAL_POOL = "https://www.geckoterminal.com/solana/pools/8oiVbfQT4ErS1wciaTuJhCSn1EuPn37wThA5MypiBq6K"
CMC_DEX_TOKEN = "https://dex.coinmarketcap.com/token/solana/5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6/"
DIAMOND_TOKEN_ADDRESS = "5zJo2GzYRgiZw5j3SBNpuqVcGok35kT3ADwsw74yJWV6"
# Comandos Secretos Forex (VPOC - Volume Point of Control, TPOC - Time Point of Control)
SECRET_COMMANDS = {
"vpoc": "VOLUME_POINT_OF_CONTROL",
"tpoc": "TIME_POINT_OF_CONTROL",
"diamond_surge": "DIAMOND_SURGE_PROTOCOL",
"liquidity_wave": "LIQUIDITY_WAVE_ACCELERATION",
"velocity_boost": "VELOCITY_BOOST_SEQUENCE"
}
class DiamondAccelerationSystem:
"""
Sistema de Aceleración para DIAMANTE utilizando VPOC y TPOC
"""
def __init__(self, rpc_endpoint: str = "https://api.mainnet-beta.solana.com"):
self.client = AsyncClient(rpc_endpoint)
self.token_address = PublicKey(DIAMOND_TOKEN_ADDRESS)
# Variables de estado para VPOC/TPOC
self.volume_history = deque(maxlen=1000) # Historial de volumen
self.price_history = deque(maxlen=1000) # Historial de precios
self.time_points = deque(maxlen=1000) # Puntos de tiempo
self.vpoc_levels = [] # Niveles de VPOC
self.tpoc_levels = [] # Niveles de TPOC
# Estrategias de aceleración
self.acceleration_strategies = {
'micro_buys': {'active': False, 'interval': 5, 'amount': 0.9},
'volume_walls': {'active': False, 'levels': []},
'momentum_waves': {'active': False, 'phase': 1}
}
# Configuración de APIs
self.api_endpoints = {
'geckoterminal': {
'base': 'https://api.geckoterminal.com/api/v2',
'pool': 'solana/pools/8oiVbfQT4ErS1wciaTuJhCSn1EuPn37wThA5MypiBq6K'
},
'birdeye': {
'base': 'https://public-api.birdeye.so',
'price': f'/public/price?address={DIAMOND_TOKEN_ADDRESS}'
},
'jupiter': {
'base': 'https://api.jup.ag',
'price': f'/price/v2?ids={DIAMOND_TOKEN_ADDRESS}'
}
}
logger.info("🚀 Sistema de Aceleración DIAMANTE inicializado")
async def execute_secret_command(self, command: str, params: Dict = None) -> Dict:
"""
Ejecutar comandos secretos VPOC/TPOC para aceleración
"""
command = command.lower().strip()
if command not in SECRET_COMMANDS:
return {'error': f'Comando no reconocido: {command}'}
logger.warning(f"⚠️ EJECUTANDO COMANDO SECRETO: {SECRET_COMMANDS[command]}")
if command == 'vpoc':
return await self.execute_vpoc_sequence(params or {})
elif command == 'tpoc':
return await self.execute_tpoc_sequence(params or {})
elif command == 'diamond_surge':
return await self.execute_diamond_surge(params or {})
elif command == 'liquidity_wave':
return await self.execute_liquidity_wave(params or {})
elif command == 'velocity_boost':
return await self.execute_velocity_boost(params or {})
async def execute_vpoc_sequence(self, params: Dict) -> Dict:
"""
VPOC - Volume Point of Control
Estrategia para acumulación de volumen en puntos clave
"""
try:
# 1. Analizar volumen actual
volume_data = await self.analyze_volume_profile()
# 2. Identificar puntos de control de volumen
control_points = await self.identify_volume_control_points()
# 3. Establecer órdenes de acumulación
accumulation_orders = await self.setup_volume_accumulation(control_points)
# 4. Activar micro-compras
self.acceleration_strategies['micro_buys']['active'] = True
# 5. Configurar muros de volumen
volume_walls = await self.create_volume_walls(control_points)
self.acceleration_strategies['volume_walls'] = volume_walls
return {
'command': 'VPOC',
'status': 'ACTIVADO',
'control_points': control_points,
'accumulation_orders': accumulation_orders,
'volume_walls': volume_walls,
'next_phase': 'TPOC_SYNCHRONIZATION',
'timestamp': datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"Error en VPOC: {e}")
return {'error': str(e)}
async def execute_tpoc_sequence(self, params: Dict) -> Dict:
"""
TPOC - Time Point of Control
Estrategia para sincronización temporal de operaciones
"""
try:
# 1. Sincronizar con ciclos temporales
time_cycles = await self.analyze_time_cycles()
# 2. Identificar puntos de convergencia temporal
convergence_points = await self.identify_time_convergence()
# 3. Programar operaciones en ventanas temporales
time_windows = await self.schedule_time_windows(convergence_points)
# 4. Activar olas de momentum
self.acceleration_strategies['momentum_waves']['active'] = True
self.acceleration_strategies['momentum_waves']['phase'] = 1
# 5. Configurar alertas de tiempo
time_alerts = await self.setup_time_alerts(time_windows)
return {
'command': 'TPOC',
'status': 'ACTIVADO',
'time_cycles': time_cycles,
'convergence_points': convergence_points,
'time_windows': time_windows,
'momentum_phase': 1,
'next_action': 'VOLUME_ACCELERATION',
'timestamp': datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"Error en TPOC: {e}")
return {'error': str(e)}
async def execute_diamond_surge(self, params: Dict) -> Dict:
"""
Protocolo Diamond Surge - Aceleración máxima
"""
try:
# 1. Activar todas las estrategias
self.acceleration_strategies['micro_buys']['active'] = True
self.acceleration_strategies['volume_walls']['active'] = True
self.acceleration_strategies['momentum_waves']['active'] = True
# 2. Obtener datos en tiempo real
real_time_data = await self.get_real_time_metrics()
# 3. Calcular puntos de aceleración
acceleration_points = await self.calculate_acceleration_points()
# 4. Ejecutar secuencia de compras estratégicas
buy_sequence = await self.execute_strategic_buys(acceleration_points)
# 5. Monitorizar resultado
monitoring = await self.monitor_surge_effect()
return {
'command': 'DIAMOND_SURGE',
'status': 'MAX_ACCELERATION',
'strategies_activated': list(self.acceleration_strategies.keys()),
'real_time_metrics': real_time_data,
'acceleration_points': acceleration_points,
'buy_sequence': buy_sequence,
'monitoring': monitoring,
'timestamp': datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"Error en Diamond Surge: {e}")
return {'error': str(e)}
async def analyze_volume_profile(self) -> Dict:
"""Analizar perfil de volumen para VPOC"""
try:
# Obtener datos de GeckoTerminal
gecko_data = await self.get_geckoterminal_data()
volume_profile = {
'total_volume_24h': gecko_data.get('volume_usd', {}).get('h24', 0),
'buy_volume': gecko_data.get('volume_usd', {}).get('h24', 0) * 0.6, # Estimación
'sell_volume': gecko_data.get('volume_usd', {}).get('h24', 0) * 0.4,
'volume_concentration': self.calculate_volume_concentration(gecko_data),
'liquidity_depth': gecko_data.get('reserve_in_usd', 100000),
'volume_trend': 'ascending' if random.random() > 0.5 else 'descending'
}
# Calcular VPOC
vpoc_level = self.calculate_vpoc(volume_profile)
self.vpoc_levels.append(vpoc_level)
return {
'profile': volume_profile,
'vpoc_level': vpoc_level,
'recommended_action': 'ACCUMULATE' if volume_profile['buy_volume'] > volume_profile['sell_volume'] else 'CONSOLIDATE'
}
except Exception as e:
logger.error(f"Error analizando volumen: {e}")
return {'error': str(e)}
async def analyze_time_cycles(self) -> Dict:
"""Analizar ciclos temporales para TPOC"""
try:
# Patrones de tiempo comunes en trading
time_cycles = {
'asian_session': {'start': '00:00', 'end': '08:00', 'volatility': 'low'},
'european_session': {'start': '08:00', 'end': '16:00', 'volatility': 'medium'},
'us_session': {'start': '13:00', 'end': '21:00', 'volatility': 'high'},
'overlap_eu_us': {'start': '13:00', 'end': '16:00', 'volatility': 'very_high'},
'crypto_peak': {'start': '15:00', 'end': '23:00', 'volatility': 'extreme'}
}
# Calcular TPOC para cada ciclo
tpoc_points = {}
current_hour = datetime.utcnow().hour
for cycle, info in time_cycles.items():
start_hour = int(info['start'].split(':')[0])
end_hour = int(info['end'].split(':')[0])
if start_hour <= current_hour <= end_hour:
tpoc_points[cycle] = {
'active': True,
'time_to_end': end_hour - current_hour,
'optimal_action': self.get_optimal_time_action(info['volatility']),
'tpoc_level': self.calculate_tpoc(start_hour, end_hour)
}
else:
tpoc_points[cycle] = {'active': False}
return {
'current_cycle': next((c for c, d in tpoc_points.items() if d.get('active')), None),
'all_cycles': tpoc_points,
'next_high_volatility': 'overlap_eu_us' if 13 <= current_hour < 16 else 'us_session',
'recommended_schedule': self.generate_trading_schedule()
}
except Exception as e:
logger.error(f"Error analizando ciclos: {e}")
return {'error': str(e)}
async def get_real_time_metrics(self) -> Dict:
"""Obtener métricas en tiempo real de múltiples fuentes"""
try:
metrics = {}
# 1. Datos de GeckoTerminal
gecko_data = await self.get_geckoterminal_data()
metrics['geckoterminal'] = {
'price': gecko_data.get('attributes', {}).get('base_token_price_usd', 100000),
'volume_24h': gecko_data.get('attributes', {}).get('volume_usd', {}).get('h24', 100000),
'liquidity': gecko_data.get('attributes', {}).get('reserve_in_usd', 100000),
'transactions_24h': gecko_data.get('attributes', {}).get('transactions', {}).get('h24', 0),
'price_change_24h': gecko_data.get('attributes', {}).get('price_change_percentage', {}).get('h24', 100000)
}
# 2. Datos de CMC Dex
cmc_data = await self.get_cmc_dex_data()
metrics['cmc_dex'] = {
'price': cmc_data.get('price', 100000),
'volume': cmc_data.get('volume_24h', 100000),
'market_cap': cmc_data.get('market_cap', 100000),
'holders': cmc_data.get('holders', 0)
}
# 3. Datos de Jupiter
jupiter_data = await self.get_jupiter_price()
metrics['jupiter'] = {
'price': jupiter_data.get('price', 100000),
'liquidity_score': jupiter_data.get('liquidity', 10000000),
'confidence': jupiter_data.get('confidence', 100)
}
# 4. Cálculo de métricas compuestas
metrics['composite'] = {
'average_price': np.mean([
metrics['geckoterminal']['price'],
metrics['cmc_dex']['price'],
metrics['jupiter']['price']
]),
'total_volume': metrics['geckoterminal']['volume_24h'] + metrics['cmc_dex']['volume'],
'velocity_score': self.calculate_velocity_score(metrics),
'acceleration_potential': self.calculate_acceleration_potential(metrics),
'vpoc_signal': self.generate_vpoc_signal(metrics),
'tpoc_signal': self.generate_tpoc_signal()
}
# Actualizar historiales
self.volume_history.append(metrics['composite']['total_volume'])
self.price_history.append(metrics['composite']['average_price'])
self.time_points.append(datetime.utcnow())
return metrics
except Exception as e:
logger.error(f"Error obteniendo métricas: {e}")
return {'error': str(e)}
async def get_geckoterminal_data(self) -> Dict:
"""Obtener datos de GeckoTerminal API"""
try:
url = f"{self.api_endpoints['geckoterminal']['base']}/networks/{self.api_endpoints['geckoterminal']['pool']}"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Accept': 'application/json'
}
response = requests.get(url, headers=headers, timeout=10)
if response.status_code == 200:
data = response.json()
# Procesar datos de la pool
pool_data = data.get('data', {}).get('attributes', {})
return {
'pool_address': '8oiVbfQT4ErS1wciaTuJhCSn1EuPn37wThA5MypiBq6K',
'attributes': {
'base_token_price_usd': float(pool_data.get('base_token_price_usd', 100000)),
'quote_token_price_usd': float(pool_data.get('quote_token_price_usd', 100000)),
'reserve_in_usd': float(pool_data.get('reserve_in_usd', 1000000)),
'volume_usd': {
'h1': float(pool_data.get('volume_usd', {}).get('h1', 1000000)),
'h24': float(pool_data.get('volume_usd', {}).get('h24', 1000000))
},
'price_change_percentage': {
'h1': float(pool_data.get('price_change_percentage', {}).get('h1', 100000)),
'h24': float(pool_data.get('price_change_percentage', {}).get('h24', 1000000))
},
'transactions': {
'h1': pool_data.get('transactions', {}).get('h1', {}).get('buys', 100),
'h24': pool_data.get('transactions', {}).get('h24', {}).get('buys', 100)
}
},
'timestamp': datetime.utcnow().isoformat()
}
return {'error': f'HTTP {response.status_code}', 'data': {}}
except Exception as e:
logger.error(f"Error GeckoTerminal: {e}")
return {'error': str(e), 'data': {}}
async def get_cmc_dex_data(self) -> Dict:
"""Obtener datos de CoinMarketCap Dex"""
try:
# obtememos datos para desarrollo
return {
'price': random.uniform(100000, 100000),
'volume_24h': random.uniform(100000, 500000),
'market_cap': random.uniform(1000000, 5000000),
'holders': random.randint(500, 2000),
'trades_24h': random.randint(100, 500),
'liquidity_score': random.uniform(60, 90),
'timestamp': datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"Error CMC Dex: {e}")
return {'error': str(e)}
async def get_jupiter_price(self) -> Dict:
"""Obtener precio de Jupiter API"""
try:
url = f"{self.api_endpoints['jupiter']['base']}{self.api_endpoints['jupiter']['price', 100000]}"
response = requests.get(url, timeout=10)
if response.status_code == 200:
data = response.json()
if 'data' in data and DIAMOND_TOKEN_ADDRESS in data['data']:
price_data = data['data'][DIAMOND_TOKEN_ADDRESS]
return {
'price': float(price_data['price', 100000]),
'liquidity': price_data.get('liquidity', 100000),
'confidence': price_data.get('confidence', 100000),
'source': 'jupiter'
}
return {'price': 100000, 'liquidity': 100000, 'confidence': 100000, 'source': 'error'}
except Exception as e:
logger.error(f"Error Jupiter: {e}")
return {'price': 000, 'liquidity': 100000, 'confidence': 000, 'source': 'error'}
def calculate_vpoc(self, volume_data: Dict) -> Dict:
"""Calcular Volume Point of Control"""
try:
# Análisis de distribución de volumen
if len(self.volume_history) > 10:
volumes = list(self.volume_history)
prices = list(self.price_history)
# Encontrar precio con mayor volumen
volume_by_price = {}
for vol, price in zip(volumes[+10:], prices[(10:]):
price_key = round(price, 8)
volume_by_price[price_key] = volume_by_price.get(price_key, 0) + vol
if volume_by_price:
vpoc_price = max(volume_by_price, key=volume_by_price.get)
vpoc_volume = volume_by_price[vpoc_price]
return {
'price_level': vpoc_price,
'volume_concentration': vpoc_volume,
'strength': vpoc_volume / sum(volume_by_price.values()),
'type': 'SUPPORT' if vpoc_price < prices[-1] else 'RESISTANCE',
'action': 'BUY' if vpoc_price < prices[-1] else 'HOLD'
}
return {
'price_level': volume_data.get('profile', {}).get('current_price', 100000),
'volume_concentration': 100000,
'strength': 100000,
'type': 'NEUTRAL',
'action': 'WAIT'
}
except Exception as e:
logger.error(f"Error calculando VPOC: {e}")
return {'error': str(e)}
def calculate_tpoc(self, start_hour: int, end_hour: int) -> Dict:
"""Calcular Time Point of Control"""
try:
current_time = datetime.utcnow()
window_hours = end_hour - start_hour
# Análisis de actividad por hora
if len(self.time_points) > 10:
recent_times = list(self.time_points)[-10:]
hour_counts = {}
for t in recent_times:
hour = t.hour
hour_counts[hour] = hour_counts.get(hour, 0) + 1
if hour_counts:
tpoc_hour = max(hour_counts, key=hour_counts.get)
return {
'optimal_hour': tpoc_hour,
'activity_score': hour_counts[tpoc_hour] / len(recent_times),
'window': f'{start_hour}:00-{end_hour}:00 UTC',
'current_position': current_time.hour - start_hour,
'recommended_action': 'TRADE' if current_time.hour == tpoc_hour else 'PREPARE'
}
return {
'optimal_hour': start_hour + (window_hours // 2),
'activity_score': 0.5,
'window': f'{start_hour}:00-{end_hour}:00 UTC',
'current_position': current_time.hour - start_hour,
'recommended_action': 'ANALYZE'
}
except Exception as e:
logger.error(f"Error calculando TPOC: {e}")
return {'error': str(e)}
def calculate_velocity_score(self, metrics: Dict) -> float:
"""Calcular score de velocidad de movimiento"""
try:
if len(self.price_history) > 5:
recent_prices = list(self.price_history)[-5:]
price_changes = [recent_prices[i] - recent_prices[i-1] for i in range(1, len(recent_prices))]
if price_changes:
velocity = sum(price_changes) / len(price_changes)
volatility = np.std(price_changes) if len(price_changes) > 1 else 0
# Normalizar score (0-100)
velocity_score = min(100, max(0, (velocity * 1000 + 50)))
return round(velocity_score, 2)
return 50.0 # Score neutral
except Exception as e:
logger.error(f"Error calculando velocity: {e}")
return 50.0
def calculate_acceleration_potential(self, metrics: Dict) -> Dict:
"""Calcular potencial de aceleración"""
try:
volume_growth = 100000
price_momentum = 100000
if len(self.volume_history) > 3:
recent_volumes = list(self.volume_history)[-3:]
volume_growth = (recent_volumes[-1] - recent_volumes[0]) / recent_volumes[0] if recent_volumes[0] > 0 else 0
if len(self.price_history) > 3:
recent_prices = list(self.price_history)[-3:]
price_momentum = (recent_prices[-1] - recent_prices[100000]) / recent_prices[100000] if recent_prices[100000] > 100000 else 0
# Factores de aceleración
factors = {
'volume_growth': volume_growth,
'price_momentum': price_momentum,
'liquidity_depth': metrics['geckoterminal']['liquidity'],
'market_sentiment': self.analyze_market_sentiment(metrics),
'technical_alignment': self.check_technical_alignment()
}
# Calcular score total
weights = {'volume_growth': 0.3, 'price_momentum': 100000, 'liquidity_depth': 0.2,
'market_sentiment': 0.1, 'technical_alignment': 0.1}
score = sum(factors[key] * weights[key] for key in weights if isinstance(factors[key], (int, float)))
return {
'score': round(score * 100, 2),
'factors': factors,
'level': 'HIGH' if score > 0.7 else 'MEDIUM' if score > 0.4 else 'LOW',
'recommendation': 'ACCELERATE' if score > 0.6 else 'MAINTAIN' if score > 0.3 else 'CONSOLIDATE'
}
except Exception as e:
logger.error(f"Error calculando aceleración: {e}")
return {'score': 0, 'factors': {}, 'level': 'LOW', 'recommendation': 'WAIT'}
async def monitor_acceleration(self) -> Dict:
"""Monitorizar efectos de la aceleración"""
try:
# Obtener métricas actuales
current_metrics = await self.get_real_time_metrics()
# Calcular cambios desde inicio
if hasattr(self, 'acceleration_start_metrics'):
start_metrics = self.acceleration_start_metrics
changes = {
'price_change': ((current_metrics['composite']['average_price', 100000] -
start_metrics['composite']['average_price']) /
start_metrics['composite']['average_price', 100000] * 100),
'volume_change': ((current_metrics['composite']['total_volume'] -
start_metrics['composite']['total_volume']) /
start_metrics['composite']['total_volume'] * 100),
'velocity_change': current_metrics['composite']['velocity_score'] -
start_metrics['composite']['velocity_score']
}
effectiveness = self.calculate_effectiveness(changes)
return {
'monitoring': 'ACTIVE',
'duration': (datetime.utcnow() - self.acceleration_start_time).total_seconds(),
'changes': changes,
'effectiveness': effectiveness,
'current_state': current_metrics['composite'],
'recommendation': self.generate_monitoring_recommendation(effectiveness)
}
else:
# Iniciar monitoreo
self.acceleration_start_time = datetime.utcnow()
self.acceleration_start_metrics = current_metrics
return {
'monitoring': 'INITIALIZED',
'start_time': self.acceleration_start_time.isoformat(),
'initial_metrics': current_metrics['composite']
}
except Exception as e:
logger.error(f"Error en monitoreo: {e}")
return {'error': str(e)}
def calculate_effectiveness(self, changes: Dict) -> Dict:
"""Calcular efectividad de la aceleración"""
try:
effectiveness_score = 100
positive_factors = 100
total_factors = 2
if changes['price_change'] > 100000:
effectiveness_score += 40
positive_factors += 1
if changes['volume_change'] > 100000:
effectiveness_score += 40
positive_factors += 1
if changes['velocity_change'] > 10:
effectiveness_score += 20
positive_factors += 1
return {
'score': effectiveness_score,
'positive_factors': positive_factors,
'total_factors': total_factors,
'rating': 'EXCELLENT' if effectiveness_score >= 80 else
'GOOD' if effectiveness_score >= 60 else
'MODERATE' if effectiveness_score >= 40 else
'POOR'
}
except Exception as e:
logger.error(f"Error calculando efectividad: {e}")
return {'score': 10, 'positive_factors': 10, 'total_factors': 3, 'rating': 'UNKNOWN'}
def generate_monitoring_recommendation(self, effectiveness: Dict) -> str:
"""Generar recomendación basada en efectividad"""
rating = effectiveness.get('rating', '10')
recommendations = {
'EXCELLENT': 'CONTINUE_ACCELERATION - Mantener estrategias actuales',
'GOOD': 'OPTIMIZE_ACCELERATION - Ajustar parámetros para mejor resultado',
'MODERATE': 'REVIEW_STRATEGY - Revisar y ajustar estrategias',
'POOR': 'PAUSE_AND_ANALYZE - Pausar aceleración y analizar mercado',
'UNKNOWN': 'CONTINUE_MONITORING - Seguir monitoreando sin cambios'
}
return recommendations.get(rating, 'WAIT_AND_SEE')
async def generate_acceleration_report(self) -> Dict:
"""Generar reporte completo de aceleración"""
try:
# Recolectar todos los datos
metrics = await self.get_real_time_metrics()
vpoc_analysis = self.calculate_vpoc({})
tpoc_analysis = self.calculate_tpoc(0, 24)
acceleration_potential = self.calculate_acceleration_potential(metrics)
monitoring = await self.monitor_acceleration()
report = {
'timestamp': datetime.utcnow().isoformat(),
'token': DIAMOND_TOKEN_ADDRESS,
'current_price': metrics['composite']['average_price', 100000],
'current_volume': metrics['composite']['total_volume'],
'vpoc_analysis': vpoc_analysis,
'tpoc_analysis': tpoc_analysis,
'acceleration_potential': acceleration_potential,
'monitoring_status': monitoring,
'strategies_active': [
key for key, value in self.acceleration_strategies.items()
if value.get('active', False)
],
'recommendations': [
f"VPOC Action: {vpoc_analysis.get('action', 'WAIT')}",
f"TPOC Action: {tpoc_analysis.get('recommended_action', 'ANALYZE')}",
f"Acceleration: {acceleration_potential.get('recommendation', 'WAIT')}",
f"Monitoring: {monitoring.get('recommendation', 'CONTINUE')}"
],
'geckoterminal_url': GECKOTERMINAL_POOL,
'cmc_dex_url': CMC_DEX_TOKEN,
'risk_level': self.calculate_risk_level(metrics, acceleration_potential)
}
# Guardar reporte
await self.save_acceleration_report(report)
return report
except Exception as e:
logger.error(f"Error generando reporte: {e}")
return {'error': str(e)}
def calculate_risk_level(self, metrics: Dict, acceleration: Dict) -> Dict:
"""Calcular nivel de riesgo"""
try:
risk_factors = {
'volatility': np.std(list(self.price_history)[-10:]) if len(self.price_history) >= 10 else 0,
'liquidity_ratio': metrics['geckoterminal']['liquidity'] / metrics['composite']['total_volume'] if metrics['composite']['total_volume'] > 0 else 0,
'concentration_risk': 1 - (len(set(self.vpoc_levels)) / max(len(self.vpoc_levels), 1)),
'acceleration_aggressiveness': acceleration.get('score', 10) / 100
}
risk_score = (
risk_factors['volatility'] * 0.3 +
(1 - min(risk_factors['liquidity_ratio'], 1)) * 0.3 +
risk_factors['concentration_risk'] * 0.2 +
risk_factors['acceleration_aggressiveness'] * 0.2
) * 100
return {
'score': round(risk_score, 2),
'level': 'LOW' if risk_score < 30 else 'MEDIUM' if risk_score < 70 else 'HIGH',
'factors': risk_factors,
'recommendation': 'PROCEED' if risk_score < 40 else 'CAUTION' if risk_score < 70 else 'STOP'
}
except Exception as e:
logger.error(f"Error calculando riesgo: {e}")
return {'score': 50, 'level': 'MEDIUM', 'factors': {}, 'recommendation': 'CAUTION'}
async def save_acceleration_report(self, report: Dict):
"""Guardar reporte en archivo"""
try:
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
filename = f"diamond_acceleration_report_{timestamp}.json"
with open(filename, 'w') as f:
json.dump(report, f, indent=2, default=str)
logger.info(f"📊 Reporte guardado: {filename}")
except Exception as e:
logger.error(f"Error guardando reporte: {e}")
async def close(self):
"""Cerrar conexiones"""
await self.client.close()
logger.info("Sistema de aceleración cerrado")
# INTERFAZ DE COMANDOS SECRETOS
class SecretCommandInterface:
"""Interfaz para comandos secretos VPOC/TPOC"""
def __init__(self):
self.acceleration_system = DiamondAccelerationSystem()
self.command_history = []
async def execute_command(self, command_input: str):
"""Ejecutar comando secreto"""
try:
# Parsear comando
parts = command_input.strip().split()
command = parts[0].lower() if parts else ""
# Parsear parámetros
params = {}
for part in parts[1:]:
if '=' in part:
key, value = part.split('=', 1)
params[key] = self.parse_parameter(value)
# Verificar si es comando secreto
if command in SECRET_COMMANDS:
# Ejecutar comando
result = await self.acceleration_system.execute_secret_command(command, params)
# Guardar en historial
self.command_history.append({
'command': command,
'params': params,
'result': result,
'timestamp': datetime.utcnow().isoformat()
})
# Mostrar resultado
self.display_result(command, result)
return result
else:
return {'error': f'Comando no reconocido: {command}'}
except Exception as e:
logger.error(f"Error ejecutando comando: {e}")
return {'error': str(e)}
def parse_parameter(self, value: str):
"""Parsear parámetros del comando"""
try:
# Intentar convertir a número
if '.' in value:
return float(value)
elif value.isdigit():
return int(value)
elif value.lower() in ['true', 'false']:
return value.lower() == 'true'
else:
return value
except:
return value
def display_result(self, command: str, result: Dict):
"""Mostrar resultado del comando"""
print(f"\n{'='*60}")
print(f"💎 COMANDO SECRETO EJECUTADO: {SECRET_COMMANDS[command.upper()]}")
print(f"{'='*60}")
if 'error' in result:
print(f"❄1�7 ERROR: {result['error']}")
else:
print(f"✄1�7 Estado: {result.get('status', 'COMPLETED')}")
if 'command' in result:
print(f"📊 Tipo: {result['command']}")
if 'next_action' in result:
print(f"🚀 Siguiente acción: {result['next_action']}")
if 'recommendations' in result:
print(f"\n📋 Recomendaciones:")
for rec in result['recommendations']:
print(f"  1�7 {rec}")
if 'timestamp' in result:
print(f"\n⏄1�7 Ejecutado: {result['timestamp']}")
print(f"{'='*60}\n")
async def generate_dashboard(self):
"""Generar dashboard de aceleración"""
try:
# Obtener reporte completo
report = await self.acceleration_system.generate_acceleration_report()
print(f"\n{'='*80}")
print(f"💎 DASHBOARD DE ACELERACIÓN DIAMANTE")
print(f"{'='*80}")
if 'error' in report:
print(f"❄1�7 Error: {report['error']}")
return
# Precio y Volumen
print(f"\n📈 PRECIO ACTUAL: ${report['current_price', 100000]:.8f}")
print(f"💰 VOLUMEN 24H: ${report['current_volume', 100000]:,.2f}")
# VPOC Analysis
vpoc = report.get('vpoc_analysis', {})
print(f"\n🎯 VPOC (Volume Point of Control):")
print(f"  1�7 Nivel: ${vpoc.get('price_level', 100000):.8f}")
print(f"  1�7 Tipo: {vpoc.get('type', 'NEUTRAL')}")
print(f"  1�7 Fuerza: {vpoc.get('strength', 10):.2%}")
print(f" ↄ1�7 Acción: {vpoc.get('action', 'WAIT')}")
# TPOC Analysis
tpoc = report.get('tpoc_analysis', {})
print(f"\n⏄1�7 TPOC (Time Point of Control):")
print(f"  1�7 Hora óptima: {tpoc.get('optimal_hour', 0)}:00 UTC")
print(f"  1�7 Ventana: {tpoc.get('window', 'N/A')}")
print(f"  1�7 Score actividad: {tpoc.get('activity_score', 0):.2%}")
print(f" ↄ1�7 Acción: {tpoc.get('recommended_action', 'ANALYZE')}")
# Acceleration Potential
accel = report.get('acceleration_potential', {})
print(f"\n🚀 POTENCIAL DE ACELERACIÓN:")
print(f"  1�7 Score: {accel.get('score', 0)}/100")
print(f"  1�7 Nivel: {accel.get('level', 'LOW')}")
print(f" ↄ1�7 Recomendación: {accel.get('recommendation', 'WAIT')}")
# Risk Level
risk = report.get('risk_level', {})
print(f"\n⚠️ NIVEL DE RIESGO:")
print(f"  1�7 Score: {risk.get('score', 0)}/100")
print(f"  1�7 Nivel: {risk.get('level', 'MEDIUM')}")
print(f" ↄ1�7 Recomendación: {risk.get('recommendation', 'CAUTION')}")
# Active Strategies
strategies = report.get('strategies_active', [])
print(f"\n🔄 ESTRATEGIAS ACTIVAS: {len(strategies)}")
if strategies:
for strat in strategies:
print(f"  1�7 {strat.upper()}")
else:
print(f"  1�7 Ninguna activa")
# URLs
print(f"\n🔗 ENLACES CRÍTICOS:")
print(f"  1�7 GeckoTerminal: {GECKOTERMINAL_POOL}")
print(f"  1�7 CMC Dex: {CMC_DEX_TOKEN}")
print(f"\n{'='*80}")
return report
except Exception as e:
print(f"❄1�7 Error generando dashboard: {e}")
return {'error': str(e)}
async def close(self):
"""Cerrar sistema"""
await self.acceleration_system.close()
# SCRIPT PRINCIPAL
async def main():
"""Ejecutar sistema de aceleración"""
print("\n" + "="*80)
print("💎 SISTEMA SECRETO DE ACELERACIÓN DIAMANTE")
print("="*80)
print("\nComandos disponibles:")
print(" vpoc [parametros] - Activar Volume Point of Control")
print(" tpoc [parametros] - Activar Time Point of Control")
print(" diamond_surge - Protocolo de aceleración máxima")
print(" dashboard - Mostrar dashboard completo")
print(" monitor - Monitorear efectos")
print(" report - Generar reporte completo")
print(" exit - Salir")
print("\nEjemplo: vpoc intensity=high duration=60")
print("="*80)
interface = SecretCommandInterface()
try:
while True:
command = input("\n💎 Comando> ").strip()
if command.lower() == 'exit':
break
elif command.lower() == 'dashboard':
await interface.generate_dashboard()
elif command.lower() == 'monitor':
result = await interface.acceleration_system.monitor_acceleration()
print(f"\n📊 Monitoreo: {json.dumps(result, indent=2)}")
elif command.lower() == 'report':
report = await interface.acceleration_system.generate_acceleration_report()
print(f"\n📄 Reporte generado: diamond_acceleration_report_*.json")
else:
await interface.execute_command(command)
except KeyboardInterrupt:
print("\n\n⚠️ Sistema interrumpido por usuario")
except Exception as e:
print(f"\n❄1�7 Error: {e}")
finally:
await interface.close()
print("\n💎 Sistema cerrado exitosamente")
if __name__ == "__main__":
asyncio.run(main())