Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- GetSoloTech/Code-Reasoning
|
| 4 |
+
base_model:
|
| 5 |
+
- GetSoloTech/Gemma3-Code-Reasoning-4B
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
tags:
|
| 8 |
+
- coding
|
| 9 |
+
- reasoning
|
| 10 |
+
- problem-solving
|
| 11 |
+
- algorithms
|
| 12 |
+
- python
|
| 13 |
+
- c++
|
| 14 |
+
- code-reasoning
|
| 15 |
+
- competitive-programming
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Gemma3-Code-Reasoning-4B-GGUF
|
| 19 |
+
|
| 20 |
+
This repository contains GGUF (GGML Universal Format) quantized versions of the [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B) model, optimized for local inference with various quantization levels to balance performance and resource usage.
|
| 21 |
+
|
| 22 |
+
## π― Model Overview
|
| 23 |
+
|
| 24 |
+
This is a **LoRA-finetuned** version of `gemma-3-4b-it` specifically optimized for competitive programming and code reasoning tasks. The model has been trained on the high-quality Code-Reasoning dataset to enhance its capabilities in solving complex programming problems with detailed reasoning.
|
| 25 |
+
|
| 26 |
+
## π Key Features
|
| 27 |
+
|
| 28 |
+
- **Enhanced Code Reasoning**: Specifically trained on competitive programming problems
|
| 29 |
+
- **Thinking Capabilities**: Inherits the advanced reasoning capabilities from the base model
|
| 30 |
+
- **High-Quality Solutions**: Trained on solutions with β₯85% test case pass rates
|
| 31 |
+
- **Structured Output**: Optimized for generating well-reasoned programming solutions
|
| 32 |
+
- **Efficient Training**: Uses LoRA adapters for efficient parameter updates
|
| 33 |
+
- **Multiple Quantization Levels**: Available in various GGUF formats for different hardware capabilities
|
| 34 |
+
|
| 35 |
+
## π Available GGUF Models
|
| 36 |
+
| Model File | Size | Quantization | Use Case |
|
| 37 |
+
|------------|------|--------------|----------|
|
| 38 |
+
| `Gemma3-Code-Reasoning-4B.f16.gguf` | 7.77 GB | FP16 | Highest quality, requires more VRAM |
|
| 39 |
+
| `Gemma3-Code-Reasoning-4B.Q8_0.gguf` | 4.13 GB | Q8_0 | High quality, good balance |
|
| 40 |
+
| `Gemma3-Code-Reasoning-4B.Q6_K.gguf` | 3.19 GB | Q6_K | Good quality, moderate VRAM usage |
|
| 41 |
+
| `Gemma3-Code-Reasoning-4B.Q5_K_M.gguf` | 2.83 GB | Q5_K_M | Balanced quality and size |
|
| 42 |
+
| `Gemma3-Code-Reasoning-4B.Q4_K_M.gguf` | 2.49 GB | Q4_K_M | Good compression, reasonable quality |
|
| 43 |
+
| `Gemma3-Code-Reasoning-4B.Q3_K_M.gguf` | 2.1 GB | Q3_K_M | Smaller size, moderate quality |
|
| 44 |
+
| `Gemma3-Code-Reasoning-4B.Q2_K.gguf` | 1.73 GB | Q2_K | Smallest size, basic quality |
|
| 45 |
+
| `Gemma3-Code-Reasoning-4B.IQ4_XS.gguf` | 2.28 GB | IQ4_XS | Intel optimized, good quality |
|
| 46 |
+
|
| 47 |
+
## π§ Usage
|
| 48 |
+
|
| 49 |
+
### Using with llama.cpp
|
| 50 |
+
|
| 51 |
+
```bash
|
| 52 |
+
# Download a GGUF model file
|
| 53 |
+
wget https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B-GGUF/resolve/main/Gemma3-Code-Reasoning-4B.Q4_K_M.gguf
|
| 54 |
+
|
| 55 |
+
# Run inference with llama.cpp
|
| 56 |
+
./llama.cpp/main -m Gemma3-Code-Reasoning-4B.Q4_K_M.gguf -n 4096 --repeat_penalty 1.1 -p "You are an expert competitive programmer. Solve this problem: [YOUR_PROBLEM_HERE]"
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
### Using with Python (llama-cpp-python)
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
from llama_cpp import Llama
|
| 63 |
+
|
| 64 |
+
# Load the model
|
| 65 |
+
llm = Llama(
|
| 66 |
+
model_path="./Gemma3-Code-Reasoning-4B.Q4_K_M.gguf",
|
| 67 |
+
n_ctx=4096,
|
| 68 |
+
n_threads=4
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Prepare the prompt
|
| 72 |
+
prompt = """You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful.
|
| 73 |
+
|
| 74 |
+
Problem: [YOUR_PROGRAMMING_PROBLEM_HERE]
|
| 75 |
+
|
| 76 |
+
Solution:"""
|
| 77 |
+
|
| 78 |
+
# Generate response
|
| 79 |
+
output = llm(
|
| 80 |
+
prompt,
|
| 81 |
+
max_tokens=4096,
|
| 82 |
+
temperature=1.0,
|
| 83 |
+
top_p=0.95,
|
| 84 |
+
top_k=64,
|
| 85 |
+
repeat_penalty=1.1
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
print(output['choices'][0]['text'])
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
## ποΈ Recommended Settings
|
| 93 |
+
|
| 94 |
+
- **Temperature**: 1.0
|
| 95 |
+
- **Top-p**: 0.95
|
| 96 |
+
- **Top-k**: 64
|
| 97 |
+
- **Max New Tokens**: 4096 (adjust based on problem complexity)
|
| 98 |
+
- **Repeat Penalty**: 1.1
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
## π» Hardware Requirements
|
| 102 |
+
|
| 103 |
+
| Quantization | Minimum VRAM | Recommended VRAM | CPU RAM |
|
| 104 |
+
|--------------|--------------|------------------|---------|
|
| 105 |
+
| FP16 | 8 GB | 12 GB | 16 GB |
|
| 106 |
+
| Q8_0 | 5 GB | 8 GB | 12 GB |
|
| 107 |
+
| Q6_K | 4 GB | 6 GB | 10 GB |
|
| 108 |
+
| Q5_K_M | 3 GB | 5 GB | 8 GB |
|
| 109 |
+
| Q4_K_M | 3 GB | 4 GB | 6 GB |
|
| 110 |
+
| Q3_K_M | 2 GB | 3 GB | 4 GB |
|
| 111 |
+
| Q2_K | 2 GB | 2 GB | 3 GB |
|
| 112 |
+
| IQ4_XS | 3 GB | 4 GB | 6 GB |
|
| 113 |
+
|
| 114 |
+
## π Performance Expectations
|
| 115 |
+
|
| 116 |
+
This finetuned model is expected to show improved performance on:
|
| 117 |
+
|
| 118 |
+
- **Competitive Programming Problems**: Better understanding of problem constraints and requirements
|
| 119 |
+
- **Code Generation**: More accurate and efficient solutions
|
| 120 |
+
- **Reasoning Quality**: Enhanced step-by-step reasoning for complex problems
|
| 121 |
+
- **Solution Completeness**: More comprehensive solutions with proper edge case handling
|
| 122 |
+
|
| 123 |
+
## π Related Resources
|
| 124 |
+
|
| 125 |
+
- **Base Model**: [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B)
|
| 126 |
+
- **Training Dataset**: [GetSoloTech/Code-Reasoning](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning)
|
| 127 |
+
- **Original Gemma Model**: [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it)
|
| 128 |
+
- **llama.cpp**: [GitHub Repository](https://github.com/ggerganov/llama.cpp)
|
| 129 |
+
- **llama-cpp-python**: [PyPI Package](https://pypi.org/project/llama-cpp-python/)
|
| 130 |
+
|
| 131 |
+
## π€ Contributing
|
| 132 |
+
|
| 133 |
+
This model was created using the Unsloth framework and the Code-Reasoning dataset. For questions about:
|
| 134 |
+
|
| 135 |
+
- The base model: [Gemma3 Huggingface](https://huggingface.co/google/gemma-3-4b-it)
|
| 136 |
+
- The training dataset: [Code-Reasoning Repository](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning)
|
| 137 |
+
- The training framework: [Unsloth Documentation](https://github.com/unslothai/unsloth)
|
| 138 |
+
|
| 139 |
+
## π Acknowledgments
|
| 140 |
+
|
| 141 |
+
- **Gemma Team** for the excellent base model
|
| 142 |
+
- **Unsloth Team** for the efficient training framework
|
| 143 |
+
- **NVIDIA Research** for the original OpenCodeReasoning-2 dataset
|
| 144 |
+
- **llama.cpp community** for the GGUF format and tools
|
| 145 |
+
|
| 146 |
+
## π Contact
|
| 147 |
+
|
| 148 |
+
For questions about this GGUF converted model, please open an issue in the repository.
|
| 149 |
+
|
| 150 |
+
---
|
| 151 |
+
|
| 152 |
+
**Note**: This model is specifically optimized for competitive programming and code reasoning tasks. Choose the appropriate quantization level based on your hardware capabilities and quality requirements.
|