File size: 36,055 Bytes
94d9370 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
# ytedance Inc..
# *************************************************************************
# Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/modeling_perception_lm.py
# coding=utf-8
# Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Union
import torch
import torch.nn.functional as F
import torchvision
from einops import rearrange
from timm.models._manipulate import checkpoint
from torch import nn
from transformers import AutoModel, PerceptionLMConfig
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import auto_docstring, can_return_tuple
class PerceptionLMAdaptiveAvgPooling(nn.Module):
def __init__(self, pooling_ratio=2):
super().__init__()
self.pooling_ratio = pooling_ratio
def forward(self, hidden_states):
b, num_tokens, c = hidden_states.shape
h = int(math.sqrt(num_tokens))
if h * h != num_tokens:
raise ValueError(
f"num_tokens {num_tokens} is expected to be a square number"
)
shape = (h // self.pooling_ratio, h // self.pooling_ratio)
hidden_states = hidden_states.permute(0, 2, 1).reshape(b, -1, h, h)
hidden_states = F.adaptive_avg_pool2d(hidden_states, shape)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
class PerceptionLMMultiModalProjector(nn.Module):
def __init__(self, config: PerceptionLMConfig):
super().__init__()
input_size = config.vision_config.model_args["embed_dim"]
output_size = config.text_config.hidden_size
self.linear_1 = nn.Linear(
in_features=input_size,
out_features=output_size,
bias=True,
)
self.gelu = nn.GELU()
self.linear_2 = nn.Linear(
in_features=output_size,
out_features=output_size,
bias=True,
)
self.pooling = (
PerceptionLMAdaptiveAvgPooling(config.projector_pooling_ratio)
if config.projector_pooling_ratio > 1
else nn.Identity()
)
def forward(self, features):
features = features.permute(1, 0, 2) # NLD -> LND
features = self.linear_1(features)
features = self.gelu(features)
features = self.linear_2(features)
features = features.permute(1, 0, 2) # LND -> NLD
features = self.pooling(features)
return features
@auto_docstring
class PerceptionLMPreTrainedModel(PreTrainedModel):
config: PerceptionLMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn = True
_supports_sdpa = True
_can_compile_fullgraph = True
_supports_flex_attn = True
_supports_attention_backend = True
@dataclass
@auto_docstring(
custom_intro="""
Base class for PerceptionLM outputs, with hidden states and attentions.
"""
)
class PerceptionLMModelOutputWithPast(BaseModelOutputWithPast):
r"""
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
image_hidden_states: Optional[torch.FloatTensor] = None
video_hidden_states: Optional[torch.FloatTensor] = None
@dataclass
@auto_docstring(
custom_intro="""
Base class for PerceptionLM causal language model (or autoregressive) outputs.
"""
)
class PerceptionLMCausalLMOutputWithPast(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
video_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[list[torch.FloatTensor]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
video_hidden_states: Optional[torch.FloatTensor] = None
@auto_docstring
class PerceptionLMModel(PerceptionLMPreTrainedModel):
_checkpoint_conversion_mapping = {}
def __init__(self, config: PerceptionLMConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
def custom_forward_features(
self,
x: torch.Tensor,
mask_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass through feature extraction layers.
Args:
x: Input tensor.
Returns:
Feature tensor.
"""
x = self.patch_embed(x)
if mask_embeds is not None:
x = x + mask_embeds.flatten(2).transpose(1, 2)
x, rot_pos_embed = self._pos_embed(x)
x = self.norm_pre(x)
if getattr(self, "rope_mixed", False) and rot_pos_embed is not None:
# Handle depth-dependent embeddings for mixed mode
# pos embed has shape (depth, num_heads, H*W, dim) or (depth, batch_size, num_heads, H*W, dim)
for i, blk in enumerate(self.blocks):
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x, rope=rot_pos_embed[i])
else:
x = blk(x, rope=rot_pos_embed[i])
else:
# Standard path for non-mixed mode
for blk in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x, rope=rot_pos_embed)
else:
x = blk(x, rope=rot_pos_embed)
x = self.norm(x)
return x
self.vision_tower.timm_model.forward_features = custom_forward_features.__get__(
self.vision_tower.timm_model
)
self.multi_modal_projector = PerceptionLMMultiModalProjector(config)
self.language_model = AutoModel.from_config(config.text_config)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_decoder(self, decoder):
self.language_model = decoder
def get_decoder(self):
return self.language_model
def get_image_features(
self,
pixel_values: torch.FloatTensor,
mask_embeds: Optional[torch.FloatTensor] = None,
**kwargs,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_tiles, channels, height, width)`)
The tensors corresponding to the input images.
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_tiles, num_patches, embed_dim)`).
"""
if len(pixel_values.shape) == 5:
pixel_values = pixel_values.flatten(0, 1)
assert (
len(pixel_values.shape) == 4
), f"pixel_values should be of shape (batch_size * num_tiles, channels, height, width). But got {pixel_values.shape}."
# pre-mask
image_outputs = self.vision_tower(pixel_values, mask_embeds=mask_embeds)
# image_outputs = self.vision_tower(pixel_values)
image_outputs = image_outputs.last_hidden_state
if self.config.vision_use_cls_token:
image_outputs = image_outputs[:, 1:, :]
# post-mask
# if mask_embeds is not None:
# image_outputs = image_outputs + mask_embeds.flatten(2).transpose(1, 2)
image_features = self.multi_modal_projector(image_outputs)
return image_features
def get_placeholder_mask(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.FloatTensor,
image_features: torch.FloatTensor = None,
video_features: torch.FloatTensor = None,
):
"""
Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
equal to the length of multimodal features. If the lengths are different, an error is raised.
"""
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(
self.config.image_token_id,
dtype=torch.long,
device=inputs_embeds.device,
)
)
special_image_mask = special_image_mask.all(-1)
special_video_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(
self.config.video_token_id,
dtype=torch.long,
device=inputs_embeds.device,
)
)
special_video_mask = special_video_mask.all(-1)
else:
special_image_mask = input_ids == self.config.image_token_id
special_video_mask = input_ids == self.config.video_token_id
n_image_tokens = special_image_mask.sum()
special_image_mask = (
special_image_mask.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
if (
image_features is not None
and inputs_embeds[special_image_mask].numel() != image_features.numel()
):
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.size()[:-1].numel()}"
)
n_video_tokens = special_video_mask.sum()
special_video_mask = (
special_video_mask.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
if (
video_features is not None
and inputs_embeds[special_video_mask].numel() != video_features.numel()
):
raise ValueError(
f"Videos features and image tokens do not match: tokens: {n_video_tokens}, features {video_features.size()[:-1].numel()}"
)
return special_image_mask, special_video_mask
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
mask_embeds: Optional[torch.FloatTensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # need
position_ids: Optional[torch.LongTensor] = None, # need
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None, # need
use_cache: Optional[bool] = None, # need
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[tuple, PerceptionLMModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if (
pixel_values is not None or pixel_values_videos is not None
) and inputs_embeds is not None:
raise ValueError(
"You cannot specify both (pixel_values or pixel_values_videos) and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
image_features = None
if pixel_values is not None:
image_features = self.get_image_features(
pixel_values=pixel_values, mask_embeds=mask_embeds
)
image_features = image_features.to(
inputs_embeds.device, dtype=inputs_embeds.dtype
)
special_image_mask, _ = self.get_placeholder_mask(
input_ids, inputs_embeds=inputs_embeds, image_features=image_features
)
inputs_embeds = inputs_embeds.masked_scatter(
special_image_mask, image_features
)
video_features = None
if pixel_values_videos is not None:
video_features = self.get_image_features(pixel_values=pixel_values_videos)
video_features = video_features.to(
inputs_embeds.device, dtype=inputs_embeds.dtype
)
_, special_video_mask = self.get_placeholder_mask(
input_ids, inputs_embeds=inputs_embeds, video_features=video_features
)
inputs_embeds = inputs_embeds.masked_scatter(
special_video_mask, video_features
)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
return PerceptionLMModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
past_key_values=outputs.past_key_values,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
video_hidden_states=(
video_features if pixel_values_videos is not None else None
),
)
@auto_docstring
class PerceptionLMForConditionalGeneration(
PerceptionLMPreTrainedModel, GenerationMixin
):
_checkpoint_conversion_mapping = {}
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: PerceptionLMConfig):
super().__init__(config)
self.model = PerceptionLMModel(config)
self.lm_head = nn.Linear(
config.text_config.hidden_size, config.text_config.vocab_size, bias=False
)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_decoder(self, decoder):
self.model.set_decoder(decoder)
def get_decoder(self):
return self.model.get_decoder()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
mask_embeds: Optional[torch.FloatTensor] = None,
**kwargs,
):
return self.model.get_image_features(
pixel_values=pixel_values, mask_embeds=mask_embeds, **kwargs
)
def get_placeholder_mask(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.FloatTensor,
image_features: torch.FloatTensor = None,
video_features: torch.FloatTensor = None,
):
return self.model.get_placeholder_mask(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
image_features=image_features,
video_features=video_features,
)
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None, # no need
pixel_values: Optional[torch.FloatTensor] = None, # no need
pixel_values_videos: Optional[torch.FloatTensor] = None, # no need
attention_mask: Optional[torch.Tensor] = None, # need
position_ids: Optional[torch.LongTensor] = None, # need
past_key_values: Optional[list[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None, # need
labels: Optional[torch.LongTensor] = None, # need
use_cache: Optional[bool] = None, # need
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[tuple, PerceptionLMCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, PerceptionLMForConditionalGeneration
>>> model = PerceptionLMForConditionalGeneration.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")
>>> processor = AutoProcessor.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")
>>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_new_tokens=15)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
```"""
outputs = self.model(
input_ids=input_ids,
pixel_values=pixel_values,
pixel_values_videos=pixel_values_videos,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = (
slice(-logits_to_keep, None)
if isinstance(logits_to_keep, int)
else logits_to_keep
)
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.config.text_config.vocab_size,
**lm_kwargs,
)
return PerceptionLMCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=outputs.image_hidden_states,
video_hidden_states=outputs.video_hidden_states,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
mask_embeds=None,
pixel_values_videos=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
feature_replay=None,
feature_replay_video=None,
crop_tokens=[128004],
roi_align=None,
bboxes=None,
aspect_ratios=True,
processor=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
assert not (feature_replay and feature_replay_video)
if cache_position[0] == 0:
inputs_embeds = model_inputs["inputs_embeds"]
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
image_features = None
if pixel_values is not None:
image_features = self.get_image_features(
pixel_values=pixel_values, mask_embeds=mask_embeds
)
image_features = image_features.to(
inputs_embeds.device, dtype=inputs_embeds.dtype
)
special_image_mask, _ = self.get_placeholder_mask(
input_ids,
inputs_embeds=inputs_embeds,
image_features=image_features,
)
inputs_embeds = inputs_embeds.masked_scatter(
special_image_mask, image_features
)
video_features = None
if pixel_values_videos is not None:
video_features = self.get_image_features(
pixel_values=pixel_values_videos
)
video_features = video_features.to(
inputs_embeds.device, dtype=inputs_embeds.dtype
)
_, special_video_mask = self.get_placeholder_mask(
input_ids,
inputs_embeds=inputs_embeds,
video_features=video_features,
)
inputs_embeds = inputs_embeds.masked_scatter(
special_video_mask, video_features
)
if feature_replay:
assert (
inputs_embeds.shape[0] == 1
), "Currently only support batch_size=1 for feature replay"
def _merge(tiles: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
# merge image tiles to the original image
# input: (batch_size, ncw * nch, num_channels, height//nch, width//ncw)
# output: (batch_size, num_channels, height, width)
batch_size, num_tiles, num_channels, tile_height, tile_width = (
tiles.size()
)
assert num_tiles == ncw * nch, f"{ncw * nch} != {num_tiles}"
tiles = tiles.view(
batch_size, nch, ncw, num_channels, tile_height, tile_width
)
tiles = tiles.permute(0, 3, 1, 4, 2, 5).contiguous()
original_height = nch * tile_height
original_width = ncw * tile_width
image = tiles.view(
batch_size, num_channels, original_height, original_width
)
return image
new_inputs_embeds = []
image_features_tiles = rearrange(
image_features[1:].unsqueeze(0),
"b n (h w) c -> b n c h w",
h=16,
w=16,
)
for batch_idx in range(inputs_embeds.shape[0]):
curr_inputs_emebds = inputs_embeds[batch_idx]
for crop_token in crop_tokens:
if crop_token in input_ids[batch_idx]:
target_mask = input_ids[batch_idx].eq(crop_token)
target_indices = target_mask.nonzero().squeeze()
head_idx = target_indices.min().item()
tail_idx = target_indices.max().item()
image_features_recover = _merge(
image_features_tiles,
aspect_ratios[batch_idx][0],
aspect_ratios[batch_idx][1],
)
x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
feat_h, feat_w = image_features_recover.shape[2:]
orig_h, orig_w = feat_h * 28, feat_w * 28 # 原图尺寸
# origin box
roi_orig_x1 = x1 * orig_w
roi_orig_y1 = y1 * orig_h
roi_orig_x2 = x2 * orig_w
roi_orig_y2 = y2 * orig_h
# feat box
spatial_scale = feat_w / orig_w
roi_feat_x1 = roi_orig_x1 * spatial_scale
roi_feat_y1 = roi_orig_y1 * spatial_scale
roi_feat_x2 = roi_orig_x2 * spatial_scale
roi_feat_y2 = roi_orig_y2 * spatial_scale
roi = torch.tensor(
[0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
dtype=torch.float32,
device=image_features_recover.device,
)
roi_features = torchvision.ops.roi_align(
input=image_features_recover.float(),
boxes=roi.unsqueeze(0),
output_size=(16, 16),
spatial_scale=spatial_scale,
sampling_ratio=2,
aligned=True,
)
image_features_replay = (
roi_features.permute(0, 2, 3, 1)
.flatten(1, 2)
.to(image_features_recover.dtype)
.squeeze()
)
curr_inputs_emebds = torch.cat(
[
inputs_embeds[batch_idx][:head_idx],
image_features_replay,
inputs_embeds[batch_idx][tail_idx + 1 :],
]
)
new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))
inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
model_inputs["position_ids"] = (
torch.arange(
0,
inputs_embeds.shape[1],
dtype=torch.long,
device=inputs_embeds.device,
)
.unsqueeze(0)
.repeat(inputs_embeds.shape[0], 1)
)
model_inputs["attention_mask"] = torch.ones(
inputs_embeds.shape[0],
inputs_embeds.shape[1],
dtype=torch.long,
device=inputs_embeds.device,
)
model_inputs["cache_position"] = model_inputs["position_ids"].clone()
elif feature_replay_video:
assert (
inputs_embeds.shape[0] == 1
), "Currently only support batch_size=1 for feature replay"
assert processor is not None, "Need processor"
new_inputs_embeds = []
image_features_tiles = rearrange(
image_features.unsqueeze(0), "b n (h w) c -> b n c h w", h=16, w=16
)
for batch_idx in range(inputs_embeds.shape[0]):
curr_inputs_emebds = inputs_embeds[batch_idx]
for frame_idx in range(image_features.shape[0]):
crop_token = processor.tokenizer.convert_tokens_to_ids(
f"<|reserved_special_token_{2 + frame_idx}|>"
)
if crop_token in input_ids[batch_idx]:
target_mask = input_ids[batch_idx].eq(crop_token)
target_indices = target_mask.nonzero().squeeze()
head_idx = target_indices.min().item()
tail_idx = target_indices.max().item()
x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
feat_h, feat_w = 16, 16
orig_h, orig_w = feat_h * 28, feat_w * 28
# origin box
roi_orig_x1 = x1 * orig_w
roi_orig_y1 = y1 * orig_h
roi_orig_x2 = x2 * orig_w
roi_orig_y2 = y2 * orig_h
# feat box
spatial_scale = feat_w / orig_w
roi_feat_x1 = roi_orig_x1 * spatial_scale
roi_feat_y1 = roi_orig_y1 * spatial_scale
roi_feat_x2 = roi_orig_x2 * spatial_scale
roi_feat_y2 = roi_orig_y2 * spatial_scale
roi = torch.tensor(
[0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
dtype=torch.float32,
device=image_features_tiles.device,
)
roi_features = torchvision.ops.roi_align(
input=image_features_tiles[:, frame_idx].float(),
boxes=roi.unsqueeze(0),
output_size=(16, 16),
spatial_scale=spatial_scale,
sampling_ratio=2,
aligned=True,
)
image_features_replay = (
roi_features.permute(0, 2, 3, 1)
.flatten(1, 2)
.to(image_features_tiles.dtype)
.squeeze()
)
curr_inputs_emebds = torch.cat(
[
curr_inputs_emebds[:head_idx],
image_features_replay,
curr_inputs_emebds[tail_idx + 1 :],
]
)
new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))
inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
model_inputs["position_ids"] = (
torch.arange(
0,
inputs_embeds.shape[1],
dtype=torch.long,
device=inputs_embeds.device,
)
.unsqueeze(0)
.repeat(inputs_embeds.shape[0], 1)
)
model_inputs["attention_mask"] = torch.ones(
inputs_embeds.shape[0],
inputs_embeds.shape[1],
dtype=torch.long,
device=inputs_embeds.device,
)
model_inputs["cache_position"] = model_inputs["position_ids"].clone()
model_inputs["inputs_embeds"] = inputs_embeds
model_inputs["input_ids"] = None
model_inputs["pixel_values"] = None
model_inputs["pixel_values_videos"] = None
model_inputs["mask_embeds"] = None
return model_inputs
__all__ = [
"PerceptionLMForConditionalGeneration",
"PerceptionLMPreTrainedModel",
"PerceptionLMModel",
]
|