Feature Extraction
Transformers
Safetensors
English
GAR
custom_code
File size: 36,055 Bytes
94d9370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
# ytedance Inc..
# *************************************************************************

# Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/modeling_perception_lm.py

# coding=utf-8
# Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from dataclasses import dataclass
from typing import Optional, Union

import torch
import torch.nn.functional as F
import torchvision
from einops import rearrange
from timm.models._manipulate import checkpoint
from torch import nn
from transformers import AutoModel, PerceptionLMConfig
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import auto_docstring, can_return_tuple


class PerceptionLMAdaptiveAvgPooling(nn.Module):
    def __init__(self, pooling_ratio=2):
        super().__init__()
        self.pooling_ratio = pooling_ratio

    def forward(self, hidden_states):
        b, num_tokens, c = hidden_states.shape
        h = int(math.sqrt(num_tokens))
        if h * h != num_tokens:
            raise ValueError(
                f"num_tokens {num_tokens} is expected to be a square number"
            )

        shape = (h // self.pooling_ratio, h // self.pooling_ratio)
        hidden_states = hidden_states.permute(0, 2, 1).reshape(b, -1, h, h)
        hidden_states = F.adaptive_avg_pool2d(hidden_states, shape)
        hidden_states = hidden_states.flatten(2).transpose(1, 2)

        return hidden_states


class PerceptionLMMultiModalProjector(nn.Module):
    def __init__(self, config: PerceptionLMConfig):
        super().__init__()
        input_size = config.vision_config.model_args["embed_dim"]
        output_size = config.text_config.hidden_size
        self.linear_1 = nn.Linear(
            in_features=input_size,
            out_features=output_size,
            bias=True,
        )
        self.gelu = nn.GELU()
        self.linear_2 = nn.Linear(
            in_features=output_size,
            out_features=output_size,
            bias=True,
        )
        self.pooling = (
            PerceptionLMAdaptiveAvgPooling(config.projector_pooling_ratio)
            if config.projector_pooling_ratio > 1
            else nn.Identity()
        )

    def forward(self, features):
        features = features.permute(1, 0, 2)  # NLD -> LND
        features = self.linear_1(features)
        features = self.gelu(features)
        features = self.linear_2(features)
        features = features.permute(1, 0, 2)  # LND -> NLD
        features = self.pooling(features)
        return features


@auto_docstring
class PerceptionLMPreTrainedModel(PreTrainedModel):
    config: PerceptionLMConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"

    _supports_flash_attn = True
    _supports_sdpa = True

    _can_compile_fullgraph = True
    _supports_flex_attn = True
    _supports_attention_backend = True


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for PerceptionLM outputs, with hidden states and attentions.
    """
)
class PerceptionLMModelOutputWithPast(BaseModelOutputWithPast):
    r"""
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    image_hidden_states (`torch.FloatTensor`, *optional*):
        A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
        Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
    video_hidden_states (`torch.FloatTensor`, *optional*):
        A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
        Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
    """

    image_hidden_states: Optional[torch.FloatTensor] = None

    video_hidden_states: Optional[torch.FloatTensor] = None


@dataclass
@auto_docstring(
    custom_intro="""
    Base class for PerceptionLM causal language model (or autoregressive) outputs.
    """
)
class PerceptionLMCausalLMOutputWithPast(ModelOutput):
    r"""
    loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
        Language modeling loss (for next-token prediction).
    logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
        Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
    past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
        `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

        Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
        `past_key_values` input) to speed up sequential decoding.
    image_hidden_states (`torch.FloatTensor`, *optional*):
        A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
        Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
    video_hidden_states (`torch.FloatTensor`, *optional*):
        A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
        Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[list[torch.FloatTensor]] = None
    hidden_states: Optional[tuple[torch.FloatTensor]] = None
    attentions: Optional[tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[torch.FloatTensor] = None

    video_hidden_states: Optional[torch.FloatTensor] = None


@auto_docstring
class PerceptionLMModel(PerceptionLMPreTrainedModel):
    _checkpoint_conversion_mapping = {}

    def __init__(self, config: PerceptionLMConfig):
        super().__init__(config)
        self.vision_tower = AutoModel.from_config(config.vision_config)

        def custom_forward_features(
            self,
            x: torch.Tensor,
            mask_embeds: Optional[torch.Tensor] = None,
        ) -> torch.Tensor:
            """Forward pass through feature extraction layers.

            Args:
                x: Input tensor.

            Returns:
                Feature tensor.
            """
            x = self.patch_embed(x)
            if mask_embeds is not None:
                x = x + mask_embeds.flatten(2).transpose(1, 2)
            x, rot_pos_embed = self._pos_embed(x)
            x = self.norm_pre(x)

            if getattr(self, "rope_mixed", False) and rot_pos_embed is not None:
                # Handle depth-dependent embeddings for mixed mode
                # pos embed has shape (depth, num_heads, H*W, dim) or (depth, batch_size, num_heads, H*W, dim)
                for i, blk in enumerate(self.blocks):
                    if self.grad_checkpointing and not torch.jit.is_scripting():
                        x = checkpoint(blk, x, rope=rot_pos_embed[i])
                    else:
                        x = blk(x, rope=rot_pos_embed[i])
            else:
                # Standard path for non-mixed mode
                for blk in self.blocks:
                    if self.grad_checkpointing and not torch.jit.is_scripting():
                        x = checkpoint(blk, x, rope=rot_pos_embed)
                    else:
                        x = blk(x, rope=rot_pos_embed)

            x = self.norm(x)
            return x

        self.vision_tower.timm_model.forward_features = custom_forward_features.__get__(
            self.vision_tower.timm_model
        )

        self.multi_modal_projector = PerceptionLMMultiModalProjector(config)
        self.language_model = AutoModel.from_config(config.text_config)
        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def set_decoder(self, decoder):
        self.language_model = decoder

    def get_decoder(self):
        return self.language_model

    def get_image_features(
        self,
        pixel_values: torch.FloatTensor,
        mask_embeds: Optional[torch.FloatTensor] = None,
        **kwargs,
    ):
        """
        Obtains image last hidden states from the vision tower and apply multimodal projection.

        Args:
            pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_tiles, channels, height, width)`)
               The tensors corresponding to the input images.
        Returns:
            image_features (`torch.Tensor`): Image feature tensor of shape `(num_tiles, num_patches, embed_dim)`).
        """
        if len(pixel_values.shape) == 5:
            pixel_values = pixel_values.flatten(0, 1)
        assert (
            len(pixel_values.shape) == 4
        ), f"pixel_values should be of shape (batch_size * num_tiles, channels, height, width). But got {pixel_values.shape}."
        # pre-mask
        image_outputs = self.vision_tower(pixel_values, mask_embeds=mask_embeds)
        # image_outputs = self.vision_tower(pixel_values)
        image_outputs = image_outputs.last_hidden_state
        if self.config.vision_use_cls_token:
            image_outputs = image_outputs[:, 1:, :]
        # post-mask
        # if mask_embeds is not None:
        #     image_outputs = image_outputs + mask_embeds.flatten(2).transpose(1, 2)
        image_features = self.multi_modal_projector(image_outputs)
        return image_features

    def get_placeholder_mask(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: torch.FloatTensor,
        image_features: torch.FloatTensor = None,
        video_features: torch.FloatTensor = None,
    ):
        """
        Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
        equal to the length of multimodal features. If the lengths are different, an error is raised.
        """
        if input_ids is None:
            special_image_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(
                    self.config.image_token_id,
                    dtype=torch.long,
                    device=inputs_embeds.device,
                )
            )
            special_image_mask = special_image_mask.all(-1)
            special_video_mask = inputs_embeds == self.get_input_embeddings()(
                torch.tensor(
                    self.config.video_token_id,
                    dtype=torch.long,
                    device=inputs_embeds.device,
                )
            )
            special_video_mask = special_video_mask.all(-1)
        else:
            special_image_mask = input_ids == self.config.image_token_id
            special_video_mask = input_ids == self.config.video_token_id

        n_image_tokens = special_image_mask.sum()
        special_image_mask = (
            special_image_mask.unsqueeze(-1)
            .expand_as(inputs_embeds)
            .to(inputs_embeds.device)
        )
        if (
            image_features is not None
            and inputs_embeds[special_image_mask].numel() != image_features.numel()
        ):
            raise ValueError(
                f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.size()[:-1].numel()}"
            )

        n_video_tokens = special_video_mask.sum()
        special_video_mask = (
            special_video_mask.unsqueeze(-1)
            .expand_as(inputs_embeds)
            .to(inputs_embeds.device)
        )
        if (
            video_features is not None
            and inputs_embeds[special_video_mask].numel() != video_features.numel()
        ):
            raise ValueError(
                f"Videos features and image tokens do not match: tokens: {n_video_tokens}, features {video_features.size()[:-1].numel()}"
            )

        return special_image_mask, special_video_mask

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        mask_embeds: Optional[torch.FloatTensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,  # need
        position_ids: Optional[torch.LongTensor] = None,  # need
        past_key_values: Optional[list[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,  # need
        use_cache: Optional[bool] = None,  # need
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **lm_kwargs,
    ) -> Union[tuple, PerceptionLMModelOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You must specify exactly one of input_ids or inputs_embeds"
            )
        if (
            pixel_values is not None or pixel_values_videos is not None
        ) and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both (pixel_values or pixel_values_videos) and inputs_embeds at the same time, and must specify either one"
            )

        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        image_features = None
        if pixel_values is not None:
            image_features = self.get_image_features(
                pixel_values=pixel_values, mask_embeds=mask_embeds
            )
            image_features = image_features.to(
                inputs_embeds.device, dtype=inputs_embeds.dtype
            )
            special_image_mask, _ = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, image_features=image_features
            )
            inputs_embeds = inputs_embeds.masked_scatter(
                special_image_mask, image_features
            )

        video_features = None
        if pixel_values_videos is not None:
            video_features = self.get_image_features(pixel_values=pixel_values_videos)
            video_features = video_features.to(
                inputs_embeds.device, dtype=inputs_embeds.dtype
            )
            _, special_video_mask = self.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, video_features=video_features
            )
            inputs_embeds = inputs_embeds.masked_scatter(
                special_video_mask, video_features
            )

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **lm_kwargs,
        )
        return PerceptionLMModelOutputWithPast(
            last_hidden_state=outputs.last_hidden_state,
            hidden_states=outputs.hidden_states,
            past_key_values=outputs.past_key_values,
            attentions=outputs.attentions,
            image_hidden_states=image_features if pixel_values is not None else None,
            video_hidden_states=(
                video_features if pixel_values_videos is not None else None
            ),
        )


@auto_docstring
class PerceptionLMForConditionalGeneration(
    PerceptionLMPreTrainedModel, GenerationMixin
):
    _checkpoint_conversion_mapping = {}
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: PerceptionLMConfig):
        super().__init__(config)
        self.model = PerceptionLMModel(config)
        self.lm_head = nn.Linear(
            config.text_config.hidden_size, config.text_config.vocab_size, bias=False
        )
        self.post_init()

    def get_input_embeddings(self):
        return self.model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.model.set_input_embeddings(value)

    def get_output_embeddings(self) -> nn.Module:
        return self.lm_head

    def set_decoder(self, decoder):
        self.model.set_decoder(decoder)

    def get_decoder(self):
        return self.model.get_decoder()

    def get_image_features(
        self,
        pixel_values: torch.FloatTensor,
        mask_embeds: Optional[torch.FloatTensor] = None,
        **kwargs,
    ):
        return self.model.get_image_features(
            pixel_values=pixel_values, mask_embeds=mask_embeds, **kwargs
        )

    def get_placeholder_mask(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: torch.FloatTensor,
        image_features: torch.FloatTensor = None,
        video_features: torch.FloatTensor = None,
    ):
        return self.model.get_placeholder_mask(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            image_features=image_features,
            video_features=video_features,
        )

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,  # no need
        pixel_values: Optional[torch.FloatTensor] = None,  # no need
        pixel_values_videos: Optional[torch.FloatTensor] = None,  # no need
        attention_mask: Optional[torch.Tensor] = None,  # need
        position_ids: Optional[torch.LongTensor] = None,  # need
        past_key_values: Optional[list[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,  # need
        labels: Optional[torch.LongTensor] = None,  # need
        use_cache: Optional[bool] = None,  # need
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **lm_kwargs,
    ) -> Union[tuple, PerceptionLMCausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, PerceptionLMForConditionalGeneration

        >>> model = PerceptionLMForConditionalGeneration.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")
        >>> processor = AutoProcessor.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")

        >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, text=prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "USER:  \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
        ```"""
        outputs = self.model(
            input_ids=input_ids,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **lm_kwargs,
        )

        hidden_states = outputs[0]
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = (
            slice(-logits_to_keep, None)
            if isinstance(logits_to_keep, int)
            else logits_to_keep
        )
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None

        if labels is not None:
            loss = self.loss_function(
                logits=logits,
                labels=labels,
                vocab_size=self.config.text_config.vocab_size,
                **lm_kwargs,
            )

        return PerceptionLMCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=outputs.image_hidden_states,
            video_hidden_states=outputs.video_hidden_states,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        pixel_values=None,
        mask_embeds=None,
        pixel_values_videos=None,
        attention_mask=None,
        cache_position=None,
        logits_to_keep=None,
        feature_replay=None,
        feature_replay_video=None,
        crop_tokens=[128004],
        roi_align=None,
        bboxes=None,
        aspect_ratios=True,
        processor=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs,
        )

        assert not (feature_replay and feature_replay_video)

        if cache_position[0] == 0:
            inputs_embeds = model_inputs["inputs_embeds"]

            if inputs_embeds is None:
                inputs_embeds = self.get_input_embeddings()(input_ids)

            image_features = None
            if pixel_values is not None:
                image_features = self.get_image_features(
                    pixel_values=pixel_values, mask_embeds=mask_embeds
                )
                image_features = image_features.to(
                    inputs_embeds.device, dtype=inputs_embeds.dtype
                )
                special_image_mask, _ = self.get_placeholder_mask(
                    input_ids,
                    inputs_embeds=inputs_embeds,
                    image_features=image_features,
                )
                inputs_embeds = inputs_embeds.masked_scatter(
                    special_image_mask, image_features
                )

            video_features = None
            if pixel_values_videos is not None:
                video_features = self.get_image_features(
                    pixel_values=pixel_values_videos
                )
                video_features = video_features.to(
                    inputs_embeds.device, dtype=inputs_embeds.dtype
                )
                _, special_video_mask = self.get_placeholder_mask(
                    input_ids,
                    inputs_embeds=inputs_embeds,
                    video_features=video_features,
                )
                inputs_embeds = inputs_embeds.masked_scatter(
                    special_video_mask, video_features
                )

            if feature_replay:
                assert (
                    inputs_embeds.shape[0] == 1
                ), "Currently only support batch_size=1 for feature replay"

                def _merge(tiles: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
                    # merge image tiles to the original image
                    # input: (batch_size, ncw * nch, num_channels, height//nch, width//ncw)
                    # output: (batch_size, num_channels, height, width)

                    batch_size, num_tiles, num_channels, tile_height, tile_width = (
                        tiles.size()
                    )
                    assert num_tiles == ncw * nch, f"{ncw * nch} != {num_tiles}"

                    tiles = tiles.view(
                        batch_size, nch, ncw, num_channels, tile_height, tile_width
                    )
                    tiles = tiles.permute(0, 3, 1, 4, 2, 5).contiguous()

                    original_height = nch * tile_height
                    original_width = ncw * tile_width

                    image = tiles.view(
                        batch_size, num_channels, original_height, original_width
                    )

                    return image

                new_inputs_embeds = []
                image_features_tiles = rearrange(
                    image_features[1:].unsqueeze(0),
                    "b n (h w) c -> b n c h w",
                    h=16,
                    w=16,
                )
                for batch_idx in range(inputs_embeds.shape[0]):
                    curr_inputs_emebds = inputs_embeds[batch_idx]
                    for crop_token in crop_tokens:
                        if crop_token in input_ids[batch_idx]:
                            target_mask = input_ids[batch_idx].eq(crop_token)
                            target_indices = target_mask.nonzero().squeeze()
                            head_idx = target_indices.min().item()
                            tail_idx = target_indices.max().item()
                            image_features_recover = _merge(
                                image_features_tiles,
                                aspect_ratios[batch_idx][0],
                                aspect_ratios[batch_idx][1],
                            )
                            x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
                            feat_h, feat_w = image_features_recover.shape[2:]
                            orig_h, orig_w = feat_h * 28, feat_w * 28  # 原图尺寸

                            # origin box
                            roi_orig_x1 = x1 * orig_w
                            roi_orig_y1 = y1 * orig_h
                            roi_orig_x2 = x2 * orig_w
                            roi_orig_y2 = y2 * orig_h

                            # feat box
                            spatial_scale = feat_w / orig_w
                            roi_feat_x1 = roi_orig_x1 * spatial_scale
                            roi_feat_y1 = roi_orig_y1 * spatial_scale
                            roi_feat_x2 = roi_orig_x2 * spatial_scale
                            roi_feat_y2 = roi_orig_y2 * spatial_scale

                            roi = torch.tensor(
                                [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
                                dtype=torch.float32,
                                device=image_features_recover.device,
                            )

                            roi_features = torchvision.ops.roi_align(
                                input=image_features_recover.float(),
                                boxes=roi.unsqueeze(0),
                                output_size=(16, 16),
                                spatial_scale=spatial_scale,
                                sampling_ratio=2,
                                aligned=True,
                            )

                            image_features_replay = (
                                roi_features.permute(0, 2, 3, 1)
                                .flatten(1, 2)
                                .to(image_features_recover.dtype)
                                .squeeze()
                            )

                            curr_inputs_emebds = torch.cat(
                                [
                                    inputs_embeds[batch_idx][:head_idx],
                                    image_features_replay,
                                    inputs_embeds[batch_idx][tail_idx + 1 :],
                                ]
                            )

                    new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))

                inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
                model_inputs["position_ids"] = (
                    torch.arange(
                        0,
                        inputs_embeds.shape[1],
                        dtype=torch.long,
                        device=inputs_embeds.device,
                    )
                    .unsqueeze(0)
                    .repeat(inputs_embeds.shape[0], 1)
                )
                model_inputs["attention_mask"] = torch.ones(
                    inputs_embeds.shape[0],
                    inputs_embeds.shape[1],
                    dtype=torch.long,
                    device=inputs_embeds.device,
                )
                model_inputs["cache_position"] = model_inputs["position_ids"].clone()

            elif feature_replay_video:
                assert (
                    inputs_embeds.shape[0] == 1
                ), "Currently only support batch_size=1 for feature replay"
                assert processor is not None, "Need processor"

                new_inputs_embeds = []
                image_features_tiles = rearrange(
                    image_features.unsqueeze(0), "b n (h w) c -> b n c h w", h=16, w=16
                )
                for batch_idx in range(inputs_embeds.shape[0]):
                    curr_inputs_emebds = inputs_embeds[batch_idx]
                    for frame_idx in range(image_features.shape[0]):
                        crop_token = processor.tokenizer.convert_tokens_to_ids(
                            f"<|reserved_special_token_{2 + frame_idx}|>"
                        )
                        if crop_token in input_ids[batch_idx]:
                            target_mask = input_ids[batch_idx].eq(crop_token)
                            target_indices = target_mask.nonzero().squeeze()
                            head_idx = target_indices.min().item()
                            tail_idx = target_indices.max().item()
                            x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
                            feat_h, feat_w = 16, 16
                            orig_h, orig_w = feat_h * 28, feat_w * 28

                            # origin box
                            roi_orig_x1 = x1 * orig_w
                            roi_orig_y1 = y1 * orig_h
                            roi_orig_x2 = x2 * orig_w
                            roi_orig_y2 = y2 * orig_h

                            # feat box
                            spatial_scale = feat_w / orig_w
                            roi_feat_x1 = roi_orig_x1 * spatial_scale
                            roi_feat_y1 = roi_orig_y1 * spatial_scale
                            roi_feat_x2 = roi_orig_x2 * spatial_scale
                            roi_feat_y2 = roi_orig_y2 * spatial_scale

                            roi = torch.tensor(
                                [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
                                dtype=torch.float32,
                                device=image_features_tiles.device,
                            )

                            roi_features = torchvision.ops.roi_align(
                                input=image_features_tiles[:, frame_idx].float(),
                                boxes=roi.unsqueeze(0),
                                output_size=(16, 16),
                                spatial_scale=spatial_scale,
                                sampling_ratio=2,
                                aligned=True,
                            )

                            image_features_replay = (
                                roi_features.permute(0, 2, 3, 1)
                                .flatten(1, 2)
                                .to(image_features_tiles.dtype)
                                .squeeze()
                            )

                            curr_inputs_emebds = torch.cat(
                                [
                                    curr_inputs_emebds[:head_idx],
                                    image_features_replay,
                                    curr_inputs_emebds[tail_idx + 1 :],
                                ]
                            )

                    new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))

                inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
                model_inputs["position_ids"] = (
                    torch.arange(
                        0,
                        inputs_embeds.shape[1],
                        dtype=torch.long,
                        device=inputs_embeds.device,
                    )
                    .unsqueeze(0)
                    .repeat(inputs_embeds.shape[0], 1)
                )
                model_inputs["attention_mask"] = torch.ones(
                    inputs_embeds.shape[0],
                    inputs_embeds.shape[1],
                    dtype=torch.long,
                    device=inputs_embeds.device,
                )
                model_inputs["cache_position"] = model_inputs["position_ids"].clone()

            model_inputs["inputs_embeds"] = inputs_embeds
            model_inputs["input_ids"] = None
            model_inputs["pixel_values"] = None
            model_inputs["pixel_values_videos"] = None
            model_inputs["mask_embeds"] = None

        return model_inputs


__all__ = [
    "PerceptionLMForConditionalGeneration",
    "PerceptionLMPreTrainedModel",
    "PerceptionLMModel",
]