File size: 13,598 Bytes
94d9370 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# coding=utf-8
# Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for PerceptionLM.
"""
from typing import Iterable, Union
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
from transformers.processing_utils import (
MultiModalData,
ProcessingKwargs,
ProcessorMixin,
Unpack,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.video_utils import VideoInput
from transformers.image_utils import PILImageResampling
from .image_processing_perception_lm_fast import PerceptionLMImageProcessorFast
from transformers import AutoTokenizer, AutoProcessor, AutoImageProcessor
logger = logging.get_logger(__name__)
class PerceptionLMProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_mm_token_type_ids": False,
},
}
class GARPerceptionLMProcessor(ProcessorMixin):
r"""
Constructs a PerceptionLM processor which wraps a PerceptionLM image processor, a PerceptionLM video processor, and a tokenizer into a single processor.
[`PerceptionLMProcessor`] offers all the functionalities of [`PerceptionLMImageProcessorFast`], [`PerceptionLMVideoProcessor`], and the tokenizer (e.g. [`LlamaTokenizerFast`]). See the
[`~PerceptionLMProcessor.__call__`] and [`~PerceptionLMProcessor.decode`] for more information.
Args:
video_processor ([`PerceptionLMVideoProcessor`], *optional*):
The video processor to process video inputs.
image_processor ([`PerceptionLMImageProcessorFast`], *optional*):
The image processor to process image inputs.
tokenizer ([`LlamaTokenizerFast`] or similar, *optional*):
The tokenizer to process text inputs.
patch_size (`int`, *optional*):
Patch size from the vision tower.
chat_template (`str`, *optional*):
A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
pooling_ratio (`int`, *optional*, defaults to 2):
Pooling ratio for vision tokens. If not 1, 2D adaptive pooling is applied over projected vision tokens.
"""
attributes = ["video_processor", "image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
video_processor_class = "AutoVideoProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
video_processor=None,
image_processor=None,
tokenizer=None,
patch_size=None,
chat_template=None,
pooling_ratio=2,
**kwargs,
):
self.patch_size = patch_size
self.pooling_ratio = pooling_ratio
self.image_token = tokenizer.image_token
self.video_token = tokenizer.video_token
self.image_token_id = tokenizer.image_token_id
self.video_token_id = tokenizer.video_token_id
super().__init__(
video_processor, image_processor, tokenizer, chat_template=chat_template,
)
def __call__(
self,
images: ImageInput = None,
visual_prompts: ImageInput = None,
text: Union[
TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]
] = None,
audio=None,
videos: VideoInput = None,
**kwargs: Unpack[PerceptionLMProcessorKwargs],
) -> BatchFeature:
"""
Prepares a batch containing one or more sequences of text and/or images and/or videos.
If `text` is provided, it is tokenized using the tokenizer.
If `images` is provided, they are processed using the image processor.
If `videos` is provided, they are processed using the video processor.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
The image or batch of images to be processed. Each image can be a PIL image, NumPy array, or PyTorch tensor.
Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, *optional*):
The sequence or batch of sequences to be tokenized. Each sequence can be a string.
videos (`Any`, *optional*):
The video or batch of videos to be processed.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is provided.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is provided).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is provided.
- **pixel_values_videos** -- Video pixel values to be fed to a model. Returned when `videos` is provided.
"""
if text is None:
raise ValueError(
"You have to specify at least `text` input. Optionally, you can also specify `images` or `videos`."
)
output_kwargs = self._merge_kwargs(
PerceptionLMProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(
images=images, **output_kwargs["images_kwargs"]
)
else:
image_inputs = {}
if visual_prompts is not None:
visual_prompts_inputs = self.image_processor(
images=visual_prompts, **output_kwargs["images_kwargs"], resample=PILImageResampling.NEAREST
)
image_inputs["mask_values"] = visual_prompts_inputs["pixel_values"]
else:
image_inputs["mask_values"] = None
if videos is not None:
videos_inputs = self.video_processor(
videos, **output_kwargs["videos_kwargs"]
)
else:
videos_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError(
"Invalid input text. Please provide a string, or a list of strings"
)
# try to expand inputs in processing if we have the necessary parts
prompt_strings = []
pixel_values = iter(image_inputs.get("pixel_values", []))
pixel_values_videos = iter(videos_inputs.get("pixel_values_videos", []))
for sample in text:
# Replace the media token with the expanded media token sequence
sample = self._expand_media_tokens(
sample, self.tokenizer.image_token, pixel_values
)
sample = self._expand_media_tokens(
sample, self.tokenizer.video_token, pixel_values_videos
)
prompt_strings.append(sample)
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop(
"return_mm_token_type_ids", False
)
text_inputs = self.tokenizer(
prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None
)
self._check_special_mm_tokens(
prompt_strings, text_inputs, modalities=["image", "video"]
)
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(
data={**text_inputs, **image_inputs, **videos_inputs},
tensor_type=return_tensors,
)
def _expand_media_tokens(self, sample, media_token: str, media_iter: Iterable):
media_count = sample.count(media_token)
if media_count > 0:
media_list = [next(media_iter) for _ in range(media_count)]
sample_splits = sample.split(media_token)
media_token_list = []
for media in media_list:
height, width = get_image_size(to_numpy_array(media))
num_tiles = media.shape[0]
num_media_tokens = (
(height // self.patch_size // self.pooling_ratio)
* (width // self.patch_size // self.pooling_ratio)
* num_tiles
)
media_token_list.append(num_media_tokens)
sample = ""
for i, num_media_tokens in enumerate(media_token_list):
sample += sample_splits[i]
sample += media_token * num_media_tokens
sample += sample_splits[-1]
return sample
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = PerceptionLMProcessorKwargs._defaults.get(
"images_kwargs", {}
)
images_kwargs.update(kwargs)
tile_size = (
images_kwargs.get("tile_size", None) or self.image_processor.tile_size
)
num_image_tokens = []
num_image_patches = []
for height, width in image_sizes:
if self.image_processor.vision_input_type == "thumb+tile":
aspect_ratio = self.image_processor._fit_image_to_canvas(
img_width=width, img_height=height, tile_size=tile_size
)
if aspect_ratio is None:
aspect_ratio = self.image_processor._find_closest_aspect_ratio(
img_width=width, img_height=height, tile_size=tile_size
)
num_tiles = (
aspect_ratio[0] * aspect_ratio[1] + 1
) # base image and tiles
else:
num_tiles = 1
num_image_tokens.append(
(tile_size // self.patch_size // self.pooling_ratio)
* (tile_size // self.patch_size // self.pooling_ratio)
* num_tiles
)
num_image_patches.append(num_tiles)
vision_data.update(
{
"num_image_tokens": num_image_tokens,
"num_image_patches": num_image_patches,
}
)
return MultiModalData(**vision_data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
AutoProcessor.register("GARPerceptionLMProcessor", GARPerceptionLMProcessor)
AutoImageProcessor.register(
"GARPerceptionLMImageProcessorFast",
slow_image_processor_class=None,
fast_image_processor_class=PerceptionLMImageProcessorFast
)
__all__ = ["GARPerceptionLMProcessor"]
|