Feature Extraction
Transformers
Safetensors
English
GAR
custom_code
File size: 13,598 Bytes
94d9370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# coding=utf-8
# Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for PerceptionLM.
"""

from typing import Iterable, Union

import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
from transformers.processing_utils import (
    MultiModalData,
    ProcessingKwargs,
    ProcessorMixin,
    Unpack,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.video_utils import VideoInput
from transformers.image_utils import PILImageResampling
from .image_processing_perception_lm_fast import PerceptionLMImageProcessorFast
from transformers import AutoTokenizer, AutoProcessor, AutoImageProcessor

logger = logging.get_logger(__name__)


class PerceptionLMProcessorKwargs(ProcessingKwargs, total=False):
    _defaults = {
        "text_kwargs": {
            "padding": False,
            "return_mm_token_type_ids": False,
        },
    }


class GARPerceptionLMProcessor(ProcessorMixin):
    r"""
    Constructs a PerceptionLM processor which wraps a PerceptionLM image processor, a PerceptionLM video processor, and a tokenizer into a single processor.

    [`PerceptionLMProcessor`] offers all the functionalities of [`PerceptionLMImageProcessorFast`], [`PerceptionLMVideoProcessor`], and the tokenizer (e.g. [`LlamaTokenizerFast`]). See the
    [`~PerceptionLMProcessor.__call__`] and [`~PerceptionLMProcessor.decode`] for more information.

    Args:
        video_processor ([`PerceptionLMVideoProcessor`], *optional*):
            The video processor to process video inputs.
        image_processor ([`PerceptionLMImageProcessorFast`], *optional*):
            The image processor to process image inputs.
        tokenizer ([`LlamaTokenizerFast`] or similar, *optional*):
            The tokenizer to process text inputs.
        patch_size (`int`, *optional*):
            Patch size from the vision tower.
        chat_template (`str`, *optional*):
            A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
        pooling_ratio (`int`, *optional*, defaults to 2):
            Pooling ratio for vision tokens. If not 1, 2D adaptive pooling is applied over projected vision tokens.
    """

    attributes = ["video_processor", "image_processor", "tokenizer"]
    image_processor_class = "AutoImageProcessor"
    video_processor_class = "AutoVideoProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
        self,
        video_processor=None,
        image_processor=None,
        tokenizer=None,
        patch_size=None,
        chat_template=None,
        pooling_ratio=2,
        **kwargs,
    ):
        self.patch_size = patch_size
        self.pooling_ratio = pooling_ratio
        self.image_token = tokenizer.image_token
        self.video_token = tokenizer.video_token
        self.image_token_id = tokenizer.image_token_id
        self.video_token_id = tokenizer.video_token_id
        super().__init__(
            video_processor, image_processor, tokenizer, chat_template=chat_template,
        )

    def __call__(
        self,
        images: ImageInput = None,
        visual_prompts: ImageInput = None,
        text: Union[
            TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]
        ] = None,
        audio=None,
        videos: VideoInput = None,
        **kwargs: Unpack[PerceptionLMProcessorKwargs],
    ) -> BatchFeature:
        """
        Prepares a batch containing one or more sequences of text and/or images and/or videos.

        If `text` is provided, it is tokenized using the tokenizer.
        If `images` is provided, they are processed using the image processor.
        If `videos` is provided, they are processed using the video processor.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
                The image or batch of images to be processed. Each image can be a PIL image, NumPy array, or PyTorch tensor.
                Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, *optional*):
                The sequence or batch of sequences to be tokenized. Each sequence can be a string.
            videos (`Any`, *optional*):
                The video or batch of videos to be processed.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is provided.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is provided).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is provided.
            - **pixel_values_videos** -- Video pixel values to be fed to a model. Returned when `videos` is provided.
        """
        if text is None:
            raise ValueError(
                "You have to specify at least `text` input. Optionally, you can also specify `images` or `videos`."
            )

        output_kwargs = self._merge_kwargs(
            PerceptionLMProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if images is not None:
            image_inputs = self.image_processor(
                images=images, **output_kwargs["images_kwargs"]
            )
        else:
            image_inputs = {}

        if visual_prompts is not None:
            visual_prompts_inputs = self.image_processor(
                images=visual_prompts, **output_kwargs["images_kwargs"], resample=PILImageResampling.NEAREST
            )
            image_inputs["mask_values"] = visual_prompts_inputs["pixel_values"]
        else:
            image_inputs["mask_values"] = None

        if videos is not None:
            videos_inputs = self.video_processor(
                videos, **output_kwargs["videos_kwargs"]
            )
        else:
            videos_inputs = {}

        if isinstance(text, str):
            text = [text]
        elif not isinstance(text, list) and not isinstance(text[0], str):
            raise ValueError(
                "Invalid input text. Please provide a string, or a list of strings"
            )

        # try to expand inputs in processing if we have the necessary parts
        prompt_strings = []
        pixel_values = iter(image_inputs.get("pixel_values", []))
        pixel_values_videos = iter(videos_inputs.get("pixel_values_videos", []))
        for sample in text:
            # Replace the media token with the expanded media token sequence
            sample = self._expand_media_tokens(
                sample, self.tokenizer.image_token, pixel_values
            )
            sample = self._expand_media_tokens(
                sample, self.tokenizer.video_token, pixel_values_videos
            )
            prompt_strings.append(sample)

        return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
        return_mm_token_type_ids = output_kwargs["text_kwargs"].pop(
            "return_mm_token_type_ids", False
        )
        text_inputs = self.tokenizer(
            prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None
        )
        self._check_special_mm_tokens(
            prompt_strings, text_inputs, modalities=["image", "video"]
        )

        if return_mm_token_type_ids:
            array_ids = np.array(text_inputs["input_ids"])
            mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
            mm_token_type_ids[array_ids == self.image_token_id] = 1
            text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()

        return BatchFeature(
            data={**text_inputs, **image_inputs, **videos_inputs},
            tensor_type=return_tensors,
        )

    def _expand_media_tokens(self, sample, media_token: str, media_iter: Iterable):
        media_count = sample.count(media_token)
        if media_count > 0:
            media_list = [next(media_iter) for _ in range(media_count)]
            sample_splits = sample.split(media_token)
            media_token_list = []
            for media in media_list:
                height, width = get_image_size(to_numpy_array(media))
                num_tiles = media.shape[0]
                num_media_tokens = (
                    (height // self.patch_size // self.pooling_ratio)
                    * (width // self.patch_size // self.pooling_ratio)
                    * num_tiles
                )
                media_token_list.append(num_media_tokens)
            sample = ""
            for i, num_media_tokens in enumerate(media_token_list):
                sample += sample_splits[i]
                sample += media_token * num_media_tokens
            sample += sample_splits[-1]
        return sample

    def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
        """
        Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.

        Args:
            image_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (height, width) per each image.

        Returns:
            `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
            input modalities, along with other useful data.
        """

        vision_data = {}
        if image_sizes is not None:
            images_kwargs = PerceptionLMProcessorKwargs._defaults.get(
                "images_kwargs", {}
            )
            images_kwargs.update(kwargs)
            tile_size = (
                images_kwargs.get("tile_size", None) or self.image_processor.tile_size
            )

            num_image_tokens = []
            num_image_patches = []
            for height, width in image_sizes:
                if self.image_processor.vision_input_type == "thumb+tile":
                    aspect_ratio = self.image_processor._fit_image_to_canvas(
                        img_width=width, img_height=height, tile_size=tile_size
                    )
                    if aspect_ratio is None:
                        aspect_ratio = self.image_processor._find_closest_aspect_ratio(
                            img_width=width, img_height=height, tile_size=tile_size
                        )
                    num_tiles = (
                        aspect_ratio[0] * aspect_ratio[1] + 1
                    )  # base image and tiles
                else:
                    num_tiles = 1

                num_image_tokens.append(
                    (tile_size // self.patch_size // self.pooling_ratio)
                    * (tile_size // self.patch_size // self.pooling_ratio)
                    * num_tiles
                )
                num_image_patches.append(num_tiles)

            vision_data.update(
                {
                    "num_image_tokens": num_image_tokens,
                    "num_image_patches": num_image_patches,
                }
            )
        return MultiModalData(**vision_data)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

AutoProcessor.register("GARPerceptionLMProcessor", GARPerceptionLMProcessor)
AutoImageProcessor.register(
    "GARPerceptionLMImageProcessorFast",
    slow_image_processor_class=None,
    fast_image_processor_class=PerceptionLMImageProcessorFast
)

__all__ = ["GARPerceptionLMProcessor"]