Upload 30 files
Browse files- README.md +16 -0
- added_tokens.json +3 -0
- config.json +24 -0
- generation_config.json +7 -0
- pytorch_model-00001-of-00017.bin +3 -0
- pytorch_model-00002-of-00017.bin +3 -0
- pytorch_model-00003-of-00017.bin +3 -0
- pytorch_model-00004-of-00017.bin +3 -0
- pytorch_model-00005-of-00017.bin +3 -0
- pytorch_model-00006-of-00017.bin +3 -0
- pytorch_model-00007-of-00017.bin +3 -0
- pytorch_model-00008-of-00017.bin +3 -0
- pytorch_model-00009-of-00017.bin +3 -0
- pytorch_model-00010-of-00017.bin +3 -0
- pytorch_model-00011-of-00017.bin +3 -0
- pytorch_model-00012-of-00017.bin +3 -0
- pytorch_model-00013-of-00017.bin +3 -0
- pytorch_model-00014-of-00017.bin +3 -0
- pytorch_model-00015-of-00017.bin +3 -0
- pytorch_model-00016-of-00017.bin +3 -0
- pytorch_model-00017-of-00017.bin +3 -0
- pytorch_model.bin.index.json +610 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +34 -0
- trainer_state.json +3874 -0
- training_args.bin +3 -0
- zero_to_fp32.py +584 -0
README.md
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
datasets:
|
| 4 |
+
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
|
| 5 |
+
tags:
|
| 6 |
+
- uncensored
|
| 7 |
+
---
|
| 8 |
+
This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
|
| 9 |
+
|
| 10 |
+
Shout out to the open source AI/ML community, and everyone who helped me out.
|
| 11 |
+
|
| 12 |
+
Note:
|
| 13 |
+
An uncensored model has no guardrails.
|
| 14 |
+
You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
|
| 15 |
+
Publishing anything this model generates is the same as publishing it yourself.
|
| 16 |
+
You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
|
added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[PAD]": 32000
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "WizardLM-30B-Uncensored-Guanaco-30b",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"bos_token_id": 1,
|
| 7 |
+
"eos_token_id": 2,
|
| 8 |
+
"hidden_act": "silu",
|
| 9 |
+
"hidden_size": 6656,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 17920,
|
| 12 |
+
"max_position_embeddings": 2048,
|
| 13 |
+
"max_sequence_length": 2048,
|
| 14 |
+
"model_type": "llama",
|
| 15 |
+
"num_attention_heads": 52,
|
| 16 |
+
"num_hidden_layers": 60,
|
| 17 |
+
"pad_token_id": 0,
|
| 18 |
+
"rms_norm_eps": 1e-06,
|
| 19 |
+
"tie_word_embeddings": false,
|
| 20 |
+
"torch_dtype": "float16",
|
| 21 |
+
"transformers_version": "4.28.0",
|
| 22 |
+
"use_cache": true,
|
| 23 |
+
"vocab_size": 32001
|
| 24 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.28.0"
|
| 7 |
+
}
|
pytorch_model-00001-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca88b9d78ca717c192bcab4d100cc9b9f961338c5ea9c067a7c72695f37299b2
|
| 3 |
+
size 3990724311
|
pytorch_model-00002-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bea0212ffdd3a9fd7e516d9df79bd2b9e463caf8a07c95c1409d568f45c091d0
|
| 3 |
+
size 3925987461
|
pytorch_model-00003-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50723a99441d30f5a7add67e2107aed7e9487172c2322c1e8a4a26c30da1833a
|
| 3 |
+
size 3803278039
|
pytorch_model-00004-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2bca8c1fab773f80f0ffaf3fe21d7e1353bec73bb25f1a0d80c91b5750e357ea
|
| 3 |
+
size 3953251177
|
pytorch_model-00005-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f44fca1287430f6a19939cc16fc63f492d96f371aa28c82becb8ac86e9a0b482
|
| 3 |
+
size 3776014451
|
pytorch_model-00006-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:35f9db4041fe78a8d452552d8c75a0a6f6e6bf3dafdac5e9db0d1133736fecf6
|
| 3 |
+
size 3803305403
|
pytorch_model-00007-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:49ad6efa305769771a5ab7c3755abf15b1454d61cb9ef1f8e59ab7042655b1c3
|
| 3 |
+
size 3925987525
|
pytorch_model-00008-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a77513cf98ccd7d31e2ac34882548e7a77746f0deb4daab42231068be3ace85
|
| 3 |
+
size 3803278103
|
pytorch_model-00009-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e3bc65a68fefcf4622f8d8d1e7980953363e4bad332a0df86b751490ec22d57
|
| 3 |
+
size 3953251177
|
pytorch_model-00010-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4fb493e747b497c1318b3bb648ce6517f415e17a74f3d3260409d3a5d8e4676f
|
| 3 |
+
size 3776014451
|
pytorch_model-00011-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22daf9debdbca7bd22f12f2f284abaecdd466f65332e1fcc1520ab292645fc3b
|
| 3 |
+
size 3803305403
|
pytorch_model-00012-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:864b5a61872c9eba89db73a940ab88e96a9c091b7e52f328ace05e1eb89ff788
|
| 3 |
+
size 3925987525
|
pytorch_model-00013-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42a451ec24c10ae1e821b5c43c09de19ef4b488266d96d8b0a0296104518aa80
|
| 3 |
+
size 3803278103
|
pytorch_model-00014-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd19b54d5b93b8b0110db9c05743dccb8a9c035d36294b15ff82fabc1c658499
|
| 3 |
+
size 3953251177
|
pytorch_model-00015-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0ea53b9a7316ed4e4230da9fc97cc6979deeb2175246d5311ce8f4796772b1c
|
| 3 |
+
size 3776014451
|
pytorch_model-00016-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9bb6a10487797b8f016676a3b917e3262d7e92ef435f2a380f5d32f126ae4185
|
| 3 |
+
size 3803305403
|
pytorch_model-00017-of-00017.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7bf7f3d8c2280c32f8704d71853a5018b8253f7d32ec3e4c309b1adcb5c8f350
|
| 3 |
+
size 3281896757
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 65057929216
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00017-of-00017.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00017.bin",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
| 19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
| 23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
| 27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
| 37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00017.bin",
|
| 47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00017.bin",
|
| 57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
| 63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00017.bin",
|
| 67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
| 69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
| 73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
| 77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
| 78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
| 79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
| 83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
| 87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
| 89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
| 93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
| 97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
| 107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00005-of-00017.bin",
|
| 108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
| 117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
| 127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
| 129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
| 133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
| 137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
| 143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
| 147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
| 157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
| 158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00017.bin",
|
| 167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00017.bin",
|
| 177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
| 183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00017.bin",
|
| 187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00007-of-00017.bin",
|
| 188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
| 189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
| 193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
| 197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
| 199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
| 203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
| 207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
| 209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
| 213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
| 217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
| 227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
| 228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00017.bin",
|
| 237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
| 247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
| 248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00017.bin",
|
| 257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
| 263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00017.bin",
|
| 267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
| 269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
| 273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
| 277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
| 278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
| 279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
| 283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
| 287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
| 289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
| 293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
| 297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
| 307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00010-of-00017.bin",
|
| 308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
| 317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
| 327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
| 333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
| 337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
| 347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
| 348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00017.bin",
|
| 357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 358 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 359 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 360 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 361 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 362 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 363 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 364 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 365 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 366 |
+
"model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00017.bin",
|
| 367 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 368 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 369 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 370 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 371 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 372 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 373 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 374 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 375 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 376 |
+
"model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00017.bin",
|
| 377 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 378 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 379 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 380 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 381 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 382 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
| 383 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 384 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 385 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 386 |
+
"model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00017.bin",
|
| 387 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00012-of-00017.bin",
|
| 388 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
| 389 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 390 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 391 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 392 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
| 393 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 394 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 395 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 396 |
+
"model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
| 397 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 398 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
| 399 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 400 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 401 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 402 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
| 403 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 404 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 405 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 406 |
+
"model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
| 407 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 408 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
| 409 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 410 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 411 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 412 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
| 413 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 414 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 415 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 416 |
+
"model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
| 417 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 418 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 419 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 420 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 421 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 422 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 423 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 424 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 425 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 426 |
+
"model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
| 427 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
| 428 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 429 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 430 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 431 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 432 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 433 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 434 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 435 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 436 |
+
"model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00017.bin",
|
| 437 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 438 |
+
"model.layers.48.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 439 |
+
"model.layers.48.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 440 |
+
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 441 |
+
"model.layers.48.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 442 |
+
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 443 |
+
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 444 |
+
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 445 |
+
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 446 |
+
"model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00017.bin",
|
| 447 |
+
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 448 |
+
"model.layers.49.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 449 |
+
"model.layers.49.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 450 |
+
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 451 |
+
"model.layers.49.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 452 |
+
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
| 453 |
+
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 454 |
+
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 455 |
+
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 456 |
+
"model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00017.bin",
|
| 457 |
+
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 458 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 459 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 460 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 461 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 462 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 463 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 464 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 465 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 466 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00017.bin",
|
| 467 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 468 |
+
"model.layers.50.input_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
| 469 |
+
"model.layers.50.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 470 |
+
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 471 |
+
"model.layers.50.mlp.up_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 472 |
+
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
| 473 |
+
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 474 |
+
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 475 |
+
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 476 |
+
"model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
| 477 |
+
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
| 478 |
+
"model.layers.51.input_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
| 479 |
+
"model.layers.51.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 480 |
+
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 481 |
+
"model.layers.51.mlp.up_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 482 |
+
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
| 483 |
+
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 484 |
+
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 485 |
+
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 486 |
+
"model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
| 487 |
+
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 488 |
+
"model.layers.52.input_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
| 489 |
+
"model.layers.52.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 490 |
+
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 491 |
+
"model.layers.52.mlp.up_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 492 |
+
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
| 493 |
+
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 494 |
+
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 495 |
+
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 496 |
+
"model.layers.52.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
| 497 |
+
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 498 |
+
"model.layers.53.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 499 |
+
"model.layers.53.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 500 |
+
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 501 |
+
"model.layers.53.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 502 |
+
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 503 |
+
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 504 |
+
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 505 |
+
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 506 |
+
"model.layers.53.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
| 507 |
+
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-00015-of-00017.bin",
|
| 508 |
+
"model.layers.54.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 509 |
+
"model.layers.54.mlp.down_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 510 |
+
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 511 |
+
"model.layers.54.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 512 |
+
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 513 |
+
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 514 |
+
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 515 |
+
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 516 |
+
"model.layers.54.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
| 517 |
+
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 518 |
+
"model.layers.55.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 519 |
+
"model.layers.55.mlp.down_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 520 |
+
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 521 |
+
"model.layers.55.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 522 |
+
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 523 |
+
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 524 |
+
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 525 |
+
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 526 |
+
"model.layers.55.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
| 527 |
+
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 528 |
+
"model.layers.56.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 529 |
+
"model.layers.56.mlp.down_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 530 |
+
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 531 |
+
"model.layers.56.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 532 |
+
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
| 533 |
+
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 534 |
+
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 535 |
+
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 536 |
+
"model.layers.56.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
| 537 |
+
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 538 |
+
"model.layers.57.input_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
| 539 |
+
"model.layers.57.mlp.down_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 540 |
+
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 541 |
+
"model.layers.57.mlp.up_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 542 |
+
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
| 543 |
+
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 544 |
+
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 545 |
+
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 546 |
+
"model.layers.57.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
| 547 |
+
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
| 548 |
+
"model.layers.58.input_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
| 549 |
+
"model.layers.58.mlp.down_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 550 |
+
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 551 |
+
"model.layers.58.mlp.up_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 552 |
+
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
| 553 |
+
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 554 |
+
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 555 |
+
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 556 |
+
"model.layers.58.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00017.bin",
|
| 557 |
+
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 558 |
+
"model.layers.59.input_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
| 559 |
+
"model.layers.59.mlp.down_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 560 |
+
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 561 |
+
"model.layers.59.mlp.up_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 562 |
+
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
| 563 |
+
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 564 |
+
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 565 |
+
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 566 |
+
"model.layers.59.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00017.bin",
|
| 567 |
+
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-00017-of-00017.bin",
|
| 568 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 569 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 570 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 571 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 572 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
| 573 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 574 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 575 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 576 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00017.bin",
|
| 577 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00017.bin",
|
| 578 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
| 579 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 580 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 581 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 582 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
| 583 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 584 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 585 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 586 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
| 587 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 588 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
| 589 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 590 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 591 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 592 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
| 593 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 594 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 595 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 596 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
| 597 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 598 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
| 599 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 600 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 601 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 602 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
| 603 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 604 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 605 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 606 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
| 607 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
| 608 |
+
"model.norm.weight": "pytorch_model-00017-of-00017.bin"
|
| 609 |
+
}
|
| 610 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "</s>",
|
| 3 |
+
"eos_token": "</s>",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"unk_token": "</s>"
|
| 6 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": {
|
| 5 |
+
"__type": "AddedToken",
|
| 6 |
+
"content": "<s>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": true,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": false,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "</s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": true,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"model_max_length": 2048,
|
| 22 |
+
"pad_token": null,
|
| 23 |
+
"padding_side": "right",
|
| 24 |
+
"sp_model_kwargs": {},
|
| 25 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"__type": "AddedToken",
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
}
|
| 34 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,3874 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 2.9965075669383,
|
| 5 |
+
"global_step": 1287,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 0.0,
|
| 12 |
+
"learning_rate": 2e-05,
|
| 13 |
+
"loss": 0.905,
|
| 14 |
+
"step": 2
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0.01,
|
| 18 |
+
"learning_rate": 1.9999880457421163e-05,
|
| 19 |
+
"loss": 0.6497,
|
| 20 |
+
"step": 4
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.01,
|
| 24 |
+
"learning_rate": 1.9999521832542736e-05,
|
| 25 |
+
"loss": 0.6121,
|
| 26 |
+
"step": 6
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"epoch": 0.02,
|
| 30 |
+
"learning_rate": 1.9998924133938902e-05,
|
| 31 |
+
"loss": 0.7236,
|
| 32 |
+
"step": 8
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 0.02,
|
| 36 |
+
"learning_rate": 1.9998087375899756e-05,
|
| 37 |
+
"loss": 0.7515,
|
| 38 |
+
"step": 10
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.03,
|
| 42 |
+
"learning_rate": 1.9997011578430938e-05,
|
| 43 |
+
"loss": 0.7073,
|
| 44 |
+
"step": 12
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.03,
|
| 48 |
+
"learning_rate": 1.9995696767253165e-05,
|
| 49 |
+
"loss": 0.6146,
|
| 50 |
+
"step": 14
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.04,
|
| 54 |
+
"learning_rate": 1.9994142973801627e-05,
|
| 55 |
+
"loss": 0.5923,
|
| 56 |
+
"step": 16
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0.04,
|
| 60 |
+
"learning_rate": 1.9992350235225215e-05,
|
| 61 |
+
"loss": 0.5629,
|
| 62 |
+
"step": 18
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"epoch": 0.05,
|
| 66 |
+
"learning_rate": 1.999031859438565e-05,
|
| 67 |
+
"loss": 0.5383,
|
| 68 |
+
"step": 20
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"epoch": 0.05,
|
| 72 |
+
"learning_rate": 1.9988048099856443e-05,
|
| 73 |
+
"loss": 0.516,
|
| 74 |
+
"step": 22
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.06,
|
| 78 |
+
"learning_rate": 1.9985538805921757e-05,
|
| 79 |
+
"loss": 0.5035,
|
| 80 |
+
"step": 24
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.06,
|
| 84 |
+
"learning_rate": 1.998279077257508e-05,
|
| 85 |
+
"loss": 0.5244,
|
| 86 |
+
"step": 26
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.07,
|
| 90 |
+
"learning_rate": 1.9979804065517808e-05,
|
| 91 |
+
"loss": 0.486,
|
| 92 |
+
"step": 28
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"epoch": 0.07,
|
| 96 |
+
"learning_rate": 1.9976578756157684e-05,
|
| 97 |
+
"loss": 0.4945,
|
| 98 |
+
"step": 30
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0.07,
|
| 102 |
+
"learning_rate": 1.9973114921607055e-05,
|
| 103 |
+
"loss": 0.4966,
|
| 104 |
+
"step": 32
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"epoch": 0.08,
|
| 108 |
+
"learning_rate": 1.9969412644681077e-05,
|
| 109 |
+
"loss": 0.4935,
|
| 110 |
+
"step": 34
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 0.08,
|
| 114 |
+
"learning_rate": 1.9965472013895685e-05,
|
| 115 |
+
"loss": 0.4739,
|
| 116 |
+
"step": 36
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.09,
|
| 120 |
+
"learning_rate": 1.996129312346552e-05,
|
| 121 |
+
"loss": 0.4913,
|
| 122 |
+
"step": 38
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.09,
|
| 126 |
+
"learning_rate": 1.9956876073301645e-05,
|
| 127 |
+
"loss": 0.4641,
|
| 128 |
+
"step": 40
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.1,
|
| 132 |
+
"learning_rate": 1.9952220969009175e-05,
|
| 133 |
+
"loss": 0.4691,
|
| 134 |
+
"step": 42
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"epoch": 0.1,
|
| 138 |
+
"learning_rate": 1.9947327921884746e-05,
|
| 139 |
+
"loss": 0.4666,
|
| 140 |
+
"step": 44
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 0.11,
|
| 144 |
+
"learning_rate": 1.994219704891385e-05,
|
| 145 |
+
"loss": 0.4501,
|
| 146 |
+
"step": 46
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 0.11,
|
| 150 |
+
"learning_rate": 1.9936828472768043e-05,
|
| 151 |
+
"loss": 0.4558,
|
| 152 |
+
"step": 48
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"epoch": 0.12,
|
| 156 |
+
"learning_rate": 1.9931222321802016e-05,
|
| 157 |
+
"loss": 0.4712,
|
| 158 |
+
"step": 50
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.12,
|
| 162 |
+
"learning_rate": 1.9925378730050518e-05,
|
| 163 |
+
"loss": 0.4661,
|
| 164 |
+
"step": 52
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.13,
|
| 168 |
+
"learning_rate": 1.9919297837225152e-05,
|
| 169 |
+
"loss": 0.4735,
|
| 170 |
+
"step": 54
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.13,
|
| 174 |
+
"learning_rate": 1.9912979788711042e-05,
|
| 175 |
+
"loss": 0.4526,
|
| 176 |
+
"step": 56
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"epoch": 0.14,
|
| 180 |
+
"learning_rate": 1.990642473556335e-05,
|
| 181 |
+
"loss": 0.4453,
|
| 182 |
+
"step": 58
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 0.14,
|
| 186 |
+
"learning_rate": 1.9899632834503662e-05,
|
| 187 |
+
"loss": 0.4713,
|
| 188 |
+
"step": 60
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 0.14,
|
| 192 |
+
"learning_rate": 1.989260424791626e-05,
|
| 193 |
+
"loss": 0.4622,
|
| 194 |
+
"step": 62
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 0.15,
|
| 198 |
+
"learning_rate": 1.9885339143844217e-05,
|
| 199 |
+
"loss": 0.4585,
|
| 200 |
+
"step": 64
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.15,
|
| 204 |
+
"learning_rate": 1.987783769598538e-05,
|
| 205 |
+
"loss": 0.4576,
|
| 206 |
+
"step": 66
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.16,
|
| 210 |
+
"learning_rate": 1.9870100083688242e-05,
|
| 211 |
+
"loss": 0.4353,
|
| 212 |
+
"step": 68
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.16,
|
| 216 |
+
"learning_rate": 1.9862126491947624e-05,
|
| 217 |
+
"loss": 0.4509,
|
| 218 |
+
"step": 70
|
| 219 |
+
},
|
| 220 |
+
{
|
| 221 |
+
"epoch": 0.17,
|
| 222 |
+
"learning_rate": 1.985391711140027e-05,
|
| 223 |
+
"loss": 0.4402,
|
| 224 |
+
"step": 72
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 0.17,
|
| 228 |
+
"learning_rate": 1.9845472138320282e-05,
|
| 229 |
+
"loss": 0.437,
|
| 230 |
+
"step": 74
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.18,
|
| 234 |
+
"learning_rate": 1.9836791774614437e-05,
|
| 235 |
+
"loss": 0.4613,
|
| 236 |
+
"step": 76
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"epoch": 0.18,
|
| 240 |
+
"learning_rate": 1.982787622781735e-05,
|
| 241 |
+
"loss": 0.4567,
|
| 242 |
+
"step": 78
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.19,
|
| 246 |
+
"learning_rate": 1.9818725711086506e-05,
|
| 247 |
+
"loss": 0.4541,
|
| 248 |
+
"step": 80
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.19,
|
| 252 |
+
"learning_rate": 1.980934044319718e-05,
|
| 253 |
+
"loss": 0.4398,
|
| 254 |
+
"step": 82
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.2,
|
| 258 |
+
"learning_rate": 1.9799720648537197e-05,
|
| 259 |
+
"loss": 0.4283,
|
| 260 |
+
"step": 84
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.2,
|
| 264 |
+
"learning_rate": 1.978986655710157e-05,
|
| 265 |
+
"loss": 0.4443,
|
| 266 |
+
"step": 86
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 0.2,
|
| 270 |
+
"learning_rate": 1.9779778404487e-05,
|
| 271 |
+
"loss": 0.4457,
|
| 272 |
+
"step": 88
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"epoch": 0.21,
|
| 276 |
+
"learning_rate": 1.9769456431886244e-05,
|
| 277 |
+
"loss": 0.4326,
|
| 278 |
+
"step": 90
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"epoch": 0.21,
|
| 282 |
+
"learning_rate": 1.9758900886082343e-05,
|
| 283 |
+
"loss": 0.4557,
|
| 284 |
+
"step": 92
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"epoch": 0.22,
|
| 288 |
+
"learning_rate": 1.9748112019442734e-05,
|
| 289 |
+
"loss": 0.4402,
|
| 290 |
+
"step": 94
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.22,
|
| 294 |
+
"learning_rate": 1.9737090089913205e-05,
|
| 295 |
+
"loss": 0.465,
|
| 296 |
+
"step": 96
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.23,
|
| 300 |
+
"learning_rate": 1.9725835361011726e-05,
|
| 301 |
+
"loss": 0.4387,
|
| 302 |
+
"step": 98
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 0.23,
|
| 306 |
+
"learning_rate": 1.971434810182217e-05,
|
| 307 |
+
"loss": 0.4479,
|
| 308 |
+
"step": 100
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 0.24,
|
| 312 |
+
"learning_rate": 1.9702628586987846e-05,
|
| 313 |
+
"loss": 0.4344,
|
| 314 |
+
"step": 102
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"epoch": 0.24,
|
| 318 |
+
"learning_rate": 1.9690677096704964e-05,
|
| 319 |
+
"loss": 0.4302,
|
| 320 |
+
"step": 104
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 0.25,
|
| 324 |
+
"learning_rate": 1.9678493916715914e-05,
|
| 325 |
+
"loss": 0.4331,
|
| 326 |
+
"step": 106
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"epoch": 0.25,
|
| 330 |
+
"learning_rate": 1.966607933830245e-05,
|
| 331 |
+
"loss": 0.4224,
|
| 332 |
+
"step": 108
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.26,
|
| 336 |
+
"learning_rate": 1.9653433658278717e-05,
|
| 337 |
+
"loss": 0.4225,
|
| 338 |
+
"step": 110
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.26,
|
| 342 |
+
"learning_rate": 1.9640557178984152e-05,
|
| 343 |
+
"loss": 0.4177,
|
| 344 |
+
"step": 112
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"epoch": 0.27,
|
| 348 |
+
"learning_rate": 1.9627450208276265e-05,
|
| 349 |
+
"loss": 0.4546,
|
| 350 |
+
"step": 114
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 0.27,
|
| 354 |
+
"learning_rate": 1.9614113059523273e-05,
|
| 355 |
+
"loss": 0.4257,
|
| 356 |
+
"step": 116
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"epoch": 0.27,
|
| 360 |
+
"learning_rate": 1.9600546051596604e-05,
|
| 361 |
+
"loss": 0.4453,
|
| 362 |
+
"step": 118
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 0.28,
|
| 366 |
+
"learning_rate": 1.9586749508863284e-05,
|
| 367 |
+
"loss": 0.458,
|
| 368 |
+
"step": 120
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"epoch": 0.28,
|
| 372 |
+
"learning_rate": 1.9572723761178168e-05,
|
| 373 |
+
"loss": 0.4287,
|
| 374 |
+
"step": 122
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.29,
|
| 378 |
+
"learning_rate": 1.955846914387607e-05,
|
| 379 |
+
"loss": 0.4581,
|
| 380 |
+
"step": 124
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.29,
|
| 384 |
+
"learning_rate": 1.954398599776373e-05,
|
| 385 |
+
"loss": 0.4343,
|
| 386 |
+
"step": 126
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"epoch": 0.3,
|
| 390 |
+
"learning_rate": 1.952927466911168e-05,
|
| 391 |
+
"loss": 0.4431,
|
| 392 |
+
"step": 128
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"epoch": 0.3,
|
| 396 |
+
"learning_rate": 1.9514335509645948e-05,
|
| 397 |
+
"loss": 0.4332,
|
| 398 |
+
"step": 130
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"epoch": 0.31,
|
| 402 |
+
"learning_rate": 1.9499168876539666e-05,
|
| 403 |
+
"loss": 0.4315,
|
| 404 |
+
"step": 132
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"epoch": 0.31,
|
| 408 |
+
"learning_rate": 1.9483775132404517e-05,
|
| 409 |
+
"loss": 0.4403,
|
| 410 |
+
"step": 134
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 0.32,
|
| 414 |
+
"learning_rate": 1.946815464528208e-05,
|
| 415 |
+
"loss": 0.4618,
|
| 416 |
+
"step": 136
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.32,
|
| 420 |
+
"learning_rate": 1.9452307788635015e-05,
|
| 421 |
+
"loss": 0.4292,
|
| 422 |
+
"step": 138
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.33,
|
| 426 |
+
"learning_rate": 1.9436234941338145e-05,
|
| 427 |
+
"loss": 0.4333,
|
| 428 |
+
"step": 140
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"epoch": 0.33,
|
| 432 |
+
"learning_rate": 1.9419936487669396e-05,
|
| 433 |
+
"loss": 0.4557,
|
| 434 |
+
"step": 142
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 0.34,
|
| 438 |
+
"learning_rate": 1.94034128173006e-05,
|
| 439 |
+
"loss": 0.4575,
|
| 440 |
+
"step": 144
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"epoch": 0.34,
|
| 444 |
+
"learning_rate": 1.938666432528819e-05,
|
| 445 |
+
"loss": 0.4012,
|
| 446 |
+
"step": 146
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 0.34,
|
| 450 |
+
"learning_rate": 1.9369691412063755e-05,
|
| 451 |
+
"loss": 0.4579,
|
| 452 |
+
"step": 148
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"epoch": 0.35,
|
| 456 |
+
"learning_rate": 1.9352494483424456e-05,
|
| 457 |
+
"loss": 0.4337,
|
| 458 |
+
"step": 150
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.35,
|
| 462 |
+
"learning_rate": 1.9335073950523335e-05,
|
| 463 |
+
"loss": 0.4142,
|
| 464 |
+
"step": 152
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.36,
|
| 468 |
+
"learning_rate": 1.9317430229859474e-05,
|
| 469 |
+
"loss": 0.4545,
|
| 470 |
+
"step": 154
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"epoch": 0.36,
|
| 474 |
+
"learning_rate": 1.929956374326805e-05,
|
| 475 |
+
"loss": 0.4679,
|
| 476 |
+
"step": 156
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"epoch": 0.37,
|
| 480 |
+
"learning_rate": 1.928147491791024e-05,
|
| 481 |
+
"loss": 0.4178,
|
| 482 |
+
"step": 158
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"epoch": 0.37,
|
| 486 |
+
"learning_rate": 1.9263164186263003e-05,
|
| 487 |
+
"loss": 0.4474,
|
| 488 |
+
"step": 160
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"epoch": 0.38,
|
| 492 |
+
"learning_rate": 1.9244631986108768e-05,
|
| 493 |
+
"loss": 0.4237,
|
| 494 |
+
"step": 162
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"epoch": 0.38,
|
| 498 |
+
"learning_rate": 1.922587876052492e-05,
|
| 499 |
+
"loss": 0.4456,
|
| 500 |
+
"step": 164
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.39,
|
| 504 |
+
"learning_rate": 1.920690495787326e-05,
|
| 505 |
+
"loss": 0.412,
|
| 506 |
+
"step": 166
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.39,
|
| 510 |
+
"learning_rate": 1.918771103178924e-05,
|
| 511 |
+
"loss": 0.4279,
|
| 512 |
+
"step": 168
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"epoch": 0.4,
|
| 516 |
+
"learning_rate": 1.916829744117115e-05,
|
| 517 |
+
"loss": 0.413,
|
| 518 |
+
"step": 170
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 0.4,
|
| 522 |
+
"learning_rate": 1.9148664650169128e-05,
|
| 523 |
+
"loss": 0.4508,
|
| 524 |
+
"step": 172
|
| 525 |
+
},
|
| 526 |
+
{
|
| 527 |
+
"epoch": 0.41,
|
| 528 |
+
"learning_rate": 1.9128813128174063e-05,
|
| 529 |
+
"loss": 0.4054,
|
| 530 |
+
"step": 174
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 0.41,
|
| 534 |
+
"learning_rate": 1.9108743349806382e-05,
|
| 535 |
+
"loss": 0.4021,
|
| 536 |
+
"step": 176
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"epoch": 0.41,
|
| 540 |
+
"learning_rate": 1.90884557949047e-05,
|
| 541 |
+
"loss": 0.4392,
|
| 542 |
+
"step": 178
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.42,
|
| 546 |
+
"learning_rate": 1.9067950948514343e-05,
|
| 547 |
+
"loss": 0.4414,
|
| 548 |
+
"step": 180
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.42,
|
| 552 |
+
"learning_rate": 1.904722930087575e-05,
|
| 553 |
+
"loss": 0.4327,
|
| 554 |
+
"step": 182
|
| 555 |
+
},
|
| 556 |
+
{
|
| 557 |
+
"epoch": 0.43,
|
| 558 |
+
"learning_rate": 1.9026291347412765e-05,
|
| 559 |
+
"loss": 0.4081,
|
| 560 |
+
"step": 184
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 0.43,
|
| 564 |
+
"learning_rate": 1.900513758872078e-05,
|
| 565 |
+
"loss": 0.4432,
|
| 566 |
+
"step": 186
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"epoch": 0.44,
|
| 570 |
+
"learning_rate": 1.8983768530554765e-05,
|
| 571 |
+
"loss": 0.4355,
|
| 572 |
+
"step": 188
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"epoch": 0.44,
|
| 576 |
+
"learning_rate": 1.8962184683817182e-05,
|
| 577 |
+
"loss": 0.4292,
|
| 578 |
+
"step": 190
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"epoch": 0.45,
|
| 582 |
+
"learning_rate": 1.8940386564545773e-05,
|
| 583 |
+
"loss": 0.4182,
|
| 584 |
+
"step": 192
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.45,
|
| 588 |
+
"learning_rate": 1.891837469390122e-05,
|
| 589 |
+
"loss": 0.4402,
|
| 590 |
+
"step": 194
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.46,
|
| 594 |
+
"learning_rate": 1.8896149598154675e-05,
|
| 595 |
+
"loss": 0.4377,
|
| 596 |
+
"step": 196
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"epoch": 0.46,
|
| 600 |
+
"learning_rate": 1.887371180867519e-05,
|
| 601 |
+
"loss": 0.4236,
|
| 602 |
+
"step": 198
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"epoch": 0.47,
|
| 606 |
+
"learning_rate": 1.8851061861917013e-05,
|
| 607 |
+
"loss": 0.4399,
|
| 608 |
+
"step": 200
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"epoch": 0.47,
|
| 612 |
+
"learning_rate": 1.8828200299406747e-05,
|
| 613 |
+
"loss": 0.4285,
|
| 614 |
+
"step": 202
|
| 615 |
+
},
|
| 616 |
+
{
|
| 617 |
+
"epoch": 0.47,
|
| 618 |
+
"learning_rate": 1.8805127667730426e-05,
|
| 619 |
+
"loss": 0.4465,
|
| 620 |
+
"step": 204
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"epoch": 0.48,
|
| 624 |
+
"learning_rate": 1.878184451852042e-05,
|
| 625 |
+
"loss": 0.4264,
|
| 626 |
+
"step": 206
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.48,
|
| 630 |
+
"learning_rate": 1.8758351408442278e-05,
|
| 631 |
+
"loss": 0.4196,
|
| 632 |
+
"step": 208
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.49,
|
| 636 |
+
"learning_rate": 1.8734648899181388e-05,
|
| 637 |
+
"loss": 0.4104,
|
| 638 |
+
"step": 210
|
| 639 |
+
},
|
| 640 |
+
{
|
| 641 |
+
"epoch": 0.49,
|
| 642 |
+
"learning_rate": 1.871073755742957e-05,
|
| 643 |
+
"loss": 0.4188,
|
| 644 |
+
"step": 212
|
| 645 |
+
},
|
| 646 |
+
{
|
| 647 |
+
"epoch": 0.5,
|
| 648 |
+
"learning_rate": 1.868661795487151e-05,
|
| 649 |
+
"loss": 0.4418,
|
| 650 |
+
"step": 214
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"epoch": 0.5,
|
| 654 |
+
"learning_rate": 1.8662290668171107e-05,
|
| 655 |
+
"loss": 0.4183,
|
| 656 |
+
"step": 216
|
| 657 |
+
},
|
| 658 |
+
{
|
| 659 |
+
"epoch": 0.51,
|
| 660 |
+
"learning_rate": 1.8637756278957683e-05,
|
| 661 |
+
"loss": 0.4076,
|
| 662 |
+
"step": 218
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"epoch": 0.51,
|
| 666 |
+
"learning_rate": 1.8613015373812066e-05,
|
| 667 |
+
"loss": 0.4105,
|
| 668 |
+
"step": 220
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.52,
|
| 672 |
+
"learning_rate": 1.8588068544252572e-05,
|
| 673 |
+
"loss": 0.4478,
|
| 674 |
+
"step": 222
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.52,
|
| 678 |
+
"learning_rate": 1.8562916386720883e-05,
|
| 679 |
+
"loss": 0.4312,
|
| 680 |
+
"step": 224
|
| 681 |
+
},
|
| 682 |
+
{
|
| 683 |
+
"epoch": 0.53,
|
| 684 |
+
"learning_rate": 1.853755950256774e-05,
|
| 685 |
+
"loss": 0.4044,
|
| 686 |
+
"step": 226
|
| 687 |
+
},
|
| 688 |
+
{
|
| 689 |
+
"epoch": 0.53,
|
| 690 |
+
"learning_rate": 1.8511998498038615e-05,
|
| 691 |
+
"loss": 0.4069,
|
| 692 |
+
"step": 228
|
| 693 |
+
},
|
| 694 |
+
{
|
| 695 |
+
"epoch": 0.54,
|
| 696 |
+
"learning_rate": 1.8486233984259186e-05,
|
| 697 |
+
"loss": 0.4349,
|
| 698 |
+
"step": 230
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"epoch": 0.54,
|
| 702 |
+
"learning_rate": 1.8460266577220733e-05,
|
| 703 |
+
"loss": 0.4039,
|
| 704 |
+
"step": 232
|
| 705 |
+
},
|
| 706 |
+
{
|
| 707 |
+
"epoch": 0.54,
|
| 708 |
+
"learning_rate": 1.8434096897765422e-05,
|
| 709 |
+
"loss": 0.4153,
|
| 710 |
+
"step": 234
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.55,
|
| 714 |
+
"learning_rate": 1.8407725571571448e-05,
|
| 715 |
+
"loss": 0.4188,
|
| 716 |
+
"step": 236
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.55,
|
| 720 |
+
"learning_rate": 1.838115322913807e-05,
|
| 721 |
+
"loss": 0.4409,
|
| 722 |
+
"step": 238
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 0.56,
|
| 726 |
+
"learning_rate": 1.835438050577057e-05,
|
| 727 |
+
"loss": 0.4109,
|
| 728 |
+
"step": 240
|
| 729 |
+
},
|
| 730 |
+
{
|
| 731 |
+
"epoch": 0.56,
|
| 732 |
+
"learning_rate": 1.8327408041565013e-05,
|
| 733 |
+
"loss": 0.4247,
|
| 734 |
+
"step": 242
|
| 735 |
+
},
|
| 736 |
+
{
|
| 737 |
+
"epoch": 0.57,
|
| 738 |
+
"learning_rate": 1.8300236481392995e-05,
|
| 739 |
+
"loss": 0.4451,
|
| 740 |
+
"step": 244
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"epoch": 0.57,
|
| 744 |
+
"learning_rate": 1.8272866474886185e-05,
|
| 745 |
+
"loss": 0.4127,
|
| 746 |
+
"step": 246
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"epoch": 0.58,
|
| 750 |
+
"learning_rate": 1.8245298676420814e-05,
|
| 751 |
+
"loss": 0.4346,
|
| 752 |
+
"step": 248
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.58,
|
| 756 |
+
"learning_rate": 1.8217533745102032e-05,
|
| 757 |
+
"loss": 0.4078,
|
| 758 |
+
"step": 250
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.59,
|
| 762 |
+
"learning_rate": 1.818957234474813e-05,
|
| 763 |
+
"loss": 0.4034,
|
| 764 |
+
"step": 252
|
| 765 |
+
},
|
| 766 |
+
{
|
| 767 |
+
"epoch": 0.59,
|
| 768 |
+
"learning_rate": 1.81614151438747e-05,
|
| 769 |
+
"loss": 0.4355,
|
| 770 |
+
"step": 254
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"epoch": 0.6,
|
| 774 |
+
"learning_rate": 1.8133062815678614e-05,
|
| 775 |
+
"loss": 0.446,
|
| 776 |
+
"step": 256
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"epoch": 0.6,
|
| 780 |
+
"learning_rate": 1.810451603802196e-05,
|
| 781 |
+
"loss": 0.4329,
|
| 782 |
+
"step": 258
|
| 783 |
+
},
|
| 784 |
+
{
|
| 785 |
+
"epoch": 0.61,
|
| 786 |
+
"learning_rate": 1.807577549341582e-05,
|
| 787 |
+
"loss": 0.4387,
|
| 788 |
+
"step": 260
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"epoch": 0.61,
|
| 792 |
+
"learning_rate": 1.8046841869003962e-05,
|
| 793 |
+
"loss": 0.4001,
|
| 794 |
+
"step": 262
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.61,
|
| 798 |
+
"learning_rate": 1.8017715856546397e-05,
|
| 799 |
+
"loss": 0.4109,
|
| 800 |
+
"step": 264
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.62,
|
| 804 |
+
"learning_rate": 1.7988398152402857e-05,
|
| 805 |
+
"loss": 0.4156,
|
| 806 |
+
"step": 266
|
| 807 |
+
},
|
| 808 |
+
{
|
| 809 |
+
"epoch": 0.62,
|
| 810 |
+
"learning_rate": 1.7958889457516134e-05,
|
| 811 |
+
"loss": 0.4121,
|
| 812 |
+
"step": 268
|
| 813 |
+
},
|
| 814 |
+
{
|
| 815 |
+
"epoch": 0.63,
|
| 816 |
+
"learning_rate": 1.7929190477395318e-05,
|
| 817 |
+
"loss": 0.4187,
|
| 818 |
+
"step": 270
|
| 819 |
+
},
|
| 820 |
+
{
|
| 821 |
+
"epoch": 0.63,
|
| 822 |
+
"learning_rate": 1.7899301922098958e-05,
|
| 823 |
+
"loss": 0.4072,
|
| 824 |
+
"step": 272
|
| 825 |
+
},
|
| 826 |
+
{
|
| 827 |
+
"epoch": 0.64,
|
| 828 |
+
"learning_rate": 1.7869224506218034e-05,
|
| 829 |
+
"loss": 0.4556,
|
| 830 |
+
"step": 274
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"epoch": 0.64,
|
| 834 |
+
"learning_rate": 1.7838958948858923e-05,
|
| 835 |
+
"loss": 0.4135,
|
| 836 |
+
"step": 276
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.65,
|
| 840 |
+
"learning_rate": 1.7808505973626183e-05,
|
| 841 |
+
"loss": 0.4384,
|
| 842 |
+
"step": 278
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.65,
|
| 846 |
+
"learning_rate": 1.777786630860525e-05,
|
| 847 |
+
"loss": 0.4226,
|
| 848 |
+
"step": 280
|
| 849 |
+
},
|
| 850 |
+
{
|
| 851 |
+
"epoch": 0.66,
|
| 852 |
+
"learning_rate": 1.774704068634504e-05,
|
| 853 |
+
"loss": 0.4362,
|
| 854 |
+
"step": 282
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"epoch": 0.66,
|
| 858 |
+
"learning_rate": 1.771602984384043e-05,
|
| 859 |
+
"loss": 0.4243,
|
| 860 |
+
"step": 284
|
| 861 |
+
},
|
| 862 |
+
{
|
| 863 |
+
"epoch": 0.67,
|
| 864 |
+
"learning_rate": 1.7684834522514632e-05,
|
| 865 |
+
"loss": 0.4622,
|
| 866 |
+
"step": 286
|
| 867 |
+
},
|
| 868 |
+
{
|
| 869 |
+
"epoch": 0.67,
|
| 870 |
+
"learning_rate": 1.7653455468201483e-05,
|
| 871 |
+
"loss": 0.448,
|
| 872 |
+
"step": 288
|
| 873 |
+
},
|
| 874 |
+
{
|
| 875 |
+
"epoch": 0.68,
|
| 876 |
+
"learning_rate": 1.7621893431127596e-05,
|
| 877 |
+
"loss": 0.4385,
|
| 878 |
+
"step": 290
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.68,
|
| 882 |
+
"learning_rate": 1.759014916589443e-05,
|
| 883 |
+
"loss": 0.4149,
|
| 884 |
+
"step": 292
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.68,
|
| 888 |
+
"learning_rate": 1.7558223431460254e-05,
|
| 889 |
+
"loss": 0.4229,
|
| 890 |
+
"step": 294
|
| 891 |
+
},
|
| 892 |
+
{
|
| 893 |
+
"epoch": 0.69,
|
| 894 |
+
"learning_rate": 1.7526116991121988e-05,
|
| 895 |
+
"loss": 0.4115,
|
| 896 |
+
"step": 296
|
| 897 |
+
},
|
| 898 |
+
{
|
| 899 |
+
"epoch": 0.69,
|
| 900 |
+
"learning_rate": 1.7493830612496975e-05,
|
| 901 |
+
"loss": 0.4204,
|
| 902 |
+
"step": 298
|
| 903 |
+
},
|
| 904 |
+
{
|
| 905 |
+
"epoch": 0.7,
|
| 906 |
+
"learning_rate": 1.7461365067504602e-05,
|
| 907 |
+
"loss": 0.4171,
|
| 908 |
+
"step": 300
|
| 909 |
+
},
|
| 910 |
+
{
|
| 911 |
+
"epoch": 0.7,
|
| 912 |
+
"learning_rate": 1.7428721132347863e-05,
|
| 913 |
+
"loss": 0.4161,
|
| 914 |
+
"step": 302
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.71,
|
| 918 |
+
"learning_rate": 1.73958995874948e-05,
|
| 919 |
+
"loss": 0.4214,
|
| 920 |
+
"step": 304
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.71,
|
| 924 |
+
"learning_rate": 1.7362901217659833e-05,
|
| 925 |
+
"loss": 0.4175,
|
| 926 |
+
"step": 306
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.72,
|
| 930 |
+
"learning_rate": 1.7329726811785012e-05,
|
| 931 |
+
"loss": 0.4105,
|
| 932 |
+
"step": 308
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"epoch": 0.72,
|
| 936 |
+
"learning_rate": 1.7296377163021133e-05,
|
| 937 |
+
"loss": 0.4354,
|
| 938 |
+
"step": 310
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"epoch": 0.73,
|
| 942 |
+
"learning_rate": 1.7262853068708807e-05,
|
| 943 |
+
"loss": 0.4113,
|
| 944 |
+
"step": 312
|
| 945 |
+
},
|
| 946 |
+
{
|
| 947 |
+
"epoch": 0.73,
|
| 948 |
+
"learning_rate": 1.7229155330359368e-05,
|
| 949 |
+
"loss": 0.452,
|
| 950 |
+
"step": 314
|
| 951 |
+
},
|
| 952 |
+
{
|
| 953 |
+
"epoch": 0.74,
|
| 954 |
+
"learning_rate": 1.719528475363573e-05,
|
| 955 |
+
"loss": 0.4154,
|
| 956 |
+
"step": 316
|
| 957 |
+
},
|
| 958 |
+
{
|
| 959 |
+
"epoch": 0.74,
|
| 960 |
+
"learning_rate": 1.7161242148333107e-05,
|
| 961 |
+
"loss": 0.4236,
|
| 962 |
+
"step": 318
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.75,
|
| 966 |
+
"learning_rate": 1.712702832835966e-05,
|
| 967 |
+
"loss": 0.4146,
|
| 968 |
+
"step": 320
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.75,
|
| 972 |
+
"learning_rate": 1.7092644111717052e-05,
|
| 973 |
+
"loss": 0.4183,
|
| 974 |
+
"step": 322
|
| 975 |
+
},
|
| 976 |
+
{
|
| 977 |
+
"epoch": 0.75,
|
| 978 |
+
"learning_rate": 1.7058090320480866e-05,
|
| 979 |
+
"loss": 0.4038,
|
| 980 |
+
"step": 324
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"epoch": 0.76,
|
| 984 |
+
"learning_rate": 1.702336778078096e-05,
|
| 985 |
+
"loss": 0.4135,
|
| 986 |
+
"step": 326
|
| 987 |
+
},
|
| 988 |
+
{
|
| 989 |
+
"epoch": 0.76,
|
| 990 |
+
"learning_rate": 1.698847732278173e-05,
|
| 991 |
+
"loss": 0.408,
|
| 992 |
+
"step": 328
|
| 993 |
+
},
|
| 994 |
+
{
|
| 995 |
+
"epoch": 0.77,
|
| 996 |
+
"learning_rate": 1.6953419780662232e-05,
|
| 997 |
+
"loss": 0.4003,
|
| 998 |
+
"step": 330
|
| 999 |
+
},
|
| 1000 |
+
{
|
| 1001 |
+
"epoch": 0.77,
|
| 1002 |
+
"learning_rate": 1.6918195992596274e-05,
|
| 1003 |
+
"loss": 0.4065,
|
| 1004 |
+
"step": 332
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.78,
|
| 1008 |
+
"learning_rate": 1.6882806800732338e-05,
|
| 1009 |
+
"loss": 0.4205,
|
| 1010 |
+
"step": 334
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.78,
|
| 1014 |
+
"learning_rate": 1.6847253051173487e-05,
|
| 1015 |
+
"loss": 0.4135,
|
| 1016 |
+
"step": 336
|
| 1017 |
+
},
|
| 1018 |
+
{
|
| 1019 |
+
"epoch": 0.79,
|
| 1020 |
+
"learning_rate": 1.6811535593957093e-05,
|
| 1021 |
+
"loss": 0.3965,
|
| 1022 |
+
"step": 338
|
| 1023 |
+
},
|
| 1024 |
+
{
|
| 1025 |
+
"epoch": 0.79,
|
| 1026 |
+
"learning_rate": 1.6775655283034548e-05,
|
| 1027 |
+
"loss": 0.4028,
|
| 1028 |
+
"step": 340
|
| 1029 |
+
},
|
| 1030 |
+
{
|
| 1031 |
+
"epoch": 0.8,
|
| 1032 |
+
"learning_rate": 1.6739612976250836e-05,
|
| 1033 |
+
"loss": 0.4578,
|
| 1034 |
+
"step": 342
|
| 1035 |
+
},
|
| 1036 |
+
{
|
| 1037 |
+
"epoch": 0.8,
|
| 1038 |
+
"learning_rate": 1.670340953532401e-05,
|
| 1039 |
+
"loss": 0.4298,
|
| 1040 |
+
"step": 344
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.81,
|
| 1044 |
+
"learning_rate": 1.6667045825824616e-05,
|
| 1045 |
+
"loss": 0.4221,
|
| 1046 |
+
"step": 346
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.81,
|
| 1050 |
+
"learning_rate": 1.663052271715497e-05,
|
| 1051 |
+
"loss": 0.4062,
|
| 1052 |
+
"step": 348
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.81,
|
| 1056 |
+
"learning_rate": 1.6593841082528394e-05,
|
| 1057 |
+
"loss": 0.3934,
|
| 1058 |
+
"step": 350
|
| 1059 |
+
},
|
| 1060 |
+
{
|
| 1061 |
+
"epoch": 0.82,
|
| 1062 |
+
"learning_rate": 1.6557001798948324e-05,
|
| 1063 |
+
"loss": 0.4279,
|
| 1064 |
+
"step": 352
|
| 1065 |
+
},
|
| 1066 |
+
{
|
| 1067 |
+
"epoch": 0.82,
|
| 1068 |
+
"learning_rate": 1.6520005747187358e-05,
|
| 1069 |
+
"loss": 0.3993,
|
| 1070 |
+
"step": 354
|
| 1071 |
+
},
|
| 1072 |
+
{
|
| 1073 |
+
"epoch": 0.83,
|
| 1074 |
+
"learning_rate": 1.648285381176618e-05,
|
| 1075 |
+
"loss": 0.4191,
|
| 1076 |
+
"step": 356
|
| 1077 |
+
},
|
| 1078 |
+
{
|
| 1079 |
+
"epoch": 0.83,
|
| 1080 |
+
"learning_rate": 1.6445546880932425e-05,
|
| 1081 |
+
"loss": 0.4198,
|
| 1082 |
+
"step": 358
|
| 1083 |
+
},
|
| 1084 |
+
{
|
| 1085 |
+
"epoch": 0.84,
|
| 1086 |
+
"learning_rate": 1.6408085846639435e-05,
|
| 1087 |
+
"loss": 0.4,
|
| 1088 |
+
"step": 360
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.84,
|
| 1092 |
+
"learning_rate": 1.637047160452494e-05,
|
| 1093 |
+
"loss": 0.4347,
|
| 1094 |
+
"step": 362
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 0.85,
|
| 1098 |
+
"learning_rate": 1.6332705053889643e-05,
|
| 1099 |
+
"loss": 0.4188,
|
| 1100 |
+
"step": 364
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"epoch": 0.85,
|
| 1104 |
+
"learning_rate": 1.6294787097675712e-05,
|
| 1105 |
+
"loss": 0.4052,
|
| 1106 |
+
"step": 366
|
| 1107 |
+
},
|
| 1108 |
+
{
|
| 1109 |
+
"epoch": 0.86,
|
| 1110 |
+
"learning_rate": 1.6256718642445202e-05,
|
| 1111 |
+
"loss": 0.4214,
|
| 1112 |
+
"step": 368
|
| 1113 |
+
},
|
| 1114 |
+
{
|
| 1115 |
+
"epoch": 0.86,
|
| 1116 |
+
"learning_rate": 1.6218500598358376e-05,
|
| 1117 |
+
"loss": 0.4283,
|
| 1118 |
+
"step": 370
|
| 1119 |
+
},
|
| 1120 |
+
{
|
| 1121 |
+
"epoch": 0.87,
|
| 1122 |
+
"learning_rate": 1.6180133879151943e-05,
|
| 1123 |
+
"loss": 0.4188,
|
| 1124 |
+
"step": 372
|
| 1125 |
+
},
|
| 1126 |
+
{
|
| 1127 |
+
"epoch": 0.87,
|
| 1128 |
+
"learning_rate": 1.6141619402117213e-05,
|
| 1129 |
+
"loss": 0.3989,
|
| 1130 |
+
"step": 374
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.88,
|
| 1134 |
+
"learning_rate": 1.6102958088078172e-05,
|
| 1135 |
+
"loss": 0.4126,
|
| 1136 |
+
"step": 376
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 0.88,
|
| 1140 |
+
"learning_rate": 1.606415086136945e-05,
|
| 1141 |
+
"loss": 0.4148,
|
| 1142 |
+
"step": 378
|
| 1143 |
+
},
|
| 1144 |
+
{
|
| 1145 |
+
"epoch": 0.88,
|
| 1146 |
+
"learning_rate": 1.6025198649814243e-05,
|
| 1147 |
+
"loss": 0.42,
|
| 1148 |
+
"step": 380
|
| 1149 |
+
},
|
| 1150 |
+
{
|
| 1151 |
+
"epoch": 0.89,
|
| 1152 |
+
"learning_rate": 1.5986102384702112e-05,
|
| 1153 |
+
"loss": 0.4398,
|
| 1154 |
+
"step": 382
|
| 1155 |
+
},
|
| 1156 |
+
{
|
| 1157 |
+
"epoch": 0.89,
|
| 1158 |
+
"learning_rate": 1.594686300076673e-05,
|
| 1159 |
+
"loss": 0.3987,
|
| 1160 |
+
"step": 384
|
| 1161 |
+
},
|
| 1162 |
+
{
|
| 1163 |
+
"epoch": 0.9,
|
| 1164 |
+
"learning_rate": 1.590748143616353e-05,
|
| 1165 |
+
"loss": 0.4313,
|
| 1166 |
+
"step": 386
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"epoch": 0.9,
|
| 1170 |
+
"learning_rate": 1.5867958632447263e-05,
|
| 1171 |
+
"loss": 0.4214,
|
| 1172 |
+
"step": 388
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.91,
|
| 1176 |
+
"learning_rate": 1.582829553454951e-05,
|
| 1177 |
+
"loss": 0.4066,
|
| 1178 |
+
"step": 390
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.91,
|
| 1182 |
+
"learning_rate": 1.5788493090756074e-05,
|
| 1183 |
+
"loss": 0.4064,
|
| 1184 |
+
"step": 392
|
| 1185 |
+
},
|
| 1186 |
+
{
|
| 1187 |
+
"epoch": 0.92,
|
| 1188 |
+
"learning_rate": 1.5748552252684303e-05,
|
| 1189 |
+
"loss": 0.4109,
|
| 1190 |
+
"step": 394
|
| 1191 |
+
},
|
| 1192 |
+
{
|
| 1193 |
+
"epoch": 0.92,
|
| 1194 |
+
"learning_rate": 1.5708473975260356e-05,
|
| 1195 |
+
"loss": 0.4282,
|
| 1196 |
+
"step": 396
|
| 1197 |
+
},
|
| 1198 |
+
{
|
| 1199 |
+
"epoch": 0.93,
|
| 1200 |
+
"learning_rate": 1.5668259216696366e-05,
|
| 1201 |
+
"loss": 0.4358,
|
| 1202 |
+
"step": 398
|
| 1203 |
+
},
|
| 1204 |
+
{
|
| 1205 |
+
"epoch": 0.93,
|
| 1206 |
+
"learning_rate": 1.5627908938467516e-05,
|
| 1207 |
+
"loss": 0.4303,
|
| 1208 |
+
"step": 400
|
| 1209 |
+
},
|
| 1210 |
+
{
|
| 1211 |
+
"epoch": 0.94,
|
| 1212 |
+
"learning_rate": 1.558742410528907e-05,
|
| 1213 |
+
"loss": 0.4082,
|
| 1214 |
+
"step": 402
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.94,
|
| 1218 |
+
"learning_rate": 1.5546805685093308e-05,
|
| 1219 |
+
"loss": 0.4041,
|
| 1220 |
+
"step": 404
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 0.95,
|
| 1224 |
+
"learning_rate": 1.550605464900636e-05,
|
| 1225 |
+
"loss": 0.4148,
|
| 1226 |
+
"step": 406
|
| 1227 |
+
},
|
| 1228 |
+
{
|
| 1229 |
+
"epoch": 0.95,
|
| 1230 |
+
"learning_rate": 1.546517197132502e-05,
|
| 1231 |
+
"loss": 0.386,
|
| 1232 |
+
"step": 408
|
| 1233 |
+
},
|
| 1234 |
+
{
|
| 1235 |
+
"epoch": 0.95,
|
| 1236 |
+
"learning_rate": 1.542415862949343e-05,
|
| 1237 |
+
"loss": 0.4227,
|
| 1238 |
+
"step": 410
|
| 1239 |
+
},
|
| 1240 |
+
{
|
| 1241 |
+
"epoch": 0.96,
|
| 1242 |
+
"learning_rate": 1.5383015604079723e-05,
|
| 1243 |
+
"loss": 0.4174,
|
| 1244 |
+
"step": 412
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"epoch": 0.96,
|
| 1248 |
+
"learning_rate": 1.5341743878752563e-05,
|
| 1249 |
+
"loss": 0.4302,
|
| 1250 |
+
"step": 414
|
| 1251 |
+
},
|
| 1252 |
+
{
|
| 1253 |
+
"epoch": 0.97,
|
| 1254 |
+
"learning_rate": 1.5300344440257657e-05,
|
| 1255 |
+
"loss": 0.4076,
|
| 1256 |
+
"step": 416
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.97,
|
| 1260 |
+
"learning_rate": 1.5258818278394125e-05,
|
| 1261 |
+
"loss": 0.4047,
|
| 1262 |
+
"step": 418
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 0.98,
|
| 1266 |
+
"learning_rate": 1.5217166385990865e-05,
|
| 1267 |
+
"loss": 0.4242,
|
| 1268 |
+
"step": 420
|
| 1269 |
+
},
|
| 1270 |
+
{
|
| 1271 |
+
"epoch": 0.98,
|
| 1272 |
+
"learning_rate": 1.5175389758882803e-05,
|
| 1273 |
+
"loss": 0.4032,
|
| 1274 |
+
"step": 422
|
| 1275 |
+
},
|
| 1276 |
+
{
|
| 1277 |
+
"epoch": 0.99,
|
| 1278 |
+
"learning_rate": 1.5133489395887089e-05,
|
| 1279 |
+
"loss": 0.4268,
|
| 1280 |
+
"step": 424
|
| 1281 |
+
},
|
| 1282 |
+
{
|
| 1283 |
+
"epoch": 0.99,
|
| 1284 |
+
"learning_rate": 1.509146629877921e-05,
|
| 1285 |
+
"loss": 0.4132,
|
| 1286 |
+
"step": 426
|
| 1287 |
+
},
|
| 1288 |
+
{
|
| 1289 |
+
"epoch": 1.0,
|
| 1290 |
+
"learning_rate": 1.5049321472269043e-05,
|
| 1291 |
+
"loss": 0.4031,
|
| 1292 |
+
"step": 428
|
| 1293 |
+
},
|
| 1294 |
+
{
|
| 1295 |
+
"epoch": 1.0,
|
| 1296 |
+
"learning_rate": 1.5007055923976843e-05,
|
| 1297 |
+
"loss": 0.3714,
|
| 1298 |
+
"step": 430
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 1.01,
|
| 1302 |
+
"learning_rate": 1.4964670664409136e-05,
|
| 1303 |
+
"loss": 0.235,
|
| 1304 |
+
"step": 432
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 1.01,
|
| 1308 |
+
"learning_rate": 1.4922166706934566e-05,
|
| 1309 |
+
"loss": 0.2015,
|
| 1310 |
+
"step": 434
|
| 1311 |
+
},
|
| 1312 |
+
{
|
| 1313 |
+
"epoch": 1.02,
|
| 1314 |
+
"learning_rate": 1.4879545067759673e-05,
|
| 1315 |
+
"loss": 0.2057,
|
| 1316 |
+
"step": 436
|
| 1317 |
+
},
|
| 1318 |
+
{
|
| 1319 |
+
"epoch": 1.02,
|
| 1320 |
+
"learning_rate": 1.4836806765904587e-05,
|
| 1321 |
+
"loss": 0.1876,
|
| 1322 |
+
"step": 438
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"epoch": 1.02,
|
| 1326 |
+
"learning_rate": 1.4793952823178676e-05,
|
| 1327 |
+
"loss": 0.1879,
|
| 1328 |
+
"step": 440
|
| 1329 |
+
},
|
| 1330 |
+
{
|
| 1331 |
+
"epoch": 1.03,
|
| 1332 |
+
"learning_rate": 1.4750984264156103e-05,
|
| 1333 |
+
"loss": 0.1897,
|
| 1334 |
+
"step": 442
|
| 1335 |
+
},
|
| 1336 |
+
{
|
| 1337 |
+
"epoch": 1.03,
|
| 1338 |
+
"learning_rate": 1.4707902116151338e-05,
|
| 1339 |
+
"loss": 0.2166,
|
| 1340 |
+
"step": 444
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 1.04,
|
| 1344 |
+
"learning_rate": 1.4664707409194598e-05,
|
| 1345 |
+
"loss": 0.1852,
|
| 1346 |
+
"step": 446
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 1.04,
|
| 1350 |
+
"learning_rate": 1.462140117600721e-05,
|
| 1351 |
+
"loss": 0.1909,
|
| 1352 |
+
"step": 448
|
| 1353 |
+
},
|
| 1354 |
+
{
|
| 1355 |
+
"epoch": 1.05,
|
| 1356 |
+
"learning_rate": 1.457798445197694e-05,
|
| 1357 |
+
"loss": 0.1845,
|
| 1358 |
+
"step": 450
|
| 1359 |
+
},
|
| 1360 |
+
{
|
| 1361 |
+
"epoch": 1.05,
|
| 1362 |
+
"learning_rate": 1.4534458275133214e-05,
|
| 1363 |
+
"loss": 0.1772,
|
| 1364 |
+
"step": 452
|
| 1365 |
+
},
|
| 1366 |
+
{
|
| 1367 |
+
"epoch": 1.06,
|
| 1368 |
+
"learning_rate": 1.449082368612232e-05,
|
| 1369 |
+
"loss": 0.1873,
|
| 1370 |
+
"step": 454
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 1.06,
|
| 1374 |
+
"learning_rate": 1.4447081728182518e-05,
|
| 1375 |
+
"loss": 0.1983,
|
| 1376 |
+
"step": 456
|
| 1377 |
+
},
|
| 1378 |
+
{
|
| 1379 |
+
"epoch": 1.07,
|
| 1380 |
+
"learning_rate": 1.4403233447119096e-05,
|
| 1381 |
+
"loss": 0.192,
|
| 1382 |
+
"step": 458
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 1.07,
|
| 1386 |
+
"learning_rate": 1.4359279891279376e-05,
|
| 1387 |
+
"loss": 0.1808,
|
| 1388 |
+
"step": 460
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 1.08,
|
| 1392 |
+
"learning_rate": 1.431522211152764e-05,
|
| 1393 |
+
"loss": 0.1893,
|
| 1394 |
+
"step": 462
|
| 1395 |
+
},
|
| 1396 |
+
{
|
| 1397 |
+
"epoch": 1.08,
|
| 1398 |
+
"learning_rate": 1.4271061161220007e-05,
|
| 1399 |
+
"loss": 0.186,
|
| 1400 |
+
"step": 464
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"epoch": 1.08,
|
| 1404 |
+
"learning_rate": 1.4226798096179262e-05,
|
| 1405 |
+
"loss": 0.1854,
|
| 1406 |
+
"step": 466
|
| 1407 |
+
},
|
| 1408 |
+
{
|
| 1409 |
+
"epoch": 1.09,
|
| 1410 |
+
"learning_rate": 1.4182433974669584e-05,
|
| 1411 |
+
"loss": 0.1736,
|
| 1412 |
+
"step": 468
|
| 1413 |
+
},
|
| 1414 |
+
{
|
| 1415 |
+
"epoch": 1.09,
|
| 1416 |
+
"learning_rate": 1.4137969857371277e-05,
|
| 1417 |
+
"loss": 0.1876,
|
| 1418 |
+
"step": 470
|
| 1419 |
+
},
|
| 1420 |
+
{
|
| 1421 |
+
"epoch": 1.1,
|
| 1422 |
+
"learning_rate": 1.4093406807355389e-05,
|
| 1423 |
+
"loss": 0.1904,
|
| 1424 |
+
"step": 472
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 1.1,
|
| 1428 |
+
"learning_rate": 1.4048745890058304e-05,
|
| 1429 |
+
"loss": 0.1829,
|
| 1430 |
+
"step": 474
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 1.11,
|
| 1434 |
+
"learning_rate": 1.4003988173256267e-05,
|
| 1435 |
+
"loss": 0.1835,
|
| 1436 |
+
"step": 476
|
| 1437 |
+
},
|
| 1438 |
+
{
|
| 1439 |
+
"epoch": 1.11,
|
| 1440 |
+
"learning_rate": 1.3959134727039854e-05,
|
| 1441 |
+
"loss": 0.1829,
|
| 1442 |
+
"step": 478
|
| 1443 |
+
},
|
| 1444 |
+
{
|
| 1445 |
+
"epoch": 1.12,
|
| 1446 |
+
"learning_rate": 1.3914186623788398e-05,
|
| 1447 |
+
"loss": 0.1907,
|
| 1448 |
+
"step": 480
|
| 1449 |
+
},
|
| 1450 |
+
{
|
| 1451 |
+
"epoch": 1.12,
|
| 1452 |
+
"learning_rate": 1.3869144938144325e-05,
|
| 1453 |
+
"loss": 0.1842,
|
| 1454 |
+
"step": 482
|
| 1455 |
+
},
|
| 1456 |
+
{
|
| 1457 |
+
"epoch": 1.13,
|
| 1458 |
+
"learning_rate": 1.3824010746987495e-05,
|
| 1459 |
+
"loss": 0.1929,
|
| 1460 |
+
"step": 484
|
| 1461 |
+
},
|
| 1462 |
+
{
|
| 1463 |
+
"epoch": 1.13,
|
| 1464 |
+
"learning_rate": 1.3778785129409424e-05,
|
| 1465 |
+
"loss": 0.1824,
|
| 1466 |
+
"step": 486
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 1.14,
|
| 1470 |
+
"learning_rate": 1.3733469166687505e-05,
|
| 1471 |
+
"loss": 0.1867,
|
| 1472 |
+
"step": 488
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 1.14,
|
| 1476 |
+
"learning_rate": 1.3688063942259141e-05,
|
| 1477 |
+
"loss": 0.1842,
|
| 1478 |
+
"step": 490
|
| 1479 |
+
},
|
| 1480 |
+
{
|
| 1481 |
+
"epoch": 1.15,
|
| 1482 |
+
"learning_rate": 1.3642570541695867e-05,
|
| 1483 |
+
"loss": 0.1874,
|
| 1484 |
+
"step": 492
|
| 1485 |
+
},
|
| 1486 |
+
{
|
| 1487 |
+
"epoch": 1.15,
|
| 1488 |
+
"learning_rate": 1.359699005267736e-05,
|
| 1489 |
+
"loss": 0.1985,
|
| 1490 |
+
"step": 494
|
| 1491 |
+
},
|
| 1492 |
+
{
|
| 1493 |
+
"epoch": 1.15,
|
| 1494 |
+
"learning_rate": 1.3551323564965465e-05,
|
| 1495 |
+
"loss": 0.1671,
|
| 1496 |
+
"step": 496
|
| 1497 |
+
},
|
| 1498 |
+
{
|
| 1499 |
+
"epoch": 1.16,
|
| 1500 |
+
"learning_rate": 1.3505572170378118e-05,
|
| 1501 |
+
"loss": 0.1861,
|
| 1502 |
+
"step": 498
|
| 1503 |
+
},
|
| 1504 |
+
{
|
| 1505 |
+
"epoch": 1.16,
|
| 1506 |
+
"learning_rate": 1.3459736962763263e-05,
|
| 1507 |
+
"loss": 0.1873,
|
| 1508 |
+
"step": 500
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 1.17,
|
| 1512 |
+
"learning_rate": 1.3413819037972682e-05,
|
| 1513 |
+
"loss": 0.1946,
|
| 1514 |
+
"step": 502
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 1.17,
|
| 1518 |
+
"learning_rate": 1.33678194938358e-05,
|
| 1519 |
+
"loss": 0.1769,
|
| 1520 |
+
"step": 504
|
| 1521 |
+
},
|
| 1522 |
+
{
|
| 1523 |
+
"epoch": 1.18,
|
| 1524 |
+
"learning_rate": 1.332173943013345e-05,
|
| 1525 |
+
"loss": 0.205,
|
| 1526 |
+
"step": 506
|
| 1527 |
+
},
|
| 1528 |
+
{
|
| 1529 |
+
"epoch": 1.18,
|
| 1530 |
+
"learning_rate": 1.327557994857156e-05,
|
| 1531 |
+
"loss": 0.1899,
|
| 1532 |
+
"step": 508
|
| 1533 |
+
},
|
| 1534 |
+
{
|
| 1535 |
+
"epoch": 1.19,
|
| 1536 |
+
"learning_rate": 1.322934215275482e-05,
|
| 1537 |
+
"loss": 0.1746,
|
| 1538 |
+
"step": 510
|
| 1539 |
+
},
|
| 1540 |
+
{
|
| 1541 |
+
"epoch": 1.19,
|
| 1542 |
+
"learning_rate": 1.3183027148160304e-05,
|
| 1543 |
+
"loss": 0.1843,
|
| 1544 |
+
"step": 512
|
| 1545 |
+
},
|
| 1546 |
+
{
|
| 1547 |
+
"epoch": 1.2,
|
| 1548 |
+
"learning_rate": 1.3136636042111025e-05,
|
| 1549 |
+
"loss": 0.165,
|
| 1550 |
+
"step": 514
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 1.2,
|
| 1554 |
+
"learning_rate": 1.3090169943749475e-05,
|
| 1555 |
+
"loss": 0.189,
|
| 1556 |
+
"step": 516
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 1.21,
|
| 1560 |
+
"learning_rate": 1.3043629964011104e-05,
|
| 1561 |
+
"loss": 0.1745,
|
| 1562 |
+
"step": 518
|
| 1563 |
+
},
|
| 1564 |
+
{
|
| 1565 |
+
"epoch": 1.21,
|
| 1566 |
+
"learning_rate": 1.2997017215597743e-05,
|
| 1567 |
+
"loss": 0.1829,
|
| 1568 |
+
"step": 520
|
| 1569 |
+
},
|
| 1570 |
+
{
|
| 1571 |
+
"epoch": 1.22,
|
| 1572 |
+
"learning_rate": 1.295033281295103e-05,
|
| 1573 |
+
"loss": 0.1871,
|
| 1574 |
+
"step": 522
|
| 1575 |
+
},
|
| 1576 |
+
{
|
| 1577 |
+
"epoch": 1.22,
|
| 1578 |
+
"learning_rate": 1.2903577872225737e-05,
|
| 1579 |
+
"loss": 0.1786,
|
| 1580 |
+
"step": 524
|
| 1581 |
+
},
|
| 1582 |
+
{
|
| 1583 |
+
"epoch": 1.22,
|
| 1584 |
+
"learning_rate": 1.2856753511263105e-05,
|
| 1585 |
+
"loss": 0.1759,
|
| 1586 |
+
"step": 526
|
| 1587 |
+
},
|
| 1588 |
+
{
|
| 1589 |
+
"epoch": 1.23,
|
| 1590 |
+
"learning_rate": 1.2809860849564103e-05,
|
| 1591 |
+
"loss": 0.2027,
|
| 1592 |
+
"step": 528
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 1.23,
|
| 1596 |
+
"learning_rate": 1.2762901008262678e-05,
|
| 1597 |
+
"loss": 0.1824,
|
| 1598 |
+
"step": 530
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 1.24,
|
| 1602 |
+
"learning_rate": 1.271587511009893e-05,
|
| 1603 |
+
"loss": 0.1805,
|
| 1604 |
+
"step": 532
|
| 1605 |
+
},
|
| 1606 |
+
{
|
| 1607 |
+
"epoch": 1.24,
|
| 1608 |
+
"learning_rate": 1.2668784279392287e-05,
|
| 1609 |
+
"loss": 0.1777,
|
| 1610 |
+
"step": 534
|
| 1611 |
+
},
|
| 1612 |
+
{
|
| 1613 |
+
"epoch": 1.25,
|
| 1614 |
+
"learning_rate": 1.2621629642014623e-05,
|
| 1615 |
+
"loss": 0.1873,
|
| 1616 |
+
"step": 536
|
| 1617 |
+
},
|
| 1618 |
+
{
|
| 1619 |
+
"epoch": 1.25,
|
| 1620 |
+
"learning_rate": 1.2574412325363326e-05,
|
| 1621 |
+
"loss": 0.184,
|
| 1622 |
+
"step": 538
|
| 1623 |
+
},
|
| 1624 |
+
{
|
| 1625 |
+
"epoch": 1.26,
|
| 1626 |
+
"learning_rate": 1.2527133458334353e-05,
|
| 1627 |
+
"loss": 0.1932,
|
| 1628 |
+
"step": 540
|
| 1629 |
+
},
|
| 1630 |
+
{
|
| 1631 |
+
"epoch": 1.26,
|
| 1632 |
+
"learning_rate": 1.2479794171295248e-05,
|
| 1633 |
+
"loss": 0.1875,
|
| 1634 |
+
"step": 542
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 1.27,
|
| 1638 |
+
"learning_rate": 1.2432395596058097e-05,
|
| 1639 |
+
"loss": 0.1853,
|
| 1640 |
+
"step": 544
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 1.27,
|
| 1644 |
+
"learning_rate": 1.2384938865852482e-05,
|
| 1645 |
+
"loss": 0.1815,
|
| 1646 |
+
"step": 546
|
| 1647 |
+
},
|
| 1648 |
+
{
|
| 1649 |
+
"epoch": 1.28,
|
| 1650 |
+
"learning_rate": 1.2337425115298389e-05,
|
| 1651 |
+
"loss": 0.1845,
|
| 1652 |
+
"step": 548
|
| 1653 |
+
},
|
| 1654 |
+
{
|
| 1655 |
+
"epoch": 1.28,
|
| 1656 |
+
"learning_rate": 1.2289855480379074e-05,
|
| 1657 |
+
"loss": 0.1953,
|
| 1658 |
+
"step": 550
|
| 1659 |
+
},
|
| 1660 |
+
{
|
| 1661 |
+
"epoch": 1.29,
|
| 1662 |
+
"learning_rate": 1.22422310984139e-05,
|
| 1663 |
+
"loss": 0.1886,
|
| 1664 |
+
"step": 552
|
| 1665 |
+
},
|
| 1666 |
+
{
|
| 1667 |
+
"epoch": 1.29,
|
| 1668 |
+
"learning_rate": 1.2194553108031153e-05,
|
| 1669 |
+
"loss": 0.1875,
|
| 1670 |
+
"step": 554
|
| 1671 |
+
},
|
| 1672 |
+
{
|
| 1673 |
+
"epoch": 1.29,
|
| 1674 |
+
"learning_rate": 1.214682264914082e-05,
|
| 1675 |
+
"loss": 0.1829,
|
| 1676 |
+
"step": 556
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 1.3,
|
| 1680 |
+
"learning_rate": 1.2099040862907332e-05,
|
| 1681 |
+
"loss": 0.1935,
|
| 1682 |
+
"step": 558
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 1.3,
|
| 1686 |
+
"learning_rate": 1.2051208891722274e-05,
|
| 1687 |
+
"loss": 0.1851,
|
| 1688 |
+
"step": 560
|
| 1689 |
+
},
|
| 1690 |
+
{
|
| 1691 |
+
"epoch": 1.31,
|
| 1692 |
+
"learning_rate": 1.2003327879177085e-05,
|
| 1693 |
+
"loss": 0.1991,
|
| 1694 |
+
"step": 562
|
| 1695 |
+
},
|
| 1696 |
+
{
|
| 1697 |
+
"epoch": 1.31,
|
| 1698 |
+
"learning_rate": 1.195539897003571e-05,
|
| 1699 |
+
"loss": 0.1927,
|
| 1700 |
+
"step": 564
|
| 1701 |
+
},
|
| 1702 |
+
{
|
| 1703 |
+
"epoch": 1.32,
|
| 1704 |
+
"learning_rate": 1.190742331020723e-05,
|
| 1705 |
+
"loss": 0.183,
|
| 1706 |
+
"step": 566
|
| 1707 |
+
},
|
| 1708 |
+
{
|
| 1709 |
+
"epoch": 1.32,
|
| 1710 |
+
"learning_rate": 1.185940204671846e-05,
|
| 1711 |
+
"loss": 0.201,
|
| 1712 |
+
"step": 568
|
| 1713 |
+
},
|
| 1714 |
+
{
|
| 1715 |
+
"epoch": 1.33,
|
| 1716 |
+
"learning_rate": 1.1811336327686537e-05,
|
| 1717 |
+
"loss": 0.198,
|
| 1718 |
+
"step": 570
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 1.33,
|
| 1722 |
+
"learning_rate": 1.1763227302291464e-05,
|
| 1723 |
+
"loss": 0.185,
|
| 1724 |
+
"step": 572
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 1.34,
|
| 1728 |
+
"learning_rate": 1.1715076120748631e-05,
|
| 1729 |
+
"loss": 0.179,
|
| 1730 |
+
"step": 574
|
| 1731 |
+
},
|
| 1732 |
+
{
|
| 1733 |
+
"epoch": 1.34,
|
| 1734 |
+
"learning_rate": 1.1666883934281324e-05,
|
| 1735 |
+
"loss": 0.1934,
|
| 1736 |
+
"step": 576
|
| 1737 |
+
},
|
| 1738 |
+
{
|
| 1739 |
+
"epoch": 1.35,
|
| 1740 |
+
"learning_rate": 1.1618651895093192e-05,
|
| 1741 |
+
"loss": 0.1996,
|
| 1742 |
+
"step": 578
|
| 1743 |
+
},
|
| 1744 |
+
{
|
| 1745 |
+
"epoch": 1.35,
|
| 1746 |
+
"learning_rate": 1.1570381156340701e-05,
|
| 1747 |
+
"loss": 0.1813,
|
| 1748 |
+
"step": 580
|
| 1749 |
+
},
|
| 1750 |
+
{
|
| 1751 |
+
"epoch": 1.36,
|
| 1752 |
+
"learning_rate": 1.1522072872105576e-05,
|
| 1753 |
+
"loss": 0.1874,
|
| 1754 |
+
"step": 582
|
| 1755 |
+
},
|
| 1756 |
+
{
|
| 1757 |
+
"epoch": 1.36,
|
| 1758 |
+
"learning_rate": 1.147372819736719e-05,
|
| 1759 |
+
"loss": 0.1773,
|
| 1760 |
+
"step": 584
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 1.36,
|
| 1764 |
+
"learning_rate": 1.1425348287974956e-05,
|
| 1765 |
+
"loss": 0.1912,
|
| 1766 |
+
"step": 586
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 1.37,
|
| 1770 |
+
"learning_rate": 1.1376934300620706e-05,
|
| 1771 |
+
"loss": 0.1949,
|
| 1772 |
+
"step": 588
|
| 1773 |
+
},
|
| 1774 |
+
{
|
| 1775 |
+
"epoch": 1.37,
|
| 1776 |
+
"learning_rate": 1.1328487392811019e-05,
|
| 1777 |
+
"loss": 0.1883,
|
| 1778 |
+
"step": 590
|
| 1779 |
+
},
|
| 1780 |
+
{
|
| 1781 |
+
"epoch": 1.38,
|
| 1782 |
+
"learning_rate": 1.1280008722839552e-05,
|
| 1783 |
+
"loss": 0.1766,
|
| 1784 |
+
"step": 592
|
| 1785 |
+
},
|
| 1786 |
+
{
|
| 1787 |
+
"epoch": 1.38,
|
| 1788 |
+
"learning_rate": 1.1231499449759355e-05,
|
| 1789 |
+
"loss": 0.1987,
|
| 1790 |
+
"step": 594
|
| 1791 |
+
},
|
| 1792 |
+
{
|
| 1793 |
+
"epoch": 1.39,
|
| 1794 |
+
"learning_rate": 1.1182960733355142e-05,
|
| 1795 |
+
"loss": 0.1785,
|
| 1796 |
+
"step": 596
|
| 1797 |
+
},
|
| 1798 |
+
{
|
| 1799 |
+
"epoch": 1.39,
|
| 1800 |
+
"learning_rate": 1.1134393734115587e-05,
|
| 1801 |
+
"loss": 0.1961,
|
| 1802 |
+
"step": 598
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 1.4,
|
| 1806 |
+
"learning_rate": 1.1085799613205552e-05,
|
| 1807 |
+
"loss": 0.1805,
|
| 1808 |
+
"step": 600
|
| 1809 |
+
},
|
| 1810 |
+
{
|
| 1811 |
+
"epoch": 1.4,
|
| 1812 |
+
"learning_rate": 1.1037179532438345e-05,
|
| 1813 |
+
"loss": 0.1745,
|
| 1814 |
+
"step": 602
|
| 1815 |
+
},
|
| 1816 |
+
{
|
| 1817 |
+
"epoch": 1.41,
|
| 1818 |
+
"learning_rate": 1.098853465424793e-05,
|
| 1819 |
+
"loss": 0.1904,
|
| 1820 |
+
"step": 604
|
| 1821 |
+
},
|
| 1822 |
+
{
|
| 1823 |
+
"epoch": 1.41,
|
| 1824 |
+
"learning_rate": 1.0939866141661148e-05,
|
| 1825 |
+
"loss": 0.1858,
|
| 1826 |
+
"step": 606
|
| 1827 |
+
},
|
| 1828 |
+
{
|
| 1829 |
+
"epoch": 1.42,
|
| 1830 |
+
"learning_rate": 1.08911751582699e-05,
|
| 1831 |
+
"loss": 0.2095,
|
| 1832 |
+
"step": 608
|
| 1833 |
+
},
|
| 1834 |
+
{
|
| 1835 |
+
"epoch": 1.42,
|
| 1836 |
+
"learning_rate": 1.0842462868203329e-05,
|
| 1837 |
+
"loss": 0.1935,
|
| 1838 |
+
"step": 610
|
| 1839 |
+
},
|
| 1840 |
+
{
|
| 1841 |
+
"epoch": 1.42,
|
| 1842 |
+
"learning_rate": 1.079373043609999e-05,
|
| 1843 |
+
"loss": 0.1807,
|
| 1844 |
+
"step": 612
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 1.43,
|
| 1848 |
+
"learning_rate": 1.0744979027080003e-05,
|
| 1849 |
+
"loss": 0.194,
|
| 1850 |
+
"step": 614
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 1.43,
|
| 1854 |
+
"learning_rate": 1.06962098067172e-05,
|
| 1855 |
+
"loss": 0.196,
|
| 1856 |
+
"step": 616
|
| 1857 |
+
},
|
| 1858 |
+
{
|
| 1859 |
+
"epoch": 1.44,
|
| 1860 |
+
"learning_rate": 1.0647423941011255e-05,
|
| 1861 |
+
"loss": 0.1916,
|
| 1862 |
+
"step": 618
|
| 1863 |
+
},
|
| 1864 |
+
{
|
| 1865 |
+
"epoch": 1.44,
|
| 1866 |
+
"learning_rate": 1.0598622596359808e-05,
|
| 1867 |
+
"loss": 0.1904,
|
| 1868 |
+
"step": 620
|
| 1869 |
+
},
|
| 1870 |
+
{
|
| 1871 |
+
"epoch": 1.45,
|
| 1872 |
+
"learning_rate": 1.054980693953058e-05,
|
| 1873 |
+
"loss": 0.1766,
|
| 1874 |
+
"step": 622
|
| 1875 |
+
},
|
| 1876 |
+
{
|
| 1877 |
+
"epoch": 1.45,
|
| 1878 |
+
"learning_rate": 1.0500978137633469e-05,
|
| 1879 |
+
"loss": 0.1946,
|
| 1880 |
+
"step": 624
|
| 1881 |
+
},
|
| 1882 |
+
{
|
| 1883 |
+
"epoch": 1.46,
|
| 1884 |
+
"learning_rate": 1.0452137358092654e-05,
|
| 1885 |
+
"loss": 0.1918,
|
| 1886 |
+
"step": 626
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 1.46,
|
| 1890 |
+
"learning_rate": 1.0403285768618682e-05,
|
| 1891 |
+
"loss": 0.1813,
|
| 1892 |
+
"step": 628
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 1.47,
|
| 1896 |
+
"learning_rate": 1.0354424537180554e-05,
|
| 1897 |
+
"loss": 0.1879,
|
| 1898 |
+
"step": 630
|
| 1899 |
+
},
|
| 1900 |
+
{
|
| 1901 |
+
"epoch": 1.47,
|
| 1902 |
+
"learning_rate": 1.0305554831977788e-05,
|
| 1903 |
+
"loss": 0.1857,
|
| 1904 |
+
"step": 632
|
| 1905 |
+
},
|
| 1906 |
+
{
|
| 1907 |
+
"epoch": 1.48,
|
| 1908 |
+
"learning_rate": 1.0256677821412508e-05,
|
| 1909 |
+
"loss": 0.1949,
|
| 1910 |
+
"step": 634
|
| 1911 |
+
},
|
| 1912 |
+
{
|
| 1913 |
+
"epoch": 1.48,
|
| 1914 |
+
"learning_rate": 1.0207794674061483e-05,
|
| 1915 |
+
"loss": 0.209,
|
| 1916 |
+
"step": 636
|
| 1917 |
+
},
|
| 1918 |
+
{
|
| 1919 |
+
"epoch": 1.49,
|
| 1920 |
+
"learning_rate": 1.015890655864822e-05,
|
| 1921 |
+
"loss": 0.2652,
|
| 1922 |
+
"step": 638
|
| 1923 |
+
},
|
| 1924 |
+
{
|
| 1925 |
+
"epoch": 1.49,
|
| 1926 |
+
"learning_rate": 1.0110014644014994e-05,
|
| 1927 |
+
"loss": 0.263,
|
| 1928 |
+
"step": 640
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 1.49,
|
| 1932 |
+
"learning_rate": 1.0061120099094917e-05,
|
| 1933 |
+
"loss": 0.2231,
|
| 1934 |
+
"step": 642
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 1.5,
|
| 1938 |
+
"learning_rate": 1.0012224092883986e-05,
|
| 1939 |
+
"loss": 0.2141,
|
| 1940 |
+
"step": 644
|
| 1941 |
+
},
|
| 1942 |
+
{
|
| 1943 |
+
"epoch": 1.5,
|
| 1944 |
+
"learning_rate": 9.963327794413137e-06,
|
| 1945 |
+
"loss": 0.2057,
|
| 1946 |
+
"step": 646
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"epoch": 1.51,
|
| 1950 |
+
"learning_rate": 9.914432372720294e-06,
|
| 1951 |
+
"loss": 0.2352,
|
| 1952 |
+
"step": 648
|
| 1953 |
+
},
|
| 1954 |
+
{
|
| 1955 |
+
"epoch": 1.51,
|
| 1956 |
+
"learning_rate": 9.865538996822418e-06,
|
| 1957 |
+
"loss": 0.2138,
|
| 1958 |
+
"step": 650
|
| 1959 |
+
},
|
| 1960 |
+
{
|
| 1961 |
+
"epoch": 1.52,
|
| 1962 |
+
"learning_rate": 9.816648835687557e-06,
|
| 1963 |
+
"loss": 0.2054,
|
| 1964 |
+
"step": 652
|
| 1965 |
+
},
|
| 1966 |
+
{
|
| 1967 |
+
"epoch": 1.52,
|
| 1968 |
+
"learning_rate": 9.767763058206897e-06,
|
| 1969 |
+
"loss": 0.2073,
|
| 1970 |
+
"step": 654
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 1.53,
|
| 1974 |
+
"learning_rate": 9.718882833166823e-06,
|
| 1975 |
+
"loss": 0.2001,
|
| 1976 |
+
"step": 656
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 1.53,
|
| 1980 |
+
"learning_rate": 9.670009329220963e-06,
|
| 1981 |
+
"loss": 0.1985,
|
| 1982 |
+
"step": 658
|
| 1983 |
+
},
|
| 1984 |
+
{
|
| 1985 |
+
"epoch": 1.54,
|
| 1986 |
+
"learning_rate": 9.62114371486226e-06,
|
| 1987 |
+
"loss": 0.2006,
|
| 1988 |
+
"step": 660
|
| 1989 |
+
},
|
| 1990 |
+
{
|
| 1991 |
+
"epoch": 1.54,
|
| 1992 |
+
"learning_rate": 9.572287158395025e-06,
|
| 1993 |
+
"loss": 0.2005,
|
| 1994 |
+
"step": 662
|
| 1995 |
+
},
|
| 1996 |
+
{
|
| 1997 |
+
"epoch": 1.55,
|
| 1998 |
+
"learning_rate": 9.523440827907006e-06,
|
| 1999 |
+
"loss": 0.1974,
|
| 2000 |
+
"step": 664
|
| 2001 |
+
},
|
| 2002 |
+
{
|
| 2003 |
+
"epoch": 1.55,
|
| 2004 |
+
"learning_rate": 9.474605891241465e-06,
|
| 2005 |
+
"loss": 0.207,
|
| 2006 |
+
"step": 666
|
| 2007 |
+
},
|
| 2008 |
+
{
|
| 2009 |
+
"epoch": 1.56,
|
| 2010 |
+
"learning_rate": 9.425783515969258e-06,
|
| 2011 |
+
"loss": 0.1863,
|
| 2012 |
+
"step": 668
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 1.56,
|
| 2016 |
+
"learning_rate": 9.376974869360918e-06,
|
| 2017 |
+
"loss": 0.2004,
|
| 2018 |
+
"step": 670
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 1.56,
|
| 2022 |
+
"learning_rate": 9.328181118358734e-06,
|
| 2023 |
+
"loss": 0.1884,
|
| 2024 |
+
"step": 672
|
| 2025 |
+
},
|
| 2026 |
+
{
|
| 2027 |
+
"epoch": 1.57,
|
| 2028 |
+
"learning_rate": 9.279403429548877e-06,
|
| 2029 |
+
"loss": 0.1884,
|
| 2030 |
+
"step": 674
|
| 2031 |
+
},
|
| 2032 |
+
{
|
| 2033 |
+
"epoch": 1.57,
|
| 2034 |
+
"learning_rate": 9.230642969133483e-06,
|
| 2035 |
+
"loss": 0.1939,
|
| 2036 |
+
"step": 676
|
| 2037 |
+
},
|
| 2038 |
+
{
|
| 2039 |
+
"epoch": 1.58,
|
| 2040 |
+
"learning_rate": 9.181900902902794e-06,
|
| 2041 |
+
"loss": 0.2122,
|
| 2042 |
+
"step": 678
|
| 2043 |
+
},
|
| 2044 |
+
{
|
| 2045 |
+
"epoch": 1.58,
|
| 2046 |
+
"learning_rate": 9.13317839620727e-06,
|
| 2047 |
+
"loss": 0.197,
|
| 2048 |
+
"step": 680
|
| 2049 |
+
},
|
| 2050 |
+
{
|
| 2051 |
+
"epoch": 1.59,
|
| 2052 |
+
"learning_rate": 9.084476613929726e-06,
|
| 2053 |
+
"loss": 0.1765,
|
| 2054 |
+
"step": 682
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 1.59,
|
| 2058 |
+
"learning_rate": 9.035796720457495e-06,
|
| 2059 |
+
"loss": 0.1879,
|
| 2060 |
+
"step": 684
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 1.6,
|
| 2064 |
+
"learning_rate": 8.987139879654575e-06,
|
| 2065 |
+
"loss": 0.189,
|
| 2066 |
+
"step": 686
|
| 2067 |
+
},
|
| 2068 |
+
{
|
| 2069 |
+
"epoch": 1.6,
|
| 2070 |
+
"learning_rate": 8.938507254833811e-06,
|
| 2071 |
+
"loss": 0.1925,
|
| 2072 |
+
"step": 688
|
| 2073 |
+
},
|
| 2074 |
+
{
|
| 2075 |
+
"epoch": 1.61,
|
| 2076 |
+
"learning_rate": 8.889900008729084e-06,
|
| 2077 |
+
"loss": 0.197,
|
| 2078 |
+
"step": 690
|
| 2079 |
+
},
|
| 2080 |
+
{
|
| 2081 |
+
"epoch": 1.61,
|
| 2082 |
+
"learning_rate": 8.841319303467502e-06,
|
| 2083 |
+
"loss": 0.1954,
|
| 2084 |
+
"step": 692
|
| 2085 |
+
},
|
| 2086 |
+
{
|
| 2087 |
+
"epoch": 1.62,
|
| 2088 |
+
"learning_rate": 8.792766300541622e-06,
|
| 2089 |
+
"loss": 0.1815,
|
| 2090 |
+
"step": 694
|
| 2091 |
+
},
|
| 2092 |
+
{
|
| 2093 |
+
"epoch": 1.62,
|
| 2094 |
+
"learning_rate": 8.744242160781682e-06,
|
| 2095 |
+
"loss": 0.1914,
|
| 2096 |
+
"step": 696
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 1.63,
|
| 2100 |
+
"learning_rate": 8.69574804432784e-06,
|
| 2101 |
+
"loss": 0.186,
|
| 2102 |
+
"step": 698
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 1.63,
|
| 2106 |
+
"learning_rate": 8.647285110602443e-06,
|
| 2107 |
+
"loss": 0.1937,
|
| 2108 |
+
"step": 700
|
| 2109 |
+
},
|
| 2110 |
+
{
|
| 2111 |
+
"epoch": 1.63,
|
| 2112 |
+
"learning_rate": 8.59885451828231e-06,
|
| 2113 |
+
"loss": 0.198,
|
| 2114 |
+
"step": 702
|
| 2115 |
+
},
|
| 2116 |
+
{
|
| 2117 |
+
"epoch": 1.64,
|
| 2118 |
+
"learning_rate": 8.550457425271022e-06,
|
| 2119 |
+
"loss": 0.1819,
|
| 2120 |
+
"step": 704
|
| 2121 |
+
},
|
| 2122 |
+
{
|
| 2123 |
+
"epoch": 1.64,
|
| 2124 |
+
"learning_rate": 8.502094988671232e-06,
|
| 2125 |
+
"loss": 0.2001,
|
| 2126 |
+
"step": 706
|
| 2127 |
+
},
|
| 2128 |
+
{
|
| 2129 |
+
"epoch": 1.65,
|
| 2130 |
+
"learning_rate": 8.453768364757027e-06,
|
| 2131 |
+
"loss": 0.1704,
|
| 2132 |
+
"step": 708
|
| 2133 |
+
},
|
| 2134 |
+
{
|
| 2135 |
+
"epoch": 1.65,
|
| 2136 |
+
"learning_rate": 8.405478708946254e-06,
|
| 2137 |
+
"loss": 0.1873,
|
| 2138 |
+
"step": 710
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 1.66,
|
| 2142 |
+
"learning_rate": 8.35722717577291e-06,
|
| 2143 |
+
"loss": 0.1771,
|
| 2144 |
+
"step": 712
|
| 2145 |
+
},
|
| 2146 |
+
{
|
| 2147 |
+
"epoch": 1.66,
|
| 2148 |
+
"learning_rate": 8.309014918859538e-06,
|
| 2149 |
+
"loss": 0.1843,
|
| 2150 |
+
"step": 714
|
| 2151 |
+
},
|
| 2152 |
+
{
|
| 2153 |
+
"epoch": 1.67,
|
| 2154 |
+
"learning_rate": 8.26084309088964e-06,
|
| 2155 |
+
"loss": 0.1808,
|
| 2156 |
+
"step": 716
|
| 2157 |
+
},
|
| 2158 |
+
{
|
| 2159 |
+
"epoch": 1.67,
|
| 2160 |
+
"learning_rate": 8.212712843580124e-06,
|
| 2161 |
+
"loss": 0.2045,
|
| 2162 |
+
"step": 718
|
| 2163 |
+
},
|
| 2164 |
+
{
|
| 2165 |
+
"epoch": 1.68,
|
| 2166 |
+
"learning_rate": 8.164625327653772e-06,
|
| 2167 |
+
"loss": 0.1799,
|
| 2168 |
+
"step": 720
|
| 2169 |
+
},
|
| 2170 |
+
{
|
| 2171 |
+
"epoch": 1.68,
|
| 2172 |
+
"learning_rate": 8.116581692811711e-06,
|
| 2173 |
+
"loss": 0.1838,
|
| 2174 |
+
"step": 722
|
| 2175 |
+
},
|
| 2176 |
+
{
|
| 2177 |
+
"epoch": 1.69,
|
| 2178 |
+
"learning_rate": 8.068583087705946e-06,
|
| 2179 |
+
"loss": 0.1923,
|
| 2180 |
+
"step": 724
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 1.69,
|
| 2184 |
+
"learning_rate": 8.020630659911881e-06,
|
| 2185 |
+
"loss": 0.1827,
|
| 2186 |
+
"step": 726
|
| 2187 |
+
},
|
| 2188 |
+
{
|
| 2189 |
+
"epoch": 1.69,
|
| 2190 |
+
"learning_rate": 7.972725555900895e-06,
|
| 2191 |
+
"loss": 0.1819,
|
| 2192 |
+
"step": 728
|
| 2193 |
+
},
|
| 2194 |
+
{
|
| 2195 |
+
"epoch": 1.7,
|
| 2196 |
+
"learning_rate": 7.924868921012918e-06,
|
| 2197 |
+
"loss": 0.1824,
|
| 2198 |
+
"step": 730
|
| 2199 |
+
},
|
| 2200 |
+
{
|
| 2201 |
+
"epoch": 1.7,
|
| 2202 |
+
"learning_rate": 7.877061899429067e-06,
|
| 2203 |
+
"loss": 0.1973,
|
| 2204 |
+
"step": 732
|
| 2205 |
+
},
|
| 2206 |
+
{
|
| 2207 |
+
"epoch": 1.71,
|
| 2208 |
+
"learning_rate": 7.829305634144264e-06,
|
| 2209 |
+
"loss": 0.183,
|
| 2210 |
+
"step": 734
|
| 2211 |
+
},
|
| 2212 |
+
{
|
| 2213 |
+
"epoch": 1.71,
|
| 2214 |
+
"learning_rate": 7.781601266939936e-06,
|
| 2215 |
+
"loss": 0.1652,
|
| 2216 |
+
"step": 736
|
| 2217 |
+
},
|
| 2218 |
+
{
|
| 2219 |
+
"epoch": 1.72,
|
| 2220 |
+
"learning_rate": 7.733949938356695e-06,
|
| 2221 |
+
"loss": 0.1895,
|
| 2222 |
+
"step": 738
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 1.72,
|
| 2226 |
+
"learning_rate": 7.686352787667083e-06,
|
| 2227 |
+
"loss": 0.1845,
|
| 2228 |
+
"step": 740
|
| 2229 |
+
},
|
| 2230 |
+
{
|
| 2231 |
+
"epoch": 1.73,
|
| 2232 |
+
"learning_rate": 7.638810952848328e-06,
|
| 2233 |
+
"loss": 0.1894,
|
| 2234 |
+
"step": 742
|
| 2235 |
+
},
|
| 2236 |
+
{
|
| 2237 |
+
"epoch": 1.73,
|
| 2238 |
+
"learning_rate": 7.591325570555136e-06,
|
| 2239 |
+
"loss": 0.1707,
|
| 2240 |
+
"step": 744
|
| 2241 |
+
},
|
| 2242 |
+
{
|
| 2243 |
+
"epoch": 1.74,
|
| 2244 |
+
"learning_rate": 7.543897776092519e-06,
|
| 2245 |
+
"loss": 0.1776,
|
| 2246 |
+
"step": 746
|
| 2247 |
+
},
|
| 2248 |
+
{
|
| 2249 |
+
"epoch": 1.74,
|
| 2250 |
+
"learning_rate": 7.496528703388648e-06,
|
| 2251 |
+
"loss": 0.1788,
|
| 2252 |
+
"step": 748
|
| 2253 |
+
},
|
| 2254 |
+
{
|
| 2255 |
+
"epoch": 1.75,
|
| 2256 |
+
"learning_rate": 7.449219484967749e-06,
|
| 2257 |
+
"loss": 0.1777,
|
| 2258 |
+
"step": 750
|
| 2259 |
+
},
|
| 2260 |
+
{
|
| 2261 |
+
"epoch": 1.75,
|
| 2262 |
+
"learning_rate": 7.401971251923015e-06,
|
| 2263 |
+
"loss": 0.183,
|
| 2264 |
+
"step": 752
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 1.76,
|
| 2268 |
+
"learning_rate": 7.354785133889566e-06,
|
| 2269 |
+
"loss": 0.1857,
|
| 2270 |
+
"step": 754
|
| 2271 |
+
},
|
| 2272 |
+
{
|
| 2273 |
+
"epoch": 1.76,
|
| 2274 |
+
"learning_rate": 7.307662259017454e-06,
|
| 2275 |
+
"loss": 0.1892,
|
| 2276 |
+
"step": 756
|
| 2277 |
+
},
|
| 2278 |
+
{
|
| 2279 |
+
"epoch": 1.76,
|
| 2280 |
+
"learning_rate": 7.260603753944674e-06,
|
| 2281 |
+
"loss": 0.1785,
|
| 2282 |
+
"step": 758
|
| 2283 |
+
},
|
| 2284 |
+
{
|
| 2285 |
+
"epoch": 1.77,
|
| 2286 |
+
"learning_rate": 7.213610743770234e-06,
|
| 2287 |
+
"loss": 0.1884,
|
| 2288 |
+
"step": 760
|
| 2289 |
+
},
|
| 2290 |
+
{
|
| 2291 |
+
"epoch": 1.77,
|
| 2292 |
+
"learning_rate": 7.166684352027265e-06,
|
| 2293 |
+
"loss": 0.1773,
|
| 2294 |
+
"step": 762
|
| 2295 |
+
},
|
| 2296 |
+
{
|
| 2297 |
+
"epoch": 1.78,
|
| 2298 |
+
"learning_rate": 7.119825700656138e-06,
|
| 2299 |
+
"loss": 0.1862,
|
| 2300 |
+
"step": 764
|
| 2301 |
+
},
|
| 2302 |
+
{
|
| 2303 |
+
"epoch": 1.78,
|
| 2304 |
+
"learning_rate": 7.073035909977661e-06,
|
| 2305 |
+
"loss": 0.1872,
|
| 2306 |
+
"step": 766
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 1.79,
|
| 2310 |
+
"learning_rate": 7.026316098666282e-06,
|
| 2311 |
+
"loss": 0.1917,
|
| 2312 |
+
"step": 768
|
| 2313 |
+
},
|
| 2314 |
+
{
|
| 2315 |
+
"epoch": 1.79,
|
| 2316 |
+
"learning_rate": 6.979667383723345e-06,
|
| 2317 |
+
"loss": 0.1823,
|
| 2318 |
+
"step": 770
|
| 2319 |
+
},
|
| 2320 |
+
{
|
| 2321 |
+
"epoch": 1.8,
|
| 2322 |
+
"learning_rate": 6.9330908804503874e-06,
|
| 2323 |
+
"loss": 0.179,
|
| 2324 |
+
"step": 772
|
| 2325 |
+
},
|
| 2326 |
+
{
|
| 2327 |
+
"epoch": 1.8,
|
| 2328 |
+
"learning_rate": 6.886587702422474e-06,
|
| 2329 |
+
"loss": 0.1731,
|
| 2330 |
+
"step": 774
|
| 2331 |
+
},
|
| 2332 |
+
{
|
| 2333 |
+
"epoch": 1.81,
|
| 2334 |
+
"learning_rate": 6.840158961461567e-06,
|
| 2335 |
+
"loss": 0.1843,
|
| 2336 |
+
"step": 776
|
| 2337 |
+
},
|
| 2338 |
+
{
|
| 2339 |
+
"epoch": 1.81,
|
| 2340 |
+
"learning_rate": 6.793805767609953e-06,
|
| 2341 |
+
"loss": 0.1789,
|
| 2342 |
+
"step": 778
|
| 2343 |
+
},
|
| 2344 |
+
{
|
| 2345 |
+
"epoch": 1.82,
|
| 2346 |
+
"learning_rate": 6.7475292291037e-06,
|
| 2347 |
+
"loss": 0.1851,
|
| 2348 |
+
"step": 780
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 1.82,
|
| 2352 |
+
"learning_rate": 6.701330452346156e-06,
|
| 2353 |
+
"loss": 0.1795,
|
| 2354 |
+
"step": 782
|
| 2355 |
+
},
|
| 2356 |
+
{
|
| 2357 |
+
"epoch": 1.83,
|
| 2358 |
+
"learning_rate": 6.655210541881502e-06,
|
| 2359 |
+
"loss": 0.1907,
|
| 2360 |
+
"step": 784
|
| 2361 |
+
},
|
| 2362 |
+
{
|
| 2363 |
+
"epoch": 1.83,
|
| 2364 |
+
"learning_rate": 6.609170600368346e-06,
|
| 2365 |
+
"loss": 0.1885,
|
| 2366 |
+
"step": 786
|
| 2367 |
+
},
|
| 2368 |
+
{
|
| 2369 |
+
"epoch": 1.83,
|
| 2370 |
+
"learning_rate": 6.56321172855336e-06,
|
| 2371 |
+
"loss": 0.1804,
|
| 2372 |
+
"step": 788
|
| 2373 |
+
},
|
| 2374 |
+
{
|
| 2375 |
+
"epoch": 1.84,
|
| 2376 |
+
"learning_rate": 6.51733502524495e-06,
|
| 2377 |
+
"loss": 0.184,
|
| 2378 |
+
"step": 790
|
| 2379 |
+
},
|
| 2380 |
+
{
|
| 2381 |
+
"epoch": 1.84,
|
| 2382 |
+
"learning_rate": 6.471541587287003e-06,
|
| 2383 |
+
"loss": 0.186,
|
| 2384 |
+
"step": 792
|
| 2385 |
+
},
|
| 2386 |
+
{
|
| 2387 |
+
"epoch": 1.85,
|
| 2388 |
+
"learning_rate": 6.425832509532652e-06,
|
| 2389 |
+
"loss": 0.167,
|
| 2390 |
+
"step": 794
|
| 2391 |
+
},
|
| 2392 |
+
{
|
| 2393 |
+
"epoch": 1.85,
|
| 2394 |
+
"learning_rate": 6.380208884818104e-06,
|
| 2395 |
+
"loss": 0.1728,
|
| 2396 |
+
"step": 796
|
| 2397 |
+
},
|
| 2398 |
+
{
|
| 2399 |
+
"epoch": 1.86,
|
| 2400 |
+
"learning_rate": 6.3346718039365076e-06,
|
| 2401 |
+
"loss": 0.1765,
|
| 2402 |
+
"step": 798
|
| 2403 |
+
},
|
| 2404 |
+
{
|
| 2405 |
+
"epoch": 1.86,
|
| 2406 |
+
"learning_rate": 6.289222355611881e-06,
|
| 2407 |
+
"loss": 0.1813,
|
| 2408 |
+
"step": 800
|
| 2409 |
+
},
|
| 2410 |
+
{
|
| 2411 |
+
"epoch": 1.87,
|
| 2412 |
+
"learning_rate": 6.243861626473073e-06,
|
| 2413 |
+
"loss": 0.1875,
|
| 2414 |
+
"step": 802
|
| 2415 |
+
},
|
| 2416 |
+
{
|
| 2417 |
+
"epoch": 1.87,
|
| 2418 |
+
"learning_rate": 6.198590701027796e-06,
|
| 2419 |
+
"loss": 0.1829,
|
| 2420 |
+
"step": 804
|
| 2421 |
+
},
|
| 2422 |
+
{
|
| 2423 |
+
"epoch": 1.88,
|
| 2424 |
+
"learning_rate": 6.153410661636683e-06,
|
| 2425 |
+
"loss": 0.1803,
|
| 2426 |
+
"step": 806
|
| 2427 |
+
},
|
| 2428 |
+
{
|
| 2429 |
+
"epoch": 1.88,
|
| 2430 |
+
"learning_rate": 6.108322588487419e-06,
|
| 2431 |
+
"loss": 0.1768,
|
| 2432 |
+
"step": 808
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 1.89,
|
| 2436 |
+
"learning_rate": 6.063327559568908e-06,
|
| 2437 |
+
"loss": 0.1764,
|
| 2438 |
+
"step": 810
|
| 2439 |
+
},
|
| 2440 |
+
{
|
| 2441 |
+
"epoch": 1.89,
|
| 2442 |
+
"learning_rate": 6.0184266506455125e-06,
|
| 2443 |
+
"loss": 0.1818,
|
| 2444 |
+
"step": 812
|
| 2445 |
+
},
|
| 2446 |
+
{
|
| 2447 |
+
"epoch": 1.9,
|
| 2448 |
+
"learning_rate": 5.973620935231318e-06,
|
| 2449 |
+
"loss": 0.1834,
|
| 2450 |
+
"step": 814
|
| 2451 |
+
},
|
| 2452 |
+
{
|
| 2453 |
+
"epoch": 1.9,
|
| 2454 |
+
"learning_rate": 5.928911484564481e-06,
|
| 2455 |
+
"loss": 0.1682,
|
| 2456 |
+
"step": 816
|
| 2457 |
+
},
|
| 2458 |
+
{
|
| 2459 |
+
"epoch": 1.9,
|
| 2460 |
+
"learning_rate": 5.884299367581607e-06,
|
| 2461 |
+
"loss": 0.1828,
|
| 2462 |
+
"step": 818
|
| 2463 |
+
},
|
| 2464 |
+
{
|
| 2465 |
+
"epoch": 1.91,
|
| 2466 |
+
"learning_rate": 5.8397856508922e-06,
|
| 2467 |
+
"loss": 0.1802,
|
| 2468 |
+
"step": 820
|
| 2469 |
+
},
|
| 2470 |
+
{
|
| 2471 |
+
"epoch": 1.91,
|
| 2472 |
+
"learning_rate": 5.795371398753153e-06,
|
| 2473 |
+
"loss": 0.1949,
|
| 2474 |
+
"step": 822
|
| 2475 |
+
},
|
| 2476 |
+
{
|
| 2477 |
+
"epoch": 1.92,
|
| 2478 |
+
"learning_rate": 5.751057673043316e-06,
|
| 2479 |
+
"loss": 0.1777,
|
| 2480 |
+
"step": 824
|
| 2481 |
+
},
|
| 2482 |
+
{
|
| 2483 |
+
"epoch": 1.92,
|
| 2484 |
+
"learning_rate": 5.706845533238097e-06,
|
| 2485 |
+
"loss": 0.1728,
|
| 2486 |
+
"step": 826
|
| 2487 |
+
},
|
| 2488 |
+
{
|
| 2489 |
+
"epoch": 1.93,
|
| 2490 |
+
"learning_rate": 5.662736036384142e-06,
|
| 2491 |
+
"loss": 0.1701,
|
| 2492 |
+
"step": 828
|
| 2493 |
+
},
|
| 2494 |
+
{
|
| 2495 |
+
"epoch": 1.93,
|
| 2496 |
+
"learning_rate": 5.618730237074048e-06,
|
| 2497 |
+
"loss": 0.1667,
|
| 2498 |
+
"step": 830
|
| 2499 |
+
},
|
| 2500 |
+
{
|
| 2501 |
+
"epoch": 1.94,
|
| 2502 |
+
"learning_rate": 5.574829187421166e-06,
|
| 2503 |
+
"loss": 0.1746,
|
| 2504 |
+
"step": 832
|
| 2505 |
+
},
|
| 2506 |
+
{
|
| 2507 |
+
"epoch": 1.94,
|
| 2508 |
+
"learning_rate": 5.531033937034429e-06,
|
| 2509 |
+
"loss": 0.1827,
|
| 2510 |
+
"step": 834
|
| 2511 |
+
},
|
| 2512 |
+
{
|
| 2513 |
+
"epoch": 1.95,
|
| 2514 |
+
"learning_rate": 5.4873455329932736e-06,
|
| 2515 |
+
"loss": 0.1769,
|
| 2516 |
+
"step": 836
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 1.95,
|
| 2520 |
+
"learning_rate": 5.443765019822593e-06,
|
| 2521 |
+
"loss": 0.1854,
|
| 2522 |
+
"step": 838
|
| 2523 |
+
},
|
| 2524 |
+
{
|
| 2525 |
+
"epoch": 1.96,
|
| 2526 |
+
"learning_rate": 5.400293439467781e-06,
|
| 2527 |
+
"loss": 0.1921,
|
| 2528 |
+
"step": 840
|
| 2529 |
+
},
|
| 2530 |
+
{
|
| 2531 |
+
"epoch": 1.96,
|
| 2532 |
+
"learning_rate": 5.356931831269798e-06,
|
| 2533 |
+
"loss": 0.1815,
|
| 2534 |
+
"step": 842
|
| 2535 |
+
},
|
| 2536 |
+
{
|
| 2537 |
+
"epoch": 1.97,
|
| 2538 |
+
"learning_rate": 5.313681231940338e-06,
|
| 2539 |
+
"loss": 0.1781,
|
| 2540 |
+
"step": 844
|
| 2541 |
+
},
|
| 2542 |
+
{
|
| 2543 |
+
"epoch": 1.97,
|
| 2544 |
+
"learning_rate": 5.270542675537034e-06,
|
| 2545 |
+
"loss": 0.2022,
|
| 2546 |
+
"step": 846
|
| 2547 |
+
},
|
| 2548 |
+
{
|
| 2549 |
+
"epoch": 1.97,
|
| 2550 |
+
"learning_rate": 5.227517193438746e-06,
|
| 2551 |
+
"loss": 0.1866,
|
| 2552 |
+
"step": 848
|
| 2553 |
+
},
|
| 2554 |
+
{
|
| 2555 |
+
"epoch": 1.98,
|
| 2556 |
+
"learning_rate": 5.184605814320889e-06,
|
| 2557 |
+
"loss": 0.1754,
|
| 2558 |
+
"step": 850
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 1.98,
|
| 2562 |
+
"learning_rate": 5.141809564130847e-06,
|
| 2563 |
+
"loss": 0.1745,
|
| 2564 |
+
"step": 852
|
| 2565 |
+
},
|
| 2566 |
+
{
|
| 2567 |
+
"epoch": 1.99,
|
| 2568 |
+
"learning_rate": 5.099129466063444e-06,
|
| 2569 |
+
"loss": 0.1803,
|
| 2570 |
+
"step": 854
|
| 2571 |
+
},
|
| 2572 |
+
{
|
| 2573 |
+
"epoch": 1.99,
|
| 2574 |
+
"learning_rate": 5.056566540536476e-06,
|
| 2575 |
+
"loss": 0.1678,
|
| 2576 |
+
"step": 856
|
| 2577 |
+
},
|
| 2578 |
+
{
|
| 2579 |
+
"epoch": 2.0,
|
| 2580 |
+
"learning_rate": 5.014121805166321e-06,
|
| 2581 |
+
"loss": 0.1702,
|
| 2582 |
+
"step": 858
|
| 2583 |
+
},
|
| 2584 |
+
{
|
| 2585 |
+
"epoch": 2.0,
|
| 2586 |
+
"learning_rate": 4.971796274743601e-06,
|
| 2587 |
+
"loss": 0.1313,
|
| 2588 |
+
"step": 860
|
| 2589 |
+
},
|
| 2590 |
+
{
|
| 2591 |
+
"epoch": 2.01,
|
| 2592 |
+
"learning_rate": 4.9295909612089265e-06,
|
| 2593 |
+
"loss": 0.0643,
|
| 2594 |
+
"step": 862
|
| 2595 |
+
},
|
| 2596 |
+
{
|
| 2597 |
+
"epoch": 2.01,
|
| 2598 |
+
"learning_rate": 4.887506873628708e-06,
|
| 2599 |
+
"loss": 0.0624,
|
| 2600 |
+
"step": 864
|
| 2601 |
+
},
|
| 2602 |
+
{
|
| 2603 |
+
"epoch": 2.02,
|
| 2604 |
+
"learning_rate": 4.845545018171013e-06,
|
| 2605 |
+
"loss": 0.0604,
|
| 2606 |
+
"step": 866
|
| 2607 |
+
},
|
| 2608 |
+
{
|
| 2609 |
+
"epoch": 2.02,
|
| 2610 |
+
"learning_rate": 4.80370639808152e-06,
|
| 2611 |
+
"loss": 0.0648,
|
| 2612 |
+
"step": 868
|
| 2613 |
+
},
|
| 2614 |
+
{
|
| 2615 |
+
"epoch": 2.03,
|
| 2616 |
+
"learning_rate": 4.7619920136595465e-06,
|
| 2617 |
+
"loss": 0.0731,
|
| 2618 |
+
"step": 870
|
| 2619 |
+
},
|
| 2620 |
+
{
|
| 2621 |
+
"epoch": 2.03,
|
| 2622 |
+
"learning_rate": 4.720402862234105e-06,
|
| 2623 |
+
"loss": 0.0582,
|
| 2624 |
+
"step": 872
|
| 2625 |
+
},
|
| 2626 |
+
{
|
| 2627 |
+
"epoch": 2.03,
|
| 2628 |
+
"learning_rate": 4.678939938140079e-06,
|
| 2629 |
+
"loss": 0.0601,
|
| 2630 |
+
"step": 874
|
| 2631 |
+
},
|
| 2632 |
+
{
|
| 2633 |
+
"epoch": 2.04,
|
| 2634 |
+
"learning_rate": 4.637604232694441e-06,
|
| 2635 |
+
"loss": 0.0527,
|
| 2636 |
+
"step": 876
|
| 2637 |
+
},
|
| 2638 |
+
{
|
| 2639 |
+
"epoch": 2.04,
|
| 2640 |
+
"learning_rate": 4.596396734172559e-06,
|
| 2641 |
+
"loss": 0.0575,
|
| 2642 |
+
"step": 878
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 2.05,
|
| 2646 |
+
"learning_rate": 4.555318427784561e-06,
|
| 2647 |
+
"loss": 0.0578,
|
| 2648 |
+
"step": 880
|
| 2649 |
+
},
|
| 2650 |
+
{
|
| 2651 |
+
"epoch": 2.05,
|
| 2652 |
+
"learning_rate": 4.514370295651781e-06,
|
| 2653 |
+
"loss": 0.0543,
|
| 2654 |
+
"step": 882
|
| 2655 |
+
},
|
| 2656 |
+
{
|
| 2657 |
+
"epoch": 2.06,
|
| 2658 |
+
"learning_rate": 4.473553316783282e-06,
|
| 2659 |
+
"loss": 0.0547,
|
| 2660 |
+
"step": 884
|
| 2661 |
+
},
|
| 2662 |
+
{
|
| 2663 |
+
"epoch": 2.06,
|
| 2664 |
+
"learning_rate": 4.432868467052449e-06,
|
| 2665 |
+
"loss": 0.053,
|
| 2666 |
+
"step": 886
|
| 2667 |
+
},
|
| 2668 |
+
{
|
| 2669 |
+
"epoch": 2.07,
|
| 2670 |
+
"learning_rate": 4.392316719173651e-06,
|
| 2671 |
+
"loss": 0.0587,
|
| 2672 |
+
"step": 888
|
| 2673 |
+
},
|
| 2674 |
+
{
|
| 2675 |
+
"epoch": 2.07,
|
| 2676 |
+
"learning_rate": 4.351899042678993e-06,
|
| 2677 |
+
"loss": 0.0628,
|
| 2678 |
+
"step": 890
|
| 2679 |
+
},
|
| 2680 |
+
{
|
| 2681 |
+
"epoch": 2.08,
|
| 2682 |
+
"learning_rate": 4.311616403895126e-06,
|
| 2683 |
+
"loss": 0.0582,
|
| 2684 |
+
"step": 892
|
| 2685 |
+
},
|
| 2686 |
+
{
|
| 2687 |
+
"epoch": 2.08,
|
| 2688 |
+
"learning_rate": 4.271469765920163e-06,
|
| 2689 |
+
"loss": 0.0578,
|
| 2690 |
+
"step": 894
|
| 2691 |
+
},
|
| 2692 |
+
{
|
| 2693 |
+
"epoch": 2.09,
|
| 2694 |
+
"learning_rate": 4.231460088600626e-06,
|
| 2695 |
+
"loss": 0.064,
|
| 2696 |
+
"step": 896
|
| 2697 |
+
},
|
| 2698 |
+
{
|
| 2699 |
+
"epoch": 2.09,
|
| 2700 |
+
"learning_rate": 4.191588328508518e-06,
|
| 2701 |
+
"loss": 0.0525,
|
| 2702 |
+
"step": 898
|
| 2703 |
+
},
|
| 2704 |
+
{
|
| 2705 |
+
"epoch": 2.1,
|
| 2706 |
+
"learning_rate": 4.1518554389184416e-06,
|
| 2707 |
+
"loss": 0.0584,
|
| 2708 |
+
"step": 900
|
| 2709 |
+
},
|
| 2710 |
+
{
|
| 2711 |
+
"epoch": 2.1,
|
| 2712 |
+
"learning_rate": 4.1122623697848164e-06,
|
| 2713 |
+
"loss": 0.0621,
|
| 2714 |
+
"step": 902
|
| 2715 |
+
},
|
| 2716 |
+
{
|
| 2717 |
+
"epoch": 2.1,
|
| 2718 |
+
"learning_rate": 4.0728100677191585e-06,
|
| 2719 |
+
"loss": 0.0563,
|
| 2720 |
+
"step": 904
|
| 2721 |
+
},
|
| 2722 |
+
{
|
| 2723 |
+
"epoch": 2.11,
|
| 2724 |
+
"learning_rate": 4.033499475967451e-06,
|
| 2725 |
+
"loss": 0.0598,
|
| 2726 |
+
"step": 906
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"epoch": 2.11,
|
| 2730 |
+
"learning_rate": 3.994331534387602e-06,
|
| 2731 |
+
"loss": 0.0528,
|
| 2732 |
+
"step": 908
|
| 2733 |
+
},
|
| 2734 |
+
{
|
| 2735 |
+
"epoch": 2.12,
|
| 2736 |
+
"learning_rate": 3.95530717942696e-06,
|
| 2737 |
+
"loss": 0.0588,
|
| 2738 |
+
"step": 910
|
| 2739 |
+
},
|
| 2740 |
+
{
|
| 2741 |
+
"epoch": 2.12,
|
| 2742 |
+
"learning_rate": 3.916427344099928e-06,
|
| 2743 |
+
"loss": 0.0668,
|
| 2744 |
+
"step": 912
|
| 2745 |
+
},
|
| 2746 |
+
{
|
| 2747 |
+
"epoch": 2.13,
|
| 2748 |
+
"learning_rate": 3.877692957965663e-06,
|
| 2749 |
+
"loss": 0.0569,
|
| 2750 |
+
"step": 914
|
| 2751 |
+
},
|
| 2752 |
+
{
|
| 2753 |
+
"epoch": 2.13,
|
| 2754 |
+
"learning_rate": 3.839104947105847e-06,
|
| 2755 |
+
"loss": 0.0588,
|
| 2756 |
+
"step": 916
|
| 2757 |
+
},
|
| 2758 |
+
{
|
| 2759 |
+
"epoch": 2.14,
|
| 2760 |
+
"learning_rate": 3.8006642341025456e-06,
|
| 2761 |
+
"loss": 0.0594,
|
| 2762 |
+
"step": 918
|
| 2763 |
+
},
|
| 2764 |
+
{
|
| 2765 |
+
"epoch": 2.14,
|
| 2766 |
+
"learning_rate": 3.762371738016153e-06,
|
| 2767 |
+
"loss": 0.059,
|
| 2768 |
+
"step": 920
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 2.15,
|
| 2772 |
+
"learning_rate": 3.72422837436341e-06,
|
| 2773 |
+
"loss": 0.0523,
|
| 2774 |
+
"step": 922
|
| 2775 |
+
},
|
| 2776 |
+
{
|
| 2777 |
+
"epoch": 2.15,
|
| 2778 |
+
"learning_rate": 3.686235055095536e-06,
|
| 2779 |
+
"loss": 0.0538,
|
| 2780 |
+
"step": 924
|
| 2781 |
+
},
|
| 2782 |
+
{
|
| 2783 |
+
"epoch": 2.16,
|
| 2784 |
+
"learning_rate": 3.648392688576401e-06,
|
| 2785 |
+
"loss": 0.0586,
|
| 2786 |
+
"step": 926
|
| 2787 |
+
},
|
| 2788 |
+
{
|
| 2789 |
+
"epoch": 2.16,
|
| 2790 |
+
"learning_rate": 3.610702179560821e-06,
|
| 2791 |
+
"loss": 0.055,
|
| 2792 |
+
"step": 928
|
| 2793 |
+
},
|
| 2794 |
+
{
|
| 2795 |
+
"epoch": 2.17,
|
| 2796 |
+
"learning_rate": 3.573164429172924e-06,
|
| 2797 |
+
"loss": 0.0524,
|
| 2798 |
+
"step": 930
|
| 2799 |
+
},
|
| 2800 |
+
{
|
| 2801 |
+
"epoch": 2.17,
|
| 2802 |
+
"learning_rate": 3.5357803348846087e-06,
|
| 2803 |
+
"loss": 0.0618,
|
| 2804 |
+
"step": 932
|
| 2805 |
+
},
|
| 2806 |
+
{
|
| 2807 |
+
"epoch": 2.17,
|
| 2808 |
+
"learning_rate": 3.498550790494083e-06,
|
| 2809 |
+
"loss": 0.0527,
|
| 2810 |
+
"step": 934
|
| 2811 |
+
},
|
| 2812 |
+
{
|
| 2813 |
+
"epoch": 2.18,
|
| 2814 |
+
"learning_rate": 3.461476686104495e-06,
|
| 2815 |
+
"loss": 0.0541,
|
| 2816 |
+
"step": 936
|
| 2817 |
+
},
|
| 2818 |
+
{
|
| 2819 |
+
"epoch": 2.18,
|
| 2820 |
+
"learning_rate": 3.424558908102653e-06,
|
| 2821 |
+
"loss": 0.0579,
|
| 2822 |
+
"step": 938
|
| 2823 |
+
},
|
| 2824 |
+
{
|
| 2825 |
+
"epoch": 2.19,
|
| 2826 |
+
"learning_rate": 3.387798339137837e-06,
|
| 2827 |
+
"loss": 0.0567,
|
| 2828 |
+
"step": 940
|
| 2829 |
+
},
|
| 2830 |
+
{
|
| 2831 |
+
"epoch": 2.19,
|
| 2832 |
+
"learning_rate": 3.3511958581006874e-06,
|
| 2833 |
+
"loss": 0.0519,
|
| 2834 |
+
"step": 942
|
| 2835 |
+
},
|
| 2836 |
+
{
|
| 2837 |
+
"epoch": 2.2,
|
| 2838 |
+
"learning_rate": 3.314752340102201e-06,
|
| 2839 |
+
"loss": 0.0573,
|
| 2840 |
+
"step": 944
|
| 2841 |
+
},
|
| 2842 |
+
{
|
| 2843 |
+
"epoch": 2.2,
|
| 2844 |
+
"learning_rate": 3.278468656452798e-06,
|
| 2845 |
+
"loss": 0.061,
|
| 2846 |
+
"step": 946
|
| 2847 |
+
},
|
| 2848 |
+
{
|
| 2849 |
+
"epoch": 2.21,
|
| 2850 |
+
"learning_rate": 3.242345674641508e-06,
|
| 2851 |
+
"loss": 0.0611,
|
| 2852 |
+
"step": 948
|
| 2853 |
+
},
|
| 2854 |
+
{
|
| 2855 |
+
"epoch": 2.21,
|
| 2856 |
+
"learning_rate": 3.2063842583152095e-06,
|
| 2857 |
+
"loss": 0.0604,
|
| 2858 |
+
"step": 950
|
| 2859 |
+
},
|
| 2860 |
+
{
|
| 2861 |
+
"epoch": 2.22,
|
| 2862 |
+
"learning_rate": 3.1705852672579853e-06,
|
| 2863 |
+
"loss": 0.0556,
|
| 2864 |
+
"step": 952
|
| 2865 |
+
},
|
| 2866 |
+
{
|
| 2867 |
+
"epoch": 2.22,
|
| 2868 |
+
"learning_rate": 3.134949557370587e-06,
|
| 2869 |
+
"loss": 0.0557,
|
| 2870 |
+
"step": 954
|
| 2871 |
+
},
|
| 2872 |
+
{
|
| 2873 |
+
"epoch": 2.23,
|
| 2874 |
+
"learning_rate": 3.099477980649941e-06,
|
| 2875 |
+
"loss": 0.0539,
|
| 2876 |
+
"step": 956
|
| 2877 |
+
},
|
| 2878 |
+
{
|
| 2879 |
+
"epoch": 2.23,
|
| 2880 |
+
"learning_rate": 3.0641713851687994e-06,
|
| 2881 |
+
"loss": 0.061,
|
| 2882 |
+
"step": 958
|
| 2883 |
+
},
|
| 2884 |
+
{
|
| 2885 |
+
"epoch": 2.24,
|
| 2886 |
+
"learning_rate": 3.0290306150554573e-06,
|
| 2887 |
+
"loss": 0.0566,
|
| 2888 |
+
"step": 960
|
| 2889 |
+
},
|
| 2890 |
+
{
|
| 2891 |
+
"epoch": 2.24,
|
| 2892 |
+
"learning_rate": 2.994056510473571e-06,
|
| 2893 |
+
"loss": 0.0631,
|
| 2894 |
+
"step": 962
|
| 2895 |
+
},
|
| 2896 |
+
{
|
| 2897 |
+
"epoch": 2.24,
|
| 2898 |
+
"learning_rate": 2.959249907602071e-06,
|
| 2899 |
+
"loss": 0.052,
|
| 2900 |
+
"step": 964
|
| 2901 |
+
},
|
| 2902 |
+
{
|
| 2903 |
+
"epoch": 2.25,
|
| 2904 |
+
"learning_rate": 2.9246116386151704e-06,
|
| 2905 |
+
"loss": 0.0553,
|
| 2906 |
+
"step": 966
|
| 2907 |
+
},
|
| 2908 |
+
{
|
| 2909 |
+
"epoch": 2.25,
|
| 2910 |
+
"learning_rate": 2.890142531662471e-06,
|
| 2911 |
+
"loss": 0.0578,
|
| 2912 |
+
"step": 968
|
| 2913 |
+
},
|
| 2914 |
+
{
|
| 2915 |
+
"epoch": 2.26,
|
| 2916 |
+
"learning_rate": 2.8558434108491585e-06,
|
| 2917 |
+
"loss": 0.0522,
|
| 2918 |
+
"step": 970
|
| 2919 |
+
},
|
| 2920 |
+
{
|
| 2921 |
+
"epoch": 2.26,
|
| 2922 |
+
"learning_rate": 2.8217150962163044e-06,
|
| 2923 |
+
"loss": 0.0575,
|
| 2924 |
+
"step": 972
|
| 2925 |
+
},
|
| 2926 |
+
{
|
| 2927 |
+
"epoch": 2.27,
|
| 2928 |
+
"learning_rate": 2.7877584037212555e-06,
|
| 2929 |
+
"loss": 0.0615,
|
| 2930 |
+
"step": 974
|
| 2931 |
+
},
|
| 2932 |
+
{
|
| 2933 |
+
"epoch": 2.27,
|
| 2934 |
+
"learning_rate": 2.75397414521813e-06,
|
| 2935 |
+
"loss": 0.0512,
|
| 2936 |
+
"step": 976
|
| 2937 |
+
},
|
| 2938 |
+
{
|
| 2939 |
+
"epoch": 2.28,
|
| 2940 |
+
"learning_rate": 2.720363128438408e-06,
|
| 2941 |
+
"loss": 0.0595,
|
| 2942 |
+
"step": 978
|
| 2943 |
+
},
|
| 2944 |
+
{
|
| 2945 |
+
"epoch": 2.28,
|
| 2946 |
+
"learning_rate": 2.6869261569716134e-06,
|
| 2947 |
+
"loss": 0.0557,
|
| 2948 |
+
"step": 980
|
| 2949 |
+
},
|
| 2950 |
+
{
|
| 2951 |
+
"epoch": 2.29,
|
| 2952 |
+
"learning_rate": 2.6536640302461036e-06,
|
| 2953 |
+
"loss": 0.0605,
|
| 2954 |
+
"step": 982
|
| 2955 |
+
},
|
| 2956 |
+
{
|
| 2957 |
+
"epoch": 2.29,
|
| 2958 |
+
"learning_rate": 2.6205775435099624e-06,
|
| 2959 |
+
"loss": 0.0548,
|
| 2960 |
+
"step": 984
|
| 2961 |
+
},
|
| 2962 |
+
{
|
| 2963 |
+
"epoch": 2.3,
|
| 2964 |
+
"learning_rate": 2.5876674878119735e-06,
|
| 2965 |
+
"loss": 0.0544,
|
| 2966 |
+
"step": 986
|
| 2967 |
+
},
|
| 2968 |
+
{
|
| 2969 |
+
"epoch": 2.3,
|
| 2970 |
+
"learning_rate": 2.554934649982731e-06,
|
| 2971 |
+
"loss": 0.0566,
|
| 2972 |
+
"step": 988
|
| 2973 |
+
},
|
| 2974 |
+
{
|
| 2975 |
+
"epoch": 2.31,
|
| 2976 |
+
"learning_rate": 2.5223798126158004e-06,
|
| 2977 |
+
"loss": 0.055,
|
| 2978 |
+
"step": 990
|
| 2979 |
+
},
|
| 2980 |
+
{
|
| 2981 |
+
"epoch": 2.31,
|
| 2982 |
+
"learning_rate": 2.490003754049024e-06,
|
| 2983 |
+
"loss": 0.0545,
|
| 2984 |
+
"step": 992
|
| 2985 |
+
},
|
| 2986 |
+
{
|
| 2987 |
+
"epoch": 2.31,
|
| 2988 |
+
"learning_rate": 2.457807248345908e-06,
|
| 2989 |
+
"loss": 0.0611,
|
| 2990 |
+
"step": 994
|
| 2991 |
+
},
|
| 2992 |
+
{
|
| 2993 |
+
"epoch": 2.32,
|
| 2994 |
+
"learning_rate": 2.425791065277119e-06,
|
| 2995 |
+
"loss": 0.0558,
|
| 2996 |
+
"step": 996
|
| 2997 |
+
},
|
| 2998 |
+
{
|
| 2999 |
+
"epoch": 2.32,
|
| 3000 |
+
"learning_rate": 2.393955970302072e-06,
|
| 3001 |
+
"loss": 0.0699,
|
| 3002 |
+
"step": 998
|
| 3003 |
+
},
|
| 3004 |
+
{
|
| 3005 |
+
"epoch": 2.33,
|
| 3006 |
+
"learning_rate": 2.362302724550639e-06,
|
| 3007 |
+
"loss": 0.0589,
|
| 3008 |
+
"step": 1000
|
| 3009 |
+
},
|
| 3010 |
+
{
|
| 3011 |
+
"epoch": 2.33,
|
| 3012 |
+
"learning_rate": 2.3308320848049436e-06,
|
| 3013 |
+
"loss": 0.0584,
|
| 3014 |
+
"step": 1002
|
| 3015 |
+
},
|
| 3016 |
+
{
|
| 3017 |
+
"epoch": 2.34,
|
| 3018 |
+
"learning_rate": 2.299544803481274e-06,
|
| 3019 |
+
"loss": 0.0524,
|
| 3020 |
+
"step": 1004
|
| 3021 |
+
},
|
| 3022 |
+
{
|
| 3023 |
+
"epoch": 2.34,
|
| 3024 |
+
"learning_rate": 2.2684416286120846e-06,
|
| 3025 |
+
"loss": 0.0595,
|
| 3026 |
+
"step": 1006
|
| 3027 |
+
},
|
| 3028 |
+
{
|
| 3029 |
+
"epoch": 2.35,
|
| 3030 |
+
"learning_rate": 2.23752330382813e-06,
|
| 3031 |
+
"loss": 0.0551,
|
| 3032 |
+
"step": 1008
|
| 3033 |
+
},
|
| 3034 |
+
{
|
| 3035 |
+
"epoch": 2.35,
|
| 3036 |
+
"learning_rate": 2.20679056834066e-06,
|
| 3037 |
+
"loss": 0.0523,
|
| 3038 |
+
"step": 1010
|
| 3039 |
+
},
|
| 3040 |
+
{
|
| 3041 |
+
"epoch": 2.36,
|
| 3042 |
+
"learning_rate": 2.176244156923768e-06,
|
| 3043 |
+
"loss": 0.0913,
|
| 3044 |
+
"step": 1012
|
| 3045 |
+
},
|
| 3046 |
+
{
|
| 3047 |
+
"epoch": 2.36,
|
| 3048 |
+
"learning_rate": 2.1458847998968123e-06,
|
| 3049 |
+
"loss": 0.0561,
|
| 3050 |
+
"step": 1014
|
| 3051 |
+
},
|
| 3052 |
+
{
|
| 3053 |
+
"epoch": 2.37,
|
| 3054 |
+
"learning_rate": 2.115713223106959e-06,
|
| 3055 |
+
"loss": 0.0562,
|
| 3056 |
+
"step": 1016
|
| 3057 |
+
},
|
| 3058 |
+
{
|
| 3059 |
+
"epoch": 2.37,
|
| 3060 |
+
"learning_rate": 2.0857301479118276e-06,
|
| 3061 |
+
"loss": 0.0574,
|
| 3062 |
+
"step": 1018
|
| 3063 |
+
},
|
| 3064 |
+
{
|
| 3065 |
+
"epoch": 2.37,
|
| 3066 |
+
"learning_rate": 2.0559362911622438e-06,
|
| 3067 |
+
"loss": 0.0641,
|
| 3068 |
+
"step": 1020
|
| 3069 |
+
},
|
| 3070 |
+
{
|
| 3071 |
+
"epoch": 2.38,
|
| 3072 |
+
"learning_rate": 2.026332365185102e-06,
|
| 3073 |
+
"loss": 0.0569,
|
| 3074 |
+
"step": 1022
|
| 3075 |
+
},
|
| 3076 |
+
{
|
| 3077 |
+
"epoch": 2.38,
|
| 3078 |
+
"learning_rate": 1.996919077766334e-06,
|
| 3079 |
+
"loss": 0.0656,
|
| 3080 |
+
"step": 1024
|
| 3081 |
+
},
|
| 3082 |
+
{
|
| 3083 |
+
"epoch": 2.39,
|
| 3084 |
+
"learning_rate": 1.967697132133981e-06,
|
| 3085 |
+
"loss": 0.0508,
|
| 3086 |
+
"step": 1026
|
| 3087 |
+
},
|
| 3088 |
+
{
|
| 3089 |
+
"epoch": 2.39,
|
| 3090 |
+
"learning_rate": 1.9386672269413976e-06,
|
| 3091 |
+
"loss": 0.0533,
|
| 3092 |
+
"step": 1028
|
| 3093 |
+
},
|
| 3094 |
+
{
|
| 3095 |
+
"epoch": 2.4,
|
| 3096 |
+
"learning_rate": 1.9098300562505266e-06,
|
| 3097 |
+
"loss": 0.0555,
|
| 3098 |
+
"step": 1030
|
| 3099 |
+
},
|
| 3100 |
+
{
|
| 3101 |
+
"epoch": 2.4,
|
| 3102 |
+
"learning_rate": 1.8811863095153182e-06,
|
| 3103 |
+
"loss": 0.0522,
|
| 3104 |
+
"step": 1032
|
| 3105 |
+
},
|
| 3106 |
+
{
|
| 3107 |
+
"epoch": 2.41,
|
| 3108 |
+
"learning_rate": 1.852736671565244e-06,
|
| 3109 |
+
"loss": 0.0541,
|
| 3110 |
+
"step": 1034
|
| 3111 |
+
},
|
| 3112 |
+
{
|
| 3113 |
+
"epoch": 2.41,
|
| 3114 |
+
"learning_rate": 1.8244818225889183e-06,
|
| 3115 |
+
"loss": 0.053,
|
| 3116 |
+
"step": 1036
|
| 3117 |
+
},
|
| 3118 |
+
{
|
| 3119 |
+
"epoch": 2.42,
|
| 3120 |
+
"learning_rate": 1.7964224381178474e-06,
|
| 3121 |
+
"loss": 0.0514,
|
| 3122 |
+
"step": 1038
|
| 3123 |
+
},
|
| 3124 |
+
{
|
| 3125 |
+
"epoch": 2.42,
|
| 3126 |
+
"learning_rate": 1.768559189010267e-06,
|
| 3127 |
+
"loss": 0.0513,
|
| 3128 |
+
"step": 1040
|
| 3129 |
+
},
|
| 3130 |
+
{
|
| 3131 |
+
"epoch": 2.43,
|
| 3132 |
+
"learning_rate": 1.7408927414351051e-06,
|
| 3133 |
+
"loss": 0.0546,
|
| 3134 |
+
"step": 1042
|
| 3135 |
+
},
|
| 3136 |
+
{
|
| 3137 |
+
"epoch": 2.43,
|
| 3138 |
+
"learning_rate": 1.7134237568560619e-06,
|
| 3139 |
+
"loss": 0.0515,
|
| 3140 |
+
"step": 1044
|
| 3141 |
+
},
|
| 3142 |
+
{
|
| 3143 |
+
"epoch": 2.44,
|
| 3144 |
+
"learning_rate": 1.6861528920157877e-06,
|
| 3145 |
+
"loss": 0.0559,
|
| 3146 |
+
"step": 1046
|
| 3147 |
+
},
|
| 3148 |
+
{
|
| 3149 |
+
"epoch": 2.44,
|
| 3150 |
+
"learning_rate": 1.6590807989201841e-06,
|
| 3151 |
+
"loss": 0.0594,
|
| 3152 |
+
"step": 1048
|
| 3153 |
+
},
|
| 3154 |
+
{
|
| 3155 |
+
"epoch": 2.44,
|
| 3156 |
+
"learning_rate": 1.632208124822815e-06,
|
| 3157 |
+
"loss": 0.0527,
|
| 3158 |
+
"step": 1050
|
| 3159 |
+
},
|
| 3160 |
+
{
|
| 3161 |
+
"epoch": 2.45,
|
| 3162 |
+
"learning_rate": 1.6055355122094352e-06,
|
| 3163 |
+
"loss": 0.0503,
|
| 3164 |
+
"step": 1052
|
| 3165 |
+
},
|
| 3166 |
+
{
|
| 3167 |
+
"epoch": 2.45,
|
| 3168 |
+
"learning_rate": 1.579063598782622e-06,
|
| 3169 |
+
"loss": 0.0534,
|
| 3170 |
+
"step": 1054
|
| 3171 |
+
},
|
| 3172 |
+
{
|
| 3173 |
+
"epoch": 2.46,
|
| 3174 |
+
"learning_rate": 1.5527930174465356e-06,
|
| 3175 |
+
"loss": 0.0639,
|
| 3176 |
+
"step": 1056
|
| 3177 |
+
},
|
| 3178 |
+
{
|
| 3179 |
+
"epoch": 2.46,
|
| 3180 |
+
"learning_rate": 1.5267243962917833e-06,
|
| 3181 |
+
"loss": 0.0575,
|
| 3182 |
+
"step": 1058
|
| 3183 |
+
},
|
| 3184 |
+
{
|
| 3185 |
+
"epoch": 2.47,
|
| 3186 |
+
"learning_rate": 1.5008583585804048e-06,
|
| 3187 |
+
"loss": 0.052,
|
| 3188 |
+
"step": 1060
|
| 3189 |
+
},
|
| 3190 |
+
{
|
| 3191 |
+
"epoch": 2.47,
|
| 3192 |
+
"learning_rate": 1.4751955227309722e-06,
|
| 3193 |
+
"loss": 0.0532,
|
| 3194 |
+
"step": 1062
|
| 3195 |
+
},
|
| 3196 |
+
{
|
| 3197 |
+
"epoch": 2.48,
|
| 3198 |
+
"learning_rate": 1.4497365023038012e-06,
|
| 3199 |
+
"loss": 0.0542,
|
| 3200 |
+
"step": 1064
|
| 3201 |
+
},
|
| 3202 |
+
{
|
| 3203 |
+
"epoch": 2.48,
|
| 3204 |
+
"learning_rate": 1.4244819059862824e-06,
|
| 3205 |
+
"loss": 0.0525,
|
| 3206 |
+
"step": 1066
|
| 3207 |
+
},
|
| 3208 |
+
{
|
| 3209 |
+
"epoch": 2.49,
|
| 3210 |
+
"learning_rate": 1.399432337578327e-06,
|
| 3211 |
+
"loss": 0.0588,
|
| 3212 |
+
"step": 1068
|
| 3213 |
+
},
|
| 3214 |
+
{
|
| 3215 |
+
"epoch": 2.49,
|
| 3216 |
+
"learning_rate": 1.3745883959779415e-06,
|
| 3217 |
+
"loss": 0.0552,
|
| 3218 |
+
"step": 1070
|
| 3219 |
+
},
|
| 3220 |
+
{
|
| 3221 |
+
"epoch": 2.5,
|
| 3222 |
+
"learning_rate": 1.3499506751668933e-06,
|
| 3223 |
+
"loss": 0.0535,
|
| 3224 |
+
"step": 1072
|
| 3225 |
+
},
|
| 3226 |
+
{
|
| 3227 |
+
"epoch": 2.5,
|
| 3228 |
+
"learning_rate": 1.325519764196519e-06,
|
| 3229 |
+
"loss": 0.0496,
|
| 3230 |
+
"step": 1074
|
| 3231 |
+
},
|
| 3232 |
+
{
|
| 3233 |
+
"epoch": 2.51,
|
| 3234 |
+
"learning_rate": 1.301296247173638e-06,
|
| 3235 |
+
"loss": 0.0536,
|
| 3236 |
+
"step": 1076
|
| 3237 |
+
},
|
| 3238 |
+
{
|
| 3239 |
+
"epoch": 2.51,
|
| 3240 |
+
"learning_rate": 1.2772807032465895e-06,
|
| 3241 |
+
"loss": 0.0546,
|
| 3242 |
+
"step": 1078
|
| 3243 |
+
},
|
| 3244 |
+
{
|
| 3245 |
+
"epoch": 2.51,
|
| 3246 |
+
"learning_rate": 1.2534737065913839e-06,
|
| 3247 |
+
"loss": 0.062,
|
| 3248 |
+
"step": 1080
|
| 3249 |
+
},
|
| 3250 |
+
{
|
| 3251 |
+
"epoch": 2.52,
|
| 3252 |
+
"learning_rate": 1.229875826397976e-06,
|
| 3253 |
+
"loss": 0.0482,
|
| 3254 |
+
"step": 1082
|
| 3255 |
+
},
|
| 3256 |
+
{
|
| 3257 |
+
"epoch": 2.52,
|
| 3258 |
+
"learning_rate": 1.2064876268566572e-06,
|
| 3259 |
+
"loss": 0.0526,
|
| 3260 |
+
"step": 1084
|
| 3261 |
+
},
|
| 3262 |
+
{
|
| 3263 |
+
"epoch": 2.53,
|
| 3264 |
+
"learning_rate": 1.1833096671445644e-06,
|
| 3265 |
+
"loss": 0.0513,
|
| 3266 |
+
"step": 1086
|
| 3267 |
+
},
|
| 3268 |
+
{
|
| 3269 |
+
"epoch": 2.53,
|
| 3270 |
+
"learning_rate": 1.1603425014123126e-06,
|
| 3271 |
+
"loss": 0.06,
|
| 3272 |
+
"step": 1088
|
| 3273 |
+
},
|
| 3274 |
+
{
|
| 3275 |
+
"epoch": 2.54,
|
| 3276 |
+
"learning_rate": 1.1375866787707435e-06,
|
| 3277 |
+
"loss": 0.0553,
|
| 3278 |
+
"step": 1090
|
| 3279 |
+
},
|
| 3280 |
+
{
|
| 3281 |
+
"epoch": 2.54,
|
| 3282 |
+
"learning_rate": 1.1150427432778078e-06,
|
| 3283 |
+
"loss": 0.0504,
|
| 3284 |
+
"step": 1092
|
| 3285 |
+
},
|
| 3286 |
+
{
|
| 3287 |
+
"epoch": 2.55,
|
| 3288 |
+
"learning_rate": 1.0927112339255374e-06,
|
| 3289 |
+
"loss": 0.0512,
|
| 3290 |
+
"step": 1094
|
| 3291 |
+
},
|
| 3292 |
+
{
|
| 3293 |
+
"epoch": 2.55,
|
| 3294 |
+
"learning_rate": 1.0705926846271787e-06,
|
| 3295 |
+
"loss": 0.05,
|
| 3296 |
+
"step": 1096
|
| 3297 |
+
},
|
| 3298 |
+
{
|
| 3299 |
+
"epoch": 2.56,
|
| 3300 |
+
"learning_rate": 1.0486876242044153e-06,
|
| 3301 |
+
"loss": 0.0577,
|
| 3302 |
+
"step": 1098
|
| 3303 |
+
},
|
| 3304 |
+
{
|
| 3305 |
+
"epoch": 2.56,
|
| 3306 |
+
"learning_rate": 1.0269965763747292e-06,
|
| 3307 |
+
"loss": 0.0533,
|
| 3308 |
+
"step": 1100
|
| 3309 |
+
},
|
| 3310 |
+
{
|
| 3311 |
+
"epoch": 2.57,
|
| 3312 |
+
"learning_rate": 1.0055200597388793e-06,
|
| 3313 |
+
"loss": 0.0556,
|
| 3314 |
+
"step": 1102
|
| 3315 |
+
},
|
| 3316 |
+
{
|
| 3317 |
+
"epoch": 2.57,
|
| 3318 |
+
"learning_rate": 9.84258587768504e-07,
|
| 3319 |
+
"loss": 0.0501,
|
| 3320 |
+
"step": 1104
|
| 3321 |
+
},
|
| 3322 |
+
{
|
| 3323 |
+
"epoch": 2.58,
|
| 3324 |
+
"learning_rate": 9.632126687938392e-07,
|
| 3325 |
+
"loss": 0.0472,
|
| 3326 |
+
"step": 1106
|
| 3327 |
+
},
|
| 3328 |
+
{
|
| 3329 |
+
"epoch": 2.58,
|
| 3330 |
+
"learning_rate": 9.423828059915685e-07,
|
| 3331 |
+
"loss": 0.0637,
|
| 3332 |
+
"step": 1108
|
| 3333 |
+
},
|
| 3334 |
+
{
|
| 3335 |
+
"epoch": 2.58,
|
| 3336 |
+
"learning_rate": 9.217694973728009e-07,
|
| 3337 |
+
"loss": 0.0508,
|
| 3338 |
+
"step": 1110
|
| 3339 |
+
},
|
| 3340 |
+
{
|
| 3341 |
+
"epoch": 2.59,
|
| 3342 |
+
"learning_rate": 9.013732357711469e-07,
|
| 3343 |
+
"loss": 0.0614,
|
| 3344 |
+
"step": 1112
|
| 3345 |
+
},
|
| 3346 |
+
{
|
| 3347 |
+
"epoch": 2.59,
|
| 3348 |
+
"learning_rate": 8.811945088309493e-07,
|
| 3349 |
+
"loss": 0.0534,
|
| 3350 |
+
"step": 1114
|
| 3351 |
+
},
|
| 3352 |
+
{
|
| 3353 |
+
"epoch": 2.6,
|
| 3354 |
+
"learning_rate": 8.612337989956199e-07,
|
| 3355 |
+
"loss": 0.0569,
|
| 3356 |
+
"step": 1116
|
| 3357 |
+
},
|
| 3358 |
+
{
|
| 3359 |
+
"epoch": 2.6,
|
| 3360 |
+
"learning_rate": 8.414915834961035e-07,
|
| 3361 |
+
"loss": 0.053,
|
| 3362 |
+
"step": 1118
|
| 3363 |
+
},
|
| 3364 |
+
{
|
| 3365 |
+
"epoch": 2.61,
|
| 3366 |
+
"learning_rate": 8.219683343394691e-07,
|
| 3367 |
+
"loss": 0.0554,
|
| 3368 |
+
"step": 1120
|
| 3369 |
+
},
|
| 3370 |
+
{
|
| 3371 |
+
"epoch": 2.61,
|
| 3372 |
+
"learning_rate": 8.0266451829763e-07,
|
| 3373 |
+
"loss": 0.0538,
|
| 3374 |
+
"step": 1122
|
| 3375 |
+
},
|
| 3376 |
+
{
|
| 3377 |
+
"epoch": 2.62,
|
| 3378 |
+
"learning_rate": 7.835805968961762e-07,
|
| 3379 |
+
"loss": 0.0529,
|
| 3380 |
+
"step": 1124
|
| 3381 |
+
},
|
| 3382 |
+
{
|
| 3383 |
+
"epoch": 2.62,
|
| 3384 |
+
"learning_rate": 7.647170264033422e-07,
|
| 3385 |
+
"loss": 0.0535,
|
| 3386 |
+
"step": 1126
|
| 3387 |
+
},
|
| 3388 |
+
{
|
| 3389 |
+
"epoch": 2.63,
|
| 3390 |
+
"learning_rate": 7.460742578191016e-07,
|
| 3391 |
+
"loss": 0.0457,
|
| 3392 |
+
"step": 1128
|
| 3393 |
+
},
|
| 3394 |
+
{
|
| 3395 |
+
"epoch": 2.63,
|
| 3396 |
+
"learning_rate": 7.276527368643793e-07,
|
| 3397 |
+
"loss": 0.0531,
|
| 3398 |
+
"step": 1130
|
| 3399 |
+
},
|
| 3400 |
+
{
|
| 3401 |
+
"epoch": 2.64,
|
| 3402 |
+
"learning_rate": 7.094529039704013e-07,
|
| 3403 |
+
"loss": 0.052,
|
| 3404 |
+
"step": 1132
|
| 3405 |
+
},
|
| 3406 |
+
{
|
| 3407 |
+
"epoch": 2.64,
|
| 3408 |
+
"learning_rate": 6.914751942681585e-07,
|
| 3409 |
+
"loss": 0.0527,
|
| 3410 |
+
"step": 1134
|
| 3411 |
+
},
|
| 3412 |
+
{
|
| 3413 |
+
"epoch": 2.64,
|
| 3414 |
+
"learning_rate": 6.737200375780073e-07,
|
| 3415 |
+
"loss": 0.0555,
|
| 3416 |
+
"step": 1136
|
| 3417 |
+
},
|
| 3418 |
+
{
|
| 3419 |
+
"epoch": 2.65,
|
| 3420 |
+
"learning_rate": 6.561878583993897e-07,
|
| 3421 |
+
"loss": 0.0502,
|
| 3422 |
+
"step": 1138
|
| 3423 |
+
},
|
| 3424 |
+
{
|
| 3425 |
+
"epoch": 2.65,
|
| 3426 |
+
"learning_rate": 6.388790759006902e-07,
|
| 3427 |
+
"loss": 0.0502,
|
| 3428 |
+
"step": 1140
|
| 3429 |
+
},
|
| 3430 |
+
{
|
| 3431 |
+
"epoch": 2.66,
|
| 3432 |
+
"learning_rate": 6.217941039092068e-07,
|
| 3433 |
+
"loss": 0.0602,
|
| 3434 |
+
"step": 1142
|
| 3435 |
+
},
|
| 3436 |
+
{
|
| 3437 |
+
"epoch": 2.66,
|
| 3438 |
+
"learning_rate": 6.049333509012611e-07,
|
| 3439 |
+
"loss": 0.0564,
|
| 3440 |
+
"step": 1144
|
| 3441 |
+
},
|
| 3442 |
+
{
|
| 3443 |
+
"epoch": 2.67,
|
| 3444 |
+
"learning_rate": 5.882972199924353e-07,
|
| 3445 |
+
"loss": 0.0578,
|
| 3446 |
+
"step": 1146
|
| 3447 |
+
},
|
| 3448 |
+
{
|
| 3449 |
+
"epoch": 2.67,
|
| 3450 |
+
"learning_rate": 5.718861089279249e-07,
|
| 3451 |
+
"loss": 0.0553,
|
| 3452 |
+
"step": 1148
|
| 3453 |
+
},
|
| 3454 |
+
{
|
| 3455 |
+
"epoch": 2.68,
|
| 3456 |
+
"learning_rate": 5.557004100730357e-07,
|
| 3457 |
+
"loss": 0.0531,
|
| 3458 |
+
"step": 1150
|
| 3459 |
+
},
|
| 3460 |
+
{
|
| 3461 |
+
"epoch": 2.68,
|
| 3462 |
+
"learning_rate": 5.39740510403809e-07,
|
| 3463 |
+
"loss": 0.0499,
|
| 3464 |
+
"step": 1152
|
| 3465 |
+
},
|
| 3466 |
+
{
|
| 3467 |
+
"epoch": 2.69,
|
| 3468 |
+
"learning_rate": 5.240067914977554e-07,
|
| 3469 |
+
"loss": 0.054,
|
| 3470 |
+
"step": 1154
|
| 3471 |
+
},
|
| 3472 |
+
{
|
| 3473 |
+
"epoch": 2.69,
|
| 3474 |
+
"learning_rate": 5.084996295247402e-07,
|
| 3475 |
+
"loss": 0.0512,
|
| 3476 |
+
"step": 1156
|
| 3477 |
+
},
|
| 3478 |
+
{
|
| 3479 |
+
"epoch": 2.7,
|
| 3480 |
+
"learning_rate": 4.932193952379915e-07,
|
| 3481 |
+
"loss": 0.0537,
|
| 3482 |
+
"step": 1158
|
| 3483 |
+
},
|
| 3484 |
+
{
|
| 3485 |
+
"epoch": 2.7,
|
| 3486 |
+
"learning_rate": 4.781664539652319e-07,
|
| 3487 |
+
"loss": 0.0541,
|
| 3488 |
+
"step": 1160
|
| 3489 |
+
},
|
| 3490 |
+
{
|
| 3491 |
+
"epoch": 2.71,
|
| 3492 |
+
"learning_rate": 4.633411655999431e-07,
|
| 3493 |
+
"loss": 0.0515,
|
| 3494 |
+
"step": 1162
|
| 3495 |
+
},
|
| 3496 |
+
{
|
| 3497 |
+
"epoch": 2.71,
|
| 3498 |
+
"learning_rate": 4.487438845927683e-07,
|
| 3499 |
+
"loss": 0.054,
|
| 3500 |
+
"step": 1164
|
| 3501 |
+
},
|
| 3502 |
+
{
|
| 3503 |
+
"epoch": 2.71,
|
| 3504 |
+
"learning_rate": 4.34374959943028e-07,
|
| 3505 |
+
"loss": 0.0516,
|
| 3506 |
+
"step": 1166
|
| 3507 |
+
},
|
| 3508 |
+
{
|
| 3509 |
+
"epoch": 2.72,
|
| 3510 |
+
"learning_rate": 4.202347351903857e-07,
|
| 3511 |
+
"loss": 0.0551,
|
| 3512 |
+
"step": 1168
|
| 3513 |
+
},
|
| 3514 |
+
{
|
| 3515 |
+
"epoch": 2.72,
|
| 3516 |
+
"learning_rate": 4.063235484066275e-07,
|
| 3517 |
+
"loss": 0.0498,
|
| 3518 |
+
"step": 1170
|
| 3519 |
+
},
|
| 3520 |
+
{
|
| 3521 |
+
"epoch": 2.73,
|
| 3522 |
+
"learning_rate": 3.9264173218758083e-07,
|
| 3523 |
+
"loss": 0.0523,
|
| 3524 |
+
"step": 1172
|
| 3525 |
+
},
|
| 3526 |
+
{
|
| 3527 |
+
"epoch": 2.73,
|
| 3528 |
+
"learning_rate": 3.791896136451656e-07,
|
| 3529 |
+
"loss": 0.0535,
|
| 3530 |
+
"step": 1174
|
| 3531 |
+
},
|
| 3532 |
+
{
|
| 3533 |
+
"epoch": 2.74,
|
| 3534 |
+
"learning_rate": 3.6596751439957003e-07,
|
| 3535 |
+
"loss": 0.0515,
|
| 3536 |
+
"step": 1176
|
| 3537 |
+
},
|
| 3538 |
+
{
|
| 3539 |
+
"epoch": 2.74,
|
| 3540 |
+
"learning_rate": 3.5297575057156255e-07,
|
| 3541 |
+
"loss": 0.0642,
|
| 3542 |
+
"step": 1178
|
| 3543 |
+
},
|
| 3544 |
+
{
|
| 3545 |
+
"epoch": 2.75,
|
| 3546 |
+
"learning_rate": 3.4021463277493337e-07,
|
| 3547 |
+
"loss": 0.0576,
|
| 3548 |
+
"step": 1180
|
| 3549 |
+
},
|
| 3550 |
+
{
|
| 3551 |
+
"epoch": 2.75,
|
| 3552 |
+
"learning_rate": 3.2768446610906834e-07,
|
| 3553 |
+
"loss": 0.0512,
|
| 3554 |
+
"step": 1182
|
| 3555 |
+
},
|
| 3556 |
+
{
|
| 3557 |
+
"epoch": 2.76,
|
| 3558 |
+
"learning_rate": 3.153855501516545e-07,
|
| 3559 |
+
"loss": 0.0497,
|
| 3560 |
+
"step": 1184
|
| 3561 |
+
},
|
| 3562 |
+
{
|
| 3563 |
+
"epoch": 2.76,
|
| 3564 |
+
"learning_rate": 3.0331817895151827e-07,
|
| 3565 |
+
"loss": 0.0493,
|
| 3566 |
+
"step": 1186
|
| 3567 |
+
},
|
| 3568 |
+
{
|
| 3569 |
+
"epoch": 2.77,
|
| 3570 |
+
"learning_rate": 2.9148264102159316e-07,
|
| 3571 |
+
"loss": 0.0526,
|
| 3572 |
+
"step": 1188
|
| 3573 |
+
},
|
| 3574 |
+
{
|
| 3575 |
+
"epoch": 2.77,
|
| 3576 |
+
"learning_rate": 2.7987921933202655e-07,
|
| 3577 |
+
"loss": 0.0616,
|
| 3578 |
+
"step": 1190
|
| 3579 |
+
},
|
| 3580 |
+
{
|
| 3581 |
+
"epoch": 2.78,
|
| 3582 |
+
"learning_rate": 2.685081913034082e-07,
|
| 3583 |
+
"loss": 0.0558,
|
| 3584 |
+
"step": 1192
|
| 3585 |
+
},
|
| 3586 |
+
{
|
| 3587 |
+
"epoch": 2.78,
|
| 3588 |
+
"learning_rate": 2.573698288001403e-07,
|
| 3589 |
+
"loss": 0.0537,
|
| 3590 |
+
"step": 1194
|
| 3591 |
+
},
|
| 3592 |
+
{
|
| 3593 |
+
"epoch": 2.78,
|
| 3594 |
+
"learning_rate": 2.46464398123939e-07,
|
| 3595 |
+
"loss": 0.0549,
|
| 3596 |
+
"step": 1196
|
| 3597 |
+
},
|
| 3598 |
+
{
|
| 3599 |
+
"epoch": 2.79,
|
| 3600 |
+
"learning_rate": 2.3579216000746418e-07,
|
| 3601 |
+
"loss": 0.0523,
|
| 3602 |
+
"step": 1198
|
| 3603 |
+
},
|
| 3604 |
+
{
|
| 3605 |
+
"epoch": 2.79,
|
| 3606 |
+
"learning_rate": 2.2535336960809118e-07,
|
| 3607 |
+
"loss": 0.0558,
|
| 3608 |
+
"step": 1200
|
| 3609 |
+
},
|
| 3610 |
+
{
|
| 3611 |
+
"epoch": 2.8,
|
| 3612 |
+
"learning_rate": 2.1514827650180425e-07,
|
| 3613 |
+
"loss": 0.0488,
|
| 3614 |
+
"step": 1202
|
| 3615 |
+
},
|
| 3616 |
+
{
|
| 3617 |
+
"epoch": 2.8,
|
| 3618 |
+
"learning_rate": 2.051771246772305e-07,
|
| 3619 |
+
"loss": 0.052,
|
| 3620 |
+
"step": 1204
|
| 3621 |
+
},
|
| 3622 |
+
{
|
| 3623 |
+
"epoch": 2.81,
|
| 3624 |
+
"learning_rate": 1.954401525298144e-07,
|
| 3625 |
+
"loss": 0.0518,
|
| 3626 |
+
"step": 1206
|
| 3627 |
+
},
|
| 3628 |
+
{
|
| 3629 |
+
"epoch": 2.81,
|
| 3630 |
+
"learning_rate": 1.859375928561058e-07,
|
| 3631 |
+
"loss": 0.0477,
|
| 3632 |
+
"step": 1208
|
| 3633 |
+
},
|
| 3634 |
+
{
|
| 3635 |
+
"epoch": 2.82,
|
| 3636 |
+
"learning_rate": 1.7666967284820202e-07,
|
| 3637 |
+
"loss": 0.055,
|
| 3638 |
+
"step": 1210
|
| 3639 |
+
},
|
| 3640 |
+
{
|
| 3641 |
+
"epoch": 2.82,
|
| 3642 |
+
"learning_rate": 1.6763661408831677e-07,
|
| 3643 |
+
"loss": 0.0534,
|
| 3644 |
+
"step": 1212
|
| 3645 |
+
},
|
| 3646 |
+
{
|
| 3647 |
+
"epoch": 2.83,
|
| 3648 |
+
"learning_rate": 1.5883863254347653e-07,
|
| 3649 |
+
"loss": 0.0522,
|
| 3650 |
+
"step": 1214
|
| 3651 |
+
},
|
| 3652 |
+
{
|
| 3653 |
+
"epoch": 2.83,
|
| 3654 |
+
"learning_rate": 1.5027593856036137e-07,
|
| 3655 |
+
"loss": 0.0518,
|
| 3656 |
+
"step": 1216
|
| 3657 |
+
},
|
| 3658 |
+
{
|
| 3659 |
+
"epoch": 2.84,
|
| 3660 |
+
"learning_rate": 1.4194873686027566e-07,
|
| 3661 |
+
"loss": 0.0484,
|
| 3662 |
+
"step": 1218
|
| 3663 |
+
},
|
| 3664 |
+
{
|
| 3665 |
+
"epoch": 2.84,
|
| 3666 |
+
"learning_rate": 1.3385722653425304e-07,
|
| 3667 |
+
"loss": 0.0571,
|
| 3668 |
+
"step": 1220
|
| 3669 |
+
},
|
| 3670 |
+
{
|
| 3671 |
+
"epoch": 2.85,
|
| 3672 |
+
"learning_rate": 1.2600160103829584e-07,
|
| 3673 |
+
"loss": 0.048,
|
| 3674 |
+
"step": 1222
|
| 3675 |
+
},
|
| 3676 |
+
{
|
| 3677 |
+
"epoch": 2.85,
|
| 3678 |
+
"learning_rate": 1.1838204818874877e-07,
|
| 3679 |
+
"loss": 0.0521,
|
| 3680 |
+
"step": 1224
|
| 3681 |
+
},
|
| 3682 |
+
{
|
| 3683 |
+
"epoch": 2.85,
|
| 3684 |
+
"learning_rate": 1.1099875015781359e-07,
|
| 3685 |
+
"loss": 0.0546,
|
| 3686 |
+
"step": 1226
|
| 3687 |
+
},
|
| 3688 |
+
{
|
| 3689 |
+
"epoch": 2.86,
|
| 3690 |
+
"learning_rate": 1.0385188346918485e-07,
|
| 3691 |
+
"loss": 0.0492,
|
| 3692 |
+
"step": 1228
|
| 3693 |
+
},
|
| 3694 |
+
{
|
| 3695 |
+
"epoch": 2.86,
|
| 3696 |
+
"learning_rate": 9.694161899383992e-08,
|
| 3697 |
+
"loss": 0.0555,
|
| 3698 |
+
"step": 1230
|
| 3699 |
+
},
|
| 3700 |
+
{
|
| 3701 |
+
"epoch": 2.87,
|
| 3702 |
+
"learning_rate": 9.026812194594448e-08,
|
| 3703 |
+
"loss": 0.0494,
|
| 3704 |
+
"step": 1232
|
| 3705 |
+
},
|
| 3706 |
+
{
|
| 3707 |
+
"epoch": 2.87,
|
| 3708 |
+
"learning_rate": 8.383155187890901e-08,
|
| 3709 |
+
"loss": 0.0527,
|
| 3710 |
+
"step": 1234
|
| 3711 |
+
},
|
| 3712 |
+
{
|
| 3713 |
+
"epoch": 2.88,
|
| 3714 |
+
"learning_rate": 7.763206268156964e-08,
|
| 3715 |
+
"loss": 0.0527,
|
| 3716 |
+
"step": 1236
|
| 3717 |
+
},
|
| 3718 |
+
{
|
| 3719 |
+
"epoch": 2.88,
|
| 3720 |
+
"learning_rate": 7.166980257451106e-08,
|
| 3721 |
+
"loss": 0.0618,
|
| 3722 |
+
"step": 1238
|
| 3723 |
+
},
|
| 3724 |
+
{
|
| 3725 |
+
"epoch": 2.89,
|
| 3726 |
+
"learning_rate": 6.594491410652493e-08,
|
| 3727 |
+
"loss": 0.0506,
|
| 3728 |
+
"step": 1240
|
| 3729 |
+
},
|
| 3730 |
+
{
|
| 3731 |
+
"epoch": 2.89,
|
| 3732 |
+
"learning_rate": 6.045753415119593e-08,
|
| 3733 |
+
"loss": 0.0577,
|
| 3734 |
+
"step": 1242
|
| 3735 |
+
},
|
| 3736 |
+
{
|
| 3737 |
+
"epoch": 2.9,
|
| 3738 |
+
"learning_rate": 5.520779390363551e-08,
|
| 3739 |
+
"loss": 0.0495,
|
| 3740 |
+
"step": 1244
|
| 3741 |
+
},
|
| 3742 |
+
{
|
| 3743 |
+
"epoch": 2.9,
|
| 3744 |
+
"learning_rate": 5.019581887733993e-08,
|
| 3745 |
+
"loss": 0.0563,
|
| 3746 |
+
"step": 1246
|
| 3747 |
+
},
|
| 3748 |
+
{
|
| 3749 |
+
"epoch": 2.91,
|
| 3750 |
+
"learning_rate": 4.542172890119267e-08,
|
| 3751 |
+
"loss": 0.0556,
|
| 3752 |
+
"step": 1248
|
| 3753 |
+
},
|
| 3754 |
+
{
|
| 3755 |
+
"epoch": 2.91,
|
| 3756 |
+
"learning_rate": 4.0885638116601176e-08,
|
| 3757 |
+
"loss": 0.0518,
|
| 3758 |
+
"step": 1250
|
| 3759 |
+
},
|
| 3760 |
+
{
|
| 3761 |
+
"epoch": 2.92,
|
| 3762 |
+
"learning_rate": 3.6587654974761246e-08,
|
| 3763 |
+
"loss": 0.0517,
|
| 3764 |
+
"step": 1252
|
| 3765 |
+
},
|
| 3766 |
+
{
|
| 3767 |
+
"epoch": 2.92,
|
| 3768 |
+
"learning_rate": 3.252788223407244e-08,
|
| 3769 |
+
"loss": 0.0531,
|
| 3770 |
+
"step": 1254
|
| 3771 |
+
},
|
| 3772 |
+
{
|
| 3773 |
+
"epoch": 2.92,
|
| 3774 |
+
"learning_rate": 2.870641695767451e-08,
|
| 3775 |
+
"loss": 0.0525,
|
| 3776 |
+
"step": 1256
|
| 3777 |
+
},
|
| 3778 |
+
{
|
| 3779 |
+
"epoch": 2.93,
|
| 3780 |
+
"learning_rate": 2.5123350511129242e-08,
|
| 3781 |
+
"loss": 0.0609,
|
| 3782 |
+
"step": 1258
|
| 3783 |
+
},
|
| 3784 |
+
{
|
| 3785 |
+
"epoch": 2.93,
|
| 3786 |
+
"learning_rate": 2.177876856023997e-08,
|
| 3787 |
+
"loss": 0.0578,
|
| 3788 |
+
"step": 1260
|
| 3789 |
+
},
|
| 3790 |
+
{
|
| 3791 |
+
"epoch": 2.94,
|
| 3792 |
+
"learning_rate": 1.8672751068995464e-08,
|
| 3793 |
+
"loss": 0.0544,
|
| 3794 |
+
"step": 1262
|
| 3795 |
+
},
|
| 3796 |
+
{
|
| 3797 |
+
"epoch": 2.94,
|
| 3798 |
+
"learning_rate": 1.5805372297662546e-08,
|
| 3799 |
+
"loss": 0.0557,
|
| 3800 |
+
"step": 1264
|
| 3801 |
+
},
|
| 3802 |
+
{
|
| 3803 |
+
"epoch": 2.95,
|
| 3804 |
+
"learning_rate": 1.3176700801014186e-08,
|
| 3805 |
+
"loss": 0.0509,
|
| 3806 |
+
"step": 1266
|
| 3807 |
+
},
|
| 3808 |
+
{
|
| 3809 |
+
"epoch": 2.95,
|
| 3810 |
+
"learning_rate": 1.0786799426683037e-08,
|
| 3811 |
+
"loss": 0.0564,
|
| 3812 |
+
"step": 1268
|
| 3813 |
+
},
|
| 3814 |
+
{
|
| 3815 |
+
"epoch": 2.96,
|
| 3816 |
+
"learning_rate": 8.635725313663745e-09,
|
| 3817 |
+
"loss": 0.055,
|
| 3818 |
+
"step": 1270
|
| 3819 |
+
},
|
| 3820 |
+
{
|
| 3821 |
+
"epoch": 2.96,
|
| 3822 |
+
"learning_rate": 6.723529890946268e-09,
|
| 3823 |
+
"loss": 0.0494,
|
| 3824 |
+
"step": 1272
|
| 3825 |
+
},
|
| 3826 |
+
{
|
| 3827 |
+
"epoch": 2.97,
|
| 3828 |
+
"learning_rate": 5.05025887628352e-09,
|
| 3829 |
+
"loss": 0.0501,
|
| 3830 |
+
"step": 1274
|
| 3831 |
+
},
|
| 3832 |
+
{
|
| 3833 |
+
"epoch": 2.97,
|
| 3834 |
+
"learning_rate": 3.615952275104473e-09,
|
| 3835 |
+
"loss": 0.0505,
|
| 3836 |
+
"step": 1276
|
| 3837 |
+
},
|
| 3838 |
+
{
|
| 3839 |
+
"epoch": 2.98,
|
| 3840 |
+
"learning_rate": 2.420644379549364e-09,
|
| 3841 |
+
"loss": 0.0515,
|
| 3842 |
+
"step": 1278
|
| 3843 |
+
},
|
| 3844 |
+
{
|
| 3845 |
+
"epoch": 2.98,
|
| 3846 |
+
"learning_rate": 1.4643637676559074e-09,
|
| 3847 |
+
"loss": 0.2096,
|
| 3848 |
+
"step": 1280
|
| 3849 |
+
},
|
| 3850 |
+
{
|
| 3851 |
+
"epoch": 2.98,
|
| 3852 |
+
"learning_rate": 7.471333026742856e-10,
|
| 3853 |
+
"loss": 0.0539,
|
| 3854 |
+
"step": 1282
|
| 3855 |
+
},
|
| 3856 |
+
{
|
| 3857 |
+
"epoch": 2.99,
|
| 3858 |
+
"learning_rate": 2.689701325209182e-10,
|
| 3859 |
+
"loss": 0.0536,
|
| 3860 |
+
"step": 1284
|
| 3861 |
+
},
|
| 3862 |
+
{
|
| 3863 |
+
"epoch": 2.99,
|
| 3864 |
+
"learning_rate": 2.988568936768132e-11,
|
| 3865 |
+
"loss": 0.0512,
|
| 3866 |
+
"step": 1286
|
| 3867 |
+
}
|
| 3868 |
+
],
|
| 3869 |
+
"max_steps": 1287,
|
| 3870 |
+
"num_train_epochs": 3,
|
| 3871 |
+
"total_flos": 999035450556416.0,
|
| 3872 |
+
"trial_name": null,
|
| 3873 |
+
"trial_params": null
|
| 3874 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1aa0c429a2a24dffa8e1b675d54e650f542f904e47dfea597b9ba0b965212f79
|
| 3 |
+
size 5115
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage == 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# record shared parameters so that they can be recovered based on partners
|
| 124 |
+
# this is because such parameters holding reference only are not saved by optimizer
|
| 125 |
+
shared_params = []
|
| 126 |
+
for param in state_dict["module"]:
|
| 127 |
+
if param not in [*param_names, *buffer_names]:
|
| 128 |
+
for share_param in state_dict["module"]:
|
| 129 |
+
if (state_dict["module"][share_param].data_ptr() == state_dict["module"][param].data_ptr()
|
| 130 |
+
and share_param != param):
|
| 131 |
+
shared_params.append([param, share_param])
|
| 132 |
+
break
|
| 133 |
+
|
| 134 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 135 |
+
|
| 136 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 137 |
+
|
| 138 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 139 |
+
param_shapes=param_shapes,
|
| 140 |
+
shared_params=shared_params,
|
| 141 |
+
ds_version=ds_version,
|
| 142 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 143 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 144 |
+
zero_model_states.append(z_model_state)
|
| 145 |
+
|
| 146 |
+
return zero_model_states
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 150 |
+
|
| 151 |
+
total_files = len(files)
|
| 152 |
+
state_dicts = []
|
| 153 |
+
for f in files:
|
| 154 |
+
state_dicts.append(torch.load(f, map_location=device))
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage == 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage == 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage == 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 219 |
+
elif zero_stage == 3:
|
| 220 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 224 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 225 |
+
return
|
| 226 |
+
|
| 227 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 228 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 229 |
+
|
| 230 |
+
if debug:
|
| 231 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 233 |
+
|
| 234 |
+
wanted_params = len(frozen_param_shapes)
|
| 235 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 236 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 237 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 238 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 239 |
+
|
| 240 |
+
total_params = 0
|
| 241 |
+
total_numel = 0
|
| 242 |
+
for name, shape in frozen_param_shapes.items():
|
| 243 |
+
total_params += 1
|
| 244 |
+
unpartitioned_numel = shape.numel()
|
| 245 |
+
total_numel += unpartitioned_numel
|
| 246 |
+
|
| 247 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 248 |
+
|
| 249 |
+
if debug:
|
| 250 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 251 |
+
|
| 252 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 256 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 257 |
+
|
| 258 |
+
# Reconstruction protocol:
|
| 259 |
+
#
|
| 260 |
+
# XXX: document this
|
| 261 |
+
|
| 262 |
+
if debug:
|
| 263 |
+
for i in range(world_size):
|
| 264 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 265 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 266 |
+
|
| 267 |
+
# XXX: memory usage doubles here (zero2)
|
| 268 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 269 |
+
merged_single_partition_of_fp32_groups = []
|
| 270 |
+
for i in range(num_param_groups):
|
| 271 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 272 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 273 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 274 |
+
avail_numel = sum(
|
| 275 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 276 |
+
|
| 277 |
+
if debug:
|
| 278 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 279 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 280 |
+
# not asserting if there is a mismatch due to possible padding
|
| 281 |
+
print(f"Have {avail_numel} numels to process.")
|
| 282 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 283 |
+
|
| 284 |
+
# params
|
| 285 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 286 |
+
# out-of-core computing solution
|
| 287 |
+
total_numel = 0
|
| 288 |
+
total_params = 0
|
| 289 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 290 |
+
offset = 0
|
| 291 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 292 |
+
for name, shape in shapes.items():
|
| 293 |
+
|
| 294 |
+
unpartitioned_numel = shape.numel()
|
| 295 |
+
total_numel += unpartitioned_numel
|
| 296 |
+
total_params += 1
|
| 297 |
+
|
| 298 |
+
if debug:
|
| 299 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 300 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 301 |
+
offset += unpartitioned_numel
|
| 302 |
+
|
| 303 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 304 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 305 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 306 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 307 |
+
align_to = 2 * world_size
|
| 308 |
+
|
| 309 |
+
def zero2_align(x):
|
| 310 |
+
return align_to * math.ceil(x / align_to)
|
| 311 |
+
|
| 312 |
+
if debug:
|
| 313 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 314 |
+
|
| 315 |
+
offset = zero2_align(offset)
|
| 316 |
+
avail_numel = zero2_align(avail_numel)
|
| 317 |
+
|
| 318 |
+
if debug:
|
| 319 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 320 |
+
|
| 321 |
+
# Sanity check
|
| 322 |
+
if offset != avail_numel:
|
| 323 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 324 |
+
|
| 325 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 329 |
+
state_dict = OrderedDict()
|
| 330 |
+
|
| 331 |
+
# buffers
|
| 332 |
+
buffers = zero_model_states[0].buffers
|
| 333 |
+
state_dict.update(buffers)
|
| 334 |
+
if debug:
|
| 335 |
+
print(f"added {len(buffers)} buffers")
|
| 336 |
+
|
| 337 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 338 |
+
|
| 339 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 340 |
+
|
| 341 |
+
# recover shared parameters
|
| 342 |
+
for pair in zero_model_states[0].shared_params:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 392 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 393 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 394 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 395 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 396 |
+
|
| 397 |
+
# merge list of dicts, preserving order
|
| 398 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 399 |
+
|
| 400 |
+
if debug:
|
| 401 |
+
for i in range(world_size):
|
| 402 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 403 |
+
|
| 404 |
+
wanted_params = len(param_shapes)
|
| 405 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 406 |
+
# not asserting if there is a mismatch due to possible padding
|
| 407 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 408 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 409 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 410 |
+
|
| 411 |
+
# params
|
| 412 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 413 |
+
# out-of-core computing solution
|
| 414 |
+
offset = 0
|
| 415 |
+
total_numel = 0
|
| 416 |
+
total_params = 0
|
| 417 |
+
for name, shape in param_shapes.items():
|
| 418 |
+
|
| 419 |
+
unpartitioned_numel = shape.numel()
|
| 420 |
+
total_numel += unpartitioned_numel
|
| 421 |
+
total_params += 1
|
| 422 |
+
|
| 423 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 424 |
+
|
| 425 |
+
if debug:
|
| 426 |
+
print(
|
| 427 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
# XXX: memory usage doubles here
|
| 431 |
+
state_dict[name] = torch.cat(
|
| 432 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 433 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 434 |
+
offset += partitioned_numel
|
| 435 |
+
|
| 436 |
+
offset *= world_size
|
| 437 |
+
|
| 438 |
+
# Sanity check
|
| 439 |
+
if offset != avail_numel:
|
| 440 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 441 |
+
|
| 442 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 446 |
+
state_dict = OrderedDict()
|
| 447 |
+
|
| 448 |
+
# buffers
|
| 449 |
+
buffers = zero_model_states[0].buffers
|
| 450 |
+
state_dict.update(buffers)
|
| 451 |
+
if debug:
|
| 452 |
+
print(f"added {len(buffers)} buffers")
|
| 453 |
+
|
| 454 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 455 |
+
|
| 456 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 457 |
+
|
| 458 |
+
# recover shared parameters
|
| 459 |
+
for pair in zero_model_states[0].shared_params:
|
| 460 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 461 |
+
|
| 462 |
+
return state_dict
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 466 |
+
"""
|
| 467 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 468 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 469 |
+
via a model hub.
|
| 470 |
+
|
| 471 |
+
Args:
|
| 472 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 473 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 474 |
+
|
| 475 |
+
Returns:
|
| 476 |
+
- pytorch ``state_dict``
|
| 477 |
+
|
| 478 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 479 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 480 |
+
the checkpoint.
|
| 481 |
+
|
| 482 |
+
A typical usage might be ::
|
| 483 |
+
|
| 484 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 485 |
+
# do the training and checkpoint saving
|
| 486 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 487 |
+
model = model.cpu() # move to cpu
|
| 488 |
+
model.load_state_dict(state_dict)
|
| 489 |
+
# submit to model hub or save the model to share with others
|
| 490 |
+
|
| 491 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 492 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 493 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 494 |
+
|
| 495 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 496 |
+
|
| 497 |
+
"""
|
| 498 |
+
if tag is None:
|
| 499 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 500 |
+
if os.path.isfile(latest_path):
|
| 501 |
+
with open(latest_path, 'r') as fd:
|
| 502 |
+
tag = fd.read().strip()
|
| 503 |
+
else:
|
| 504 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 505 |
+
|
| 506 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 507 |
+
|
| 508 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 509 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 510 |
+
|
| 511 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 515 |
+
"""
|
| 516 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 517 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 518 |
+
|
| 519 |
+
Args:
|
| 520 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 521 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 522 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 523 |
+
"""
|
| 524 |
+
|
| 525 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 526 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 527 |
+
torch.save(state_dict, output_file)
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 531 |
+
"""
|
| 532 |
+
1. Put the provided model to cpu
|
| 533 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 534 |
+
3. Load it into the provided model
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``model``: the model object to update
|
| 538 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 539 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 540 |
+
|
| 541 |
+
Returns:
|
| 542 |
+
- ``model`: modified model
|
| 543 |
+
|
| 544 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 545 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 546 |
+
conveniently placed for you in the checkpoint folder.
|
| 547 |
+
|
| 548 |
+
A typical usage might be ::
|
| 549 |
+
|
| 550 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 551 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 552 |
+
# submit to model hub or save the model to share with others
|
| 553 |
+
|
| 554 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 555 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 556 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 557 |
+
|
| 558 |
+
"""
|
| 559 |
+
logger.info(f"Extracting fp32 weights")
|
| 560 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 561 |
+
|
| 562 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 563 |
+
model = model.cpu()
|
| 564 |
+
model.load_state_dict(state_dict, strict=False)
|
| 565 |
+
|
| 566 |
+
return model
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
if __name__ == "__main__":
|
| 570 |
+
|
| 571 |
+
parser = argparse.ArgumentParser()
|
| 572 |
+
parser.add_argument("checkpoint_dir",
|
| 573 |
+
type=str,
|
| 574 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 575 |
+
parser.add_argument(
|
| 576 |
+
"output_file",
|
| 577 |
+
type=str,
|
| 578 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 579 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 580 |
+
args = parser.parse_args()
|
| 581 |
+
|
| 582 |
+
debug = args.debug
|
| 583 |
+
|
| 584 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|