import torch from transformers import AutoModelForCausalLM, AutoTokenizer def test_model(): print("Loading Lbai-1-preview model...") model_path = "." model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(model_path) print("Model loaded successfully!\n") # Test prompts - you can add more test_prompts = [ "Diagnosis MRI Image-processing model result: Mild demented, confidence (%76.5), risk (%9.4) - interpret this output." ] for i, prompt in enumerate(test_prompts, 1): print(f"\n{'='*60}") print(f"TEST {i}/{len(test_prompts)}") print('='*60) print(f"INPUT PROMPT:\n{prompt}\n") print("Generating response...\n") inputs = tokenizer(prompt, return_tensors="pt").to(model.device) input_length = inputs['input_ids'].shape[1] with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=150, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id ) full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) generated_text = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) print("-"*60) print("FULL OUTPUT (Input + Generated):") print("-"*60) print(full_response) print("\n" + "-"*60) print("GENERATED TEXT ONLY (Model's response):") print("-"*60) print(generated_text) print("="*60) print("\n\nAll tests completed successfully!") if __name__ == "__main__": test_model()