|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.masking_utils import create_causal_mask |
|
|
from dataclasses import dataclass |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
) |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.generation.utils import GenerateDecoderOnlyOutput |
|
|
from transformers.utils import logging, TransformersKwargs |
|
|
from .configuration_moondream3 import ( |
|
|
Moondream3Config, |
|
|
Moondream3TextConfig, |
|
|
Moondream3VisionConfig, |
|
|
Moondream3RegionConfig, |
|
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
_CONFIG_FOR_DOC = "Moondream3Config" |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb( |
|
|
q: torch.Tensor, |
|
|
k: torch.Tensor, |
|
|
cos: torch.Tensor, |
|
|
sin: torch.Tensor, |
|
|
rot_dim: int = 32, |
|
|
): |
|
|
""" |
|
|
Apply rotary position embeddings to query and key tensors. |
|
|
|
|
|
Args: |
|
|
q: Query tensor [batch, num_heads, seq_len, head_dim] |
|
|
k: Key tensor [batch, num_heads, seq_len, head_dim] |
|
|
cos: Cosine frequencies [batch, seq_len, rot_dim] |
|
|
sin: Sine frequencies [batch, seq_len, rot_dim] |
|
|
rot_dim: Number of dimensions to apply rotation to (default: 32) |
|
|
|
|
|
Returns: |
|
|
Tuple of (rotated_q, rotated_k) |
|
|
""" |
|
|
|
|
|
def apply_rope(x): |
|
|
dtype = x.dtype |
|
|
x = x.to(torch.float64) |
|
|
x_rot, x_pass = x[..., :rot_dim], x[..., rot_dim:] |
|
|
|
|
|
d_q = x_rot.shape[-1] // 2 |
|
|
xq_r, xq_i = x_rot[..., :d_q], x_rot[..., d_q:] |
|
|
|
|
|
xq_out_r = xq_r * cos - xq_i * sin |
|
|
xq_out_i = xq_r * sin + xq_i * cos |
|
|
|
|
|
xq_out = torch.stack((xq_out_r, xq_out_i), dim=-1).flatten(-2) |
|
|
|
|
|
return torch.cat([xq_out, x_pass], dim=-1) |
|
|
|
|
|
return apply_rope(q), apply_rope(k) |
|
|
|
|
|
|
|
|
class Moondream3RotaryEmbedding(nn.Module): |
|
|
inv_freq: torch.Tensor |
|
|
|
|
|
def __init__(self, config: Moondream3Config, device=None): |
|
|
super().__init__() |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
|
|
|
self.rope_type = self.config.rope_parameters["rope_type"] |
|
|
rope_init_fn: Callable = self.compute_default_rope_parameters |
|
|
if self.rope_type != "default": |
|
|
rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
inv_freq, self.attention_scaling = rope_init_fn(self.config, device) |
|
|
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = inv_freq |
|
|
|
|
|
@staticmethod |
|
|
def compute_default_rope_parameters( |
|
|
config: Optional[Moondream3Config] = None, |
|
|
device: Optional["torch.device"] = None, |
|
|
seq_len: Optional[int] = None, |
|
|
) -> tuple["torch.Tensor", float]: |
|
|
""" |
|
|
Computes the inverse frequencies according to the original RoPE implementation |
|
|
""" |
|
|
base = config.rope_parameters["rope_theta"] |
|
|
dim = ( |
|
|
getattr(config, "head_dim", None) |
|
|
or config.hidden_size // config.num_attention_heads |
|
|
) |
|
|
dim //= 2 |
|
|
|
|
|
attention_factor = 1.0 |
|
|
|
|
|
inv_freq = 1.0 / ( |
|
|
base ** (torch.arange(0, dim, 2, dtype=torch.float32)[: (dim // 2)] / dim) |
|
|
) |
|
|
if device is not None: |
|
|
inv_freq = inv_freq.to(device=device) |
|
|
return inv_freq, attention_factor |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = ( |
|
|
self.inv_freq[None, :, None] |
|
|
.to(torch.float32) |
|
|
.expand(position_ids.shape[0], -1, 1) |
|
|
.to(x.device) |
|
|
) |
|
|
position_ids_expanded = position_ids[:, None, :].to(torch.float32) |
|
|
|
|
|
freqs = ( |
|
|
inv_freq_expanded.to(torch.float32) |
|
|
@ position_ids_expanded.to(torch.float32) |
|
|
).transpose(1, 2) |
|
|
cfreqs = ( |
|
|
torch.exp(1j * freqs) |
|
|
.unsqueeze(1) |
|
|
.expand(-1, self.config.num_attention_heads, -1, -1) |
|
|
) |
|
|
|
|
|
return cfreqs.real, cfreqs.imag |
|
|
|
|
|
|
|
|
class Moondream3Attention(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
config: Moondream3TextConfig | Moondream3VisionConfig, |
|
|
layer_idx: Optional[int] = None, |
|
|
use_tau: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads) |
|
|
self.num_key_value_heads = getattr( |
|
|
config, "num_key_value_heads", self.num_heads |
|
|
) |
|
|
attention_bias = config.attention_bias |
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
if isinstance(config, Moondream3TextConfig): |
|
|
self.is_causal = True |
|
|
elif isinstance(config, Moondream3VisionConfig): |
|
|
self.is_causal = False |
|
|
else: |
|
|
raise TypeError(f"Unsupported config type: {type(config)}") |
|
|
|
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
|
self.use_tau = use_tau |
|
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
|
raise ValueError( |
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
|
f" and `num_heads`: {self.num_heads})." |
|
|
) |
|
|
|
|
|
self.q_proj = nn.Linear( |
|
|
self.hidden_size, self.num_heads * self.head_dim, bias=attention_bias |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
self.hidden_size, |
|
|
self.num_key_value_heads * self.head_dim, |
|
|
bias=attention_bias, |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
self.hidden_size, |
|
|
self.num_key_value_heads * self.head_dim, |
|
|
bias=attention_bias, |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
self.num_heads * self.head_dim, self.hidden_size, bias=attention_bias |
|
|
) |
|
|
|
|
|
if self.use_tau: |
|
|
|
|
|
qkv_dim = ( |
|
|
self.num_heads * self.head_dim |
|
|
+ 2 * self.num_key_value_heads * self.head_dim |
|
|
) |
|
|
self.tau_wq = nn.Linear(qkv_dim, self.num_heads, bias=False) |
|
|
self.tau_wv = nn.Linear(qkv_dim, self.num_heads, bias=False) |
|
|
self.tau_alpha = nn.Parameter(torch.empty(self.num_heads)) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
if self.use_tau: |
|
|
qkv_out = torch.cat([query_states, key_states, value_states], dim=-1) |
|
|
tok_feat = F.gelu(qkv_out) |
|
|
tok_q = torch.tanh(self.tau_wq(tok_feat)).permute(0, 2, 1) |
|
|
tok_v = torch.tanh(self.tau_wv(tok_feat)).permute(0, 2, 1) |
|
|
|
|
|
pos = position_ids.to(tok_q.dtype) + 1 |
|
|
alpha = self.tau_alpha.to(tok_q.dtype) |
|
|
tau_pos = 1 + ( |
|
|
torch.sigmoid(alpha[None, :, None] * pos[:, None, :].log()) - 0.5 |
|
|
) |
|
|
tau_q = (tok_q + tau_pos).unsqueeze(-1) |
|
|
tau_v = (tok_v + tau_pos).unsqueeze(-1) |
|
|
|
|
|
query_states = query_states.view( |
|
|
bsz, q_len, self.num_heads, self.head_dim |
|
|
).transpose(1, 2) |
|
|
key_states = key_states.view( |
|
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
|
).transpose(1, 2) |
|
|
value_states = value_states.view( |
|
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
|
).transpose(1, 2) |
|
|
|
|
|
if self.use_tau: |
|
|
query_states = query_states * tau_q |
|
|
|
|
|
if self.num_key_value_groups > 1: |
|
|
tau_v_repeated = tau_v.repeat(1, self.num_key_value_groups, 1, 1)[ |
|
|
:, : self.num_key_value_heads, :, : |
|
|
] |
|
|
else: |
|
|
tau_v_repeated = tau_v |
|
|
value_states = value_states * tau_v_repeated |
|
|
|
|
|
cos, sin = None, None |
|
|
if position_embeddings is not None: |
|
|
cos, sin = position_embeddings |
|
|
|
|
|
query_states, key_states = apply_rotary_pos_emb( |
|
|
query_states, key_states, cos, sin |
|
|
) |
|
|
|
|
|
query_states, key_states = ( |
|
|
query_states.to(value_states.dtype), |
|
|
key_states.to(value_states.dtype), |
|
|
) |
|
|
|
|
|
if past_key_values is not None: |
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update( |
|
|
key_states, value_states, self.layer_idx, cache_kwargs |
|
|
) |
|
|
|
|
|
query_states = query_states.contiguous() |
|
|
key_states = key_states.contiguous() |
|
|
value_states = value_states.contiguous() |
|
|
|
|
|
attn_output, attn_weights = ALL_ATTENTION_FUNCTIONS["sdpa"]( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class Moondream3MLP(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
hidden_size: int, |
|
|
intermediate_size: int, |
|
|
hidden_act: str = "gelu_pytorch_tanh", |
|
|
out_size: int | None = None, |
|
|
gated: bool = False, |
|
|
bias: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.out_size = self.hidden_size if out_size is None else out_size |
|
|
self.hidden_act = hidden_act |
|
|
self.gated = gated |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.out_size, bias=bias) |
|
|
self.gate_proj = None |
|
|
if self.gated: |
|
|
self.gate_proj = nn.Linear( |
|
|
self.hidden_size, self.intermediate_size, bias=bias |
|
|
) |
|
|
self.act_fn = ACT2FN[self.hidden_act] |
|
|
|
|
|
def forward(self, x) -> torch.Tensor: |
|
|
if self.gated: |
|
|
h = self.up_proj(x) |
|
|
g = self.gate_proj(x) |
|
|
x = self.act_fn(h) * (g + 1) |
|
|
else: |
|
|
x = self.act_fn(self.up_proj(x)) |
|
|
return self.down_proj(x) |
|
|
|
|
|
|
|
|
class Moondream3SparseMoeBlock(nn.Module): |
|
|
def __init__(self, config: Moondream3TextConfig, layer_idx=None): |
|
|
super().__init__() |
|
|
self.layer_idx = layer_idx |
|
|
self.hidden_size = config.hidden_size |
|
|
self.moe_intermediate_size = config.moe_intermediate_size |
|
|
self.num_experts = config.num_experts |
|
|
self.top_k = config.num_experts_per_tok |
|
|
|
|
|
self.gate = nn.Linear(self.hidden_size, self.num_experts, bias=True) |
|
|
self.experts = nn.ModuleList( |
|
|
[ |
|
|
Moondream3MLP( |
|
|
hidden_size=self.hidden_size, |
|
|
intermediate_size=self.moe_intermediate_size, |
|
|
gated=True, |
|
|
bias=False, |
|
|
hidden_act="gelu" |
|
|
) |
|
|
for _ in range(self.num_experts) |
|
|
] |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, hidden_states: torch.Tensor, cache_position=None |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
router_logits: torch.Tensor = self.gate(hidden_states) |
|
|
routing_weights, selected_experts = torch.topk( |
|
|
router_logits, self.top_k, dim=-1 |
|
|
) |
|
|
routing_weights = F.softmax(routing_weights, dim=-1, dtype=torch.float32) |
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
|
|
final_hidden_states = torch.zeros( |
|
|
(batch_size * sequence_length, hidden_dim), |
|
|
dtype=hidden_states.dtype, |
|
|
device=hidden_states.device, |
|
|
) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
|
expert_layer = self.experts[expert_idx] |
|
|
top_x, idx = (selected_experts == expert_idx).nonzero(as_tuple=True) |
|
|
|
|
|
if top_x.shape[0] == 0: |
|
|
continue |
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) |
|
|
current_hidden_states = ( |
|
|
expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
|
) |
|
|
final_hidden_states.index_add_( |
|
|
0, top_x, current_hidden_states.to(hidden_states.dtype) |
|
|
) |
|
|
|
|
|
final_hidden_states = final_hidden_states.reshape( |
|
|
batch_size, sequence_length, hidden_dim |
|
|
) |
|
|
return final_hidden_states, router_logits |
|
|
|
|
|
|
|
|
class Moondream3DecoderLayer(nn.Module): |
|
|
def __init__(self, config: Moondream3TextConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.layer_idx = layer_idx |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.self_attn = Moondream3Attention(config, layer_idx, use_tau=True) |
|
|
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
self.is_moe_layer = layer_idx >= config.moe_start_layer |
|
|
if self.is_moe_layer: |
|
|
self.mlp = Moondream3SparseMoeBlock(config, layer_idx=layer_idx) |
|
|
else: |
|
|
self.mlp = Moondream3MLP( |
|
|
self.hidden_size, |
|
|
self.intermediate_size, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
output_router_logits: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs, |
|
|
) -> Tuple: |
|
|
hidden_states_ln = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states_attn, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states_ln, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
if self.is_moe_layer: |
|
|
hidden_states_mlp, router_logits = self.mlp( |
|
|
hidden_states_ln, cache_position=cache_position |
|
|
) |
|
|
else: |
|
|
hidden_states_mlp = self.mlp(hidden_states_ln) |
|
|
router_logits = None |
|
|
|
|
|
|
|
|
hidden_states = hidden_states + hidden_states_attn + hidden_states_mlp |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
if output_router_logits: |
|
|
outputs += (router_logits,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
class Moondream3PreTrainedModel(PreTrainedModel): |
|
|
config_class = Moondream3Config |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["Moondream3DecoderLayer", "Moondream3SparseMoeBlock"] |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_cache_class = True |
|
|
|
|
|
def _init_weights(self, module): |
|
|
if hasattr(self.config, "text_config") and hasattr( |
|
|
self.config.text_config, "initializer_range" |
|
|
): |
|
|
std = self.config.text_config.initializer_range |
|
|
elif hasattr(self.config, "initializer_range"): |
|
|
std = self.config.initializer_range |
|
|
else: |
|
|
std = 0.02 |
|
|
|
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
class Moondream3TextModel(Moondream3PreTrainedModel): |
|
|
config_class = Moondream3TextConfig |
|
|
|
|
|
def __init__(self, config: Moondream3TextConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id if hasattr(config, "pad_token_id") else 0 |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding( |
|
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
|
) |
|
|
self.layers = nn.ModuleList( |
|
|
[ |
|
|
Moondream3DecoderLayer(config, layer_idx) |
|
|
for layer_idx in range(config.num_hidden_layers) |
|
|
] |
|
|
) |
|
|
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = Moondream3RotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
output_router_logits: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = ( |
|
|
output_attentions |
|
|
if output_attentions is not None |
|
|
else self.config.output_attentions |
|
|
) |
|
|
output_router_logits = ( |
|
|
output_router_logits |
|
|
if output_router_logits is not None |
|
|
else self.config.output_router_logits |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states |
|
|
if output_hidden_states is not None |
|
|
else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
return_dict = ( |
|
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
|
) |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError( |
|
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
|
) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
batch_size = hidden_states.shape[0] |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = ( |
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
) |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, |
|
|
past_seen_tokens + inputs_embeds.shape[1], |
|
|
device=inputs_embeds.device, |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids=position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
all_router_logits = () if output_router_logits else None |
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
output_router_logits, |
|
|
use_cache, |
|
|
cache_position, |
|
|
position_embeddings, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
output_router_logits=output_router_logits, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
if output_router_logits and layer_outputs[-1] is not None: |
|
|
all_router_logits += (layer_outputs[-1],) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
next_cache = None |
|
|
if use_cache: |
|
|
next_cache = past_key_values |
|
|
|
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v |
|
|
for v in [ |
|
|
hidden_states, |
|
|
next_cache, |
|
|
all_hidden_states, |
|
|
all_self_attns, |
|
|
all_router_logits, |
|
|
] |
|
|
if v is not None |
|
|
) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
|
|
|
class Moondream3VisionPatchEmbeddings(nn.Module): |
|
|
def __init__(self, config: Moondream3VisionConfig): |
|
|
super().__init__() |
|
|
self.patch_size = config.patch_size |
|
|
self.num_channels = config.in_channels |
|
|
self.hidden_size = config.hidden_size |
|
|
self.crop_size = config.crop_size |
|
|
self.patch_size = config.patch_size |
|
|
self.grid_size = self.crop_size // self.patch_size |
|
|
self.num_patches = self.grid_size * self.grid_size |
|
|
|
|
|
self.projection = nn.Linear( |
|
|
self.patch_size * self.patch_size * self.num_channels, |
|
|
self.hidden_size, |
|
|
bias=True, |
|
|
) |
|
|
self.position_embeddings = nn.Parameter( |
|
|
torch.zeros(1, self.num_patches, config.hidden_size) |
|
|
) |
|
|
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: |
|
|
B, C, H, W = pixel_values.shape |
|
|
P1 = P2 = self.patch_size |
|
|
|
|
|
x = pixel_values.reshape(B, C, H // P1, P1, W // P2, P2) |
|
|
|
|
|
x = x.permute(0, 2, 4, 1, 3, 5) |
|
|
|
|
|
x = x.reshape(B, (H // P1) * (W // P2), C * P1 * P2) |
|
|
|
|
|
x = self.projection(x) |
|
|
return x + self.position_embeddings |
|
|
|
|
|
|
|
|
class Moondream3VisionEncoderLayer(nn.Module): |
|
|
def __init__(self, config: Moondream3VisionConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.self_attn = Moondream3Attention( |
|
|
config, layer_idx=self.layer_idx, use_tau=False |
|
|
) |
|
|
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=1e-5) |
|
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=1e-5) |
|
|
self.mlp = Moondream3MLP( |
|
|
hidden_size=self.hidden_size, |
|
|
intermediate_size=self.intermediate_size, |
|
|
) |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
hidden_states, _ = self.self_attn(hidden_states=hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class Moondream3VisionModel(Moondream3PreTrainedModel): |
|
|
config_class = Moondream3VisionConfig |
|
|
main_input_name = "pixel_values" |
|
|
_no_split_modules = ["Moondream3VisionEncoderLayer"] |
|
|
|
|
|
def __init__(self, config: Moondream3VisionConfig): |
|
|
super().__init__(config) |
|
|
self.config = config |
|
|
self.hidden_size = self.config.hidden_size |
|
|
self.num_hidden_layers = self.config.num_hidden_layers |
|
|
self.proj_inner_dim = self.config.proj_inner_dim |
|
|
self.proj_out_dim = self.config.proj_out_dim |
|
|
|
|
|
self.embeddings = Moondream3VisionPatchEmbeddings(config) |
|
|
self.layers = nn.ModuleList( |
|
|
[ |
|
|
Moondream3VisionEncoderLayer(config, layer_idx) |
|
|
for layer_idx in range(self.num_hidden_layers) |
|
|
] |
|
|
) |
|
|
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=1e-5) |
|
|
self.vision_projection = Moondream3MLP( |
|
|
hidden_size=self.hidden_size * 2, |
|
|
intermediate_size=self.proj_inner_dim, |
|
|
out_size=self.proj_out_dim, |
|
|
) |
|
|
self.gradient_checkpointing = False |
|
|
self.post_init() |
|
|
|
|
|
def _reconstruct_from_crops( |
|
|
self, |
|
|
crops: torch.Tensor, |
|
|
tiling: tuple[int, int], |
|
|
overlap_margin: int = 4, |
|
|
patch_size: int = 14, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Reconstruct the original image from overlapping crops into a single seamless image. |
|
|
|
|
|
Takes a list of overlapping image crops along with their positional metadata and |
|
|
reconstructs them into a single coherent image by carefully stitching together |
|
|
non-overlapping regions. Handles both numpy arrays and PyTorch tensors. |
|
|
|
|
|
Args: |
|
|
crops: List of image crops as numpy arrays or PyTorch tensors with shape |
|
|
(H,W,C) |
|
|
tiling: Tuple of (height,width) indicating crop grid layout |
|
|
patch_size: Size in pixels of each patch, default 14 |
|
|
overlap_margin: Number of overlapping patches on each edge, default 4 |
|
|
|
|
|
Returns: |
|
|
Reconstructed image as numpy array or PyTorch tensor matching input type, |
|
|
with shape (H,W,C) where H,W are the original image dimensions |
|
|
""" |
|
|
if isinstance(tiling, torch.Tensor): |
|
|
tiling_h, tiling_w = tiling[0].item(), tiling[1].item() |
|
|
else: |
|
|
tiling_h, tiling_w = tiling |
|
|
tiling_h, tiling_w = int(tiling_h), int(tiling_w) |
|
|
crop_height, crop_width = crops[0].shape[:2] |
|
|
margin_pixels = overlap_margin * patch_size |
|
|
|
|
|
output_h = (crop_height - 2 * margin_pixels) * tiling_h + 2 * margin_pixels |
|
|
output_w = (crop_width - 2 * margin_pixels) * tiling_w + 2 * margin_pixels |
|
|
reconstructed = torch.zeros( |
|
|
(output_h, output_w, crops[0].shape[2]), |
|
|
device=crops[0].device, |
|
|
dtype=crops[0].dtype, |
|
|
) |
|
|
|
|
|
for i, crop in enumerate(crops): |
|
|
tile_y = i // tiling_w |
|
|
tile_x = i % tiling_w |
|
|
|
|
|
x_start = 0 if tile_x == 0 else margin_pixels |
|
|
x_end = crop_width if tile_x == tiling_w - 1 else crop_width - margin_pixels |
|
|
y_start = 0 if tile_y == 0 else margin_pixels |
|
|
y_end = ( |
|
|
crop_height if tile_y == tiling_h - 1 else crop_height - margin_pixels |
|
|
) |
|
|
|
|
|
out_x = tile_x * (crop_width - 2 * margin_pixels) |
|
|
out_y = tile_y * (crop_height - 2 * margin_pixels) |
|
|
|
|
|
reconstructed[ |
|
|
out_y + y_start : out_y + y_end, out_x + x_start : out_x + x_end |
|
|
] = crop[y_start:y_end, x_start:x_end] |
|
|
|
|
|
return reconstructed |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.FloatTensor, |
|
|
tiling: Tuple[int, int], |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = ( |
|
|
output_attentions |
|
|
if output_attentions is not None |
|
|
else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states |
|
|
if output_hidden_states is not None |
|
|
else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = ( |
|
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
|
) |
|
|
|
|
|
batch_size, num_crops = pixel_values.shape[:2] |
|
|
|
|
|
pixel_values = pixel_values.view(-1, *pixel_values.shape[2:]) |
|
|
hidden_states: torch.Tensor = self.embeddings(pixel_values) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_attentions = () if output_attentions else None |
|
|
|
|
|
for encoder_layer in self.layers: |
|
|
if output_hidden_states and all_hidden_states is not None: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
encoder_layer.__call__, hidden_states |
|
|
) |
|
|
else: |
|
|
layer_outputs = encoder_layer(hidden_states) |
|
|
|
|
|
hidden_states = layer_outputs |
|
|
|
|
|
hidden_states = self.post_layernorm(hidden_states) |
|
|
|
|
|
hidden_states = hidden_states.view( |
|
|
batch_size, num_crops, *hidden_states.shape[1:] |
|
|
) |
|
|
outputs = [] |
|
|
for b in range(batch_size): |
|
|
hs = hidden_states[b] |
|
|
t = tiling[b] |
|
|
|
|
|
global_features = hs[0] |
|
|
local_features = hs[1:].view( |
|
|
-1, |
|
|
self.num_hidden_layers, |
|
|
self.num_hidden_layers, |
|
|
self.hidden_size, |
|
|
) |
|
|
|
|
|
reconstructed = self._reconstruct_from_crops( |
|
|
local_features, |
|
|
t, |
|
|
patch_size=1, |
|
|
overlap_margin=self.config.overlap_margin, |
|
|
) |
|
|
|
|
|
reconstructed = reconstructed.permute(2, 0, 1) |
|
|
reconstructed = F.adaptive_avg_pool2d( |
|
|
reconstructed, |
|
|
output_size=(self.num_hidden_layers, self.num_hidden_layers), |
|
|
) |
|
|
reconstructed = reconstructed.permute(1, 2, 0).view( |
|
|
self.num_hidden_layers * self.num_hidden_layers, self.hidden_size |
|
|
) |
|
|
final_features = torch.cat([global_features, reconstructed], dim=-1) |
|
|
outputs.append(final_features) |
|
|
output = torch.stack(outputs, 0) |
|
|
|
|
|
hidden_states = self.vision_projection(output) |
|
|
|
|
|
if output_hidden_states and all_hidden_states is not None: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v |
|
|
for v in [hidden_states, all_hidden_states, all_attentions] |
|
|
if v is not None |
|
|
) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_attentions, |
|
|
) |
|
|
|
|
|
|
|
|
class Moondream3RegionEncoder(nn.Module): |
|
|
def __init__(self, config: Moondream3RegionConfig): |
|
|
super().__init__() |
|
|
self.coord_encoder = nn.Linear(config.coord_feat_dim, config.hidden_size) |
|
|
self.size_encoder = nn.Linear(config.size_feat_dim, config.hidden_size) |
|
|
|
|
|
coord_freq = torch.randn(config.coord_feat_dim // 2, 1) * 10.0 |
|
|
size_freq = torch.randn(config.size_feat_dim // 2, 2) * 10.0 |
|
|
self.register_buffer("coord_freq", coord_freq.T) |
|
|
self.register_buffer("size_freq", size_freq.T) |
|
|
|
|
|
def fourier_features(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor: |
|
|
x_proj = 2 * torch.pi * x @ w |
|
|
return torch.cat([x_proj.cos(), x_proj.sin()], dim=-1) |
|
|
|
|
|
def encode_coordinate(self, coord: torch.Tensor) -> torch.Tensor: |
|
|
fourier_features = self.fourier_features(coord, self.coord_freq) |
|
|
return self.coord_encoder(fourier_features) |
|
|
|
|
|
def encode_size(self, size: torch.Tensor) -> torch.Tensor: |
|
|
fourier_features = self.fourier_features(size, self.size_freq) |
|
|
return self.size_encoder(fourier_features) |
|
|
|
|
|
|
|
|
class Moondream3RegionDecoder(nn.Module): |
|
|
def __init__(self, config: Moondream3RegionConfig): |
|
|
super().__init__() |
|
|
self.coord_decoder = nn.Linear(config.hidden_size, config.coord_out_dim) |
|
|
self.size_decoder = nn.Linear(config.hidden_size, config.size_out_dim) |
|
|
|
|
|
def decode_coordinate(self, hidden_state: torch.Tensor) -> torch.Tensor: |
|
|
return self.coord_decoder(hidden_state) |
|
|
|
|
|
def decode_size(self, hidden_state: torch.Tensor) -> torch.Tensor: |
|
|
return self.size_decoder(hidden_state).view(hidden_state.shape[0], 2, -1) |
|
|
|
|
|
|
|
|
class Moondream3Model(Moondream3PreTrainedModel): |
|
|
def __init__(self, config: Moondream3Config): |
|
|
super().__init__(config) |
|
|
self.text_model = Moondream3TextModel(config.text_config) |
|
|
self.vision_model = Moondream3VisionModel(config.vision_config) |
|
|
self.vocab_size = config.text_config.vocab_size |
|
|
|
|
|
self.region_encoder = Moondream3RegionEncoder(config.region_config) |
|
|
self.region_decoder = Moondream3RegionDecoder(config.region_config) |
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.text_model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.text_model.embed_tokens = value |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.text_model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.text_model |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
pixel_values: torch.FloatTensor = None, |
|
|
tiling: Tuple[int, int] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: int = 0, |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = ( |
|
|
output_attentions |
|
|
if output_attentions is not None |
|
|
else self.config.output_attentions |
|
|
) |
|
|
output_hidden_states = ( |
|
|
output_hidden_states |
|
|
if output_hidden_states is not None |
|
|
else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = ( |
|
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
|
) |
|
|
|
|
|
if (input_ids is not None) == (inputs_embeds is not None): |
|
|
raise ValueError("Provide exactly one of input_ids or inputs_embeds.") |
|
|
|
|
|
if not ((pixel_values is not None) ^ (tiling is None)): |
|
|
raise ValueError("You must specify both pixel_values and tiling") |
|
|
|
|
|
if inputs_embeds is not None and ( |
|
|
pixel_values is not None or tiling is not None |
|
|
): |
|
|
raise ValueError( |
|
|
"When inputs_embeds is provided, do not pass pixel_values/tiling; " |
|
|
"inputs_embeds must already include BOS+image(+text)." |
|
|
) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds: torch.Tensor = self.text_model.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache(config=self.config) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = ( |
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
) |
|
|
cache_position: torch.Tensor = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens, device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
if pixel_values is not None: |
|
|
pixel_values = pixel_values.to( |
|
|
dtype=self.vision_model.embeddings.projection.weight.dtype |
|
|
) |
|
|
image_embeds = self.vision_model(pixel_values, tiling=tiling)[ |
|
|
"last_hidden_state" |
|
|
] |
|
|
prefix = self.text_model.embed_tokens( |
|
|
torch.full( |
|
|
(input_ids.shape[0], 1), |
|
|
0, |
|
|
dtype=input_ids.dtype, |
|
|
device=input_ids.device, |
|
|
) |
|
|
) |
|
|
embeds = torch.cat([prefix, image_embeds], dim=1) |
|
|
cache_pos = torch.arange(embeds.shape[-2], device=embeds.device) |
|
|
pos = cache_pos.unsqueeze(0).expand(embeds.shape[0], -1) |
|
|
attn_mask = torch.full( |
|
|
(embeds.shape[0], 1, embeds.shape[-2], pos.shape[-1]), |
|
|
True, |
|
|
dtype=torch.bool, |
|
|
device=embeds.device, |
|
|
) |
|
|
|
|
|
outputs = self.text_model( |
|
|
input_ids=None, |
|
|
attention_mask=attn_mask, |
|
|
position_ids=pos, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_pos, |
|
|
) |
|
|
|
|
|
attn_mask = create_causal_mask( |
|
|
config=self.config, |
|
|
input_embeds=inputs_embeds, |
|
|
attention_mask=torch.cat( |
|
|
[ |
|
|
torch.ones( |
|
|
attention_mask.shape[0], |
|
|
cache_position[-1] + 1 - attention_mask.shape[-1], |
|
|
device=attention_mask.device, |
|
|
dtype=attention_mask.dtype, |
|
|
), |
|
|
attention_mask, |
|
|
], |
|
|
dim=-1, |
|
|
), |
|
|
cache_position=cache_position, |
|
|
past_key_values=past_key_values, |
|
|
position_ids=position_ids, |
|
|
) |
|
|
|
|
|
outputs = self.text_model( |
|
|
input_ids=None, |
|
|
attention_mask=attn_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_position, |
|
|
) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v |
|
|
for v in [ |
|
|
outputs.last_hidden_state, |
|
|
getattr(outputs, "past_key_values", None), |
|
|
getattr(outputs, "hidden_states", None), |
|
|
getattr(outputs, "attentions", None), |
|
|
] |
|
|
if v is not None |
|
|
) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=outputs.last_hidden_state, |
|
|
past_key_values=getattr(outputs, "past_key_values", None), |
|
|
hidden_states=getattr(outputs, "hidden_states", None), |
|
|
attentions=getattr(outputs, "attentions", None), |
|
|
) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class Moondream3GenerateOutput(GenerateDecoderOnlyOutput): |
|
|
objects: Optional[list[dict[str, float]]] = None |
|
|
|
|
|
|
|
|
class Moondream3ForConditionalGeneration(Moondream3PreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config: Moondream3Config): |
|
|
super().__init__(config) |
|
|
self.objects = None |
|
|
self.model = Moondream3Model(config) |
|
|
self.vocab_size = config.text_config.vocab_size |
|
|
self.lm_head = nn.Linear( |
|
|
config.text_config.hidden_size, config.text_config.vocab_size, bias=True |
|
|
) |
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.text_model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.text_model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model.text_model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model.text_model |
|
|
|
|
|
def _prepare_generated_length( |
|
|
self, |
|
|
generation_config, |
|
|
**kwargs, |
|
|
): |
|
|
generation_config = super()._prepare_generated_length( |
|
|
generation_config, **kwargs |
|
|
) |
|
|
generation_config.max_length += self.config.vision_config.prefix_len |
|
|
return generation_config |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.LongTensor = None, |
|
|
pixel_values: torch.FloatTensor = None, |
|
|
tiling: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: int = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
if pixel_values is not None and inputs_embeds is None: |
|
|
position_ids += self.config.vision_config.prefix_len |
|
|
cache_position += self.config.vision_config.prefix_len |
|
|
|
|
|
model_outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
pixel_values=pixel_values, |
|
|
tiling=tiling, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
labels=None, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_position, |
|
|
logits_to_keep=logits_to_keep, |
|
|
) |
|
|
hidden_states = model_outputs.last_hidden_state |
|
|
if isinstance(logits_to_keep, int) and logits_to_keep > 0: |
|
|
hs = hidden_states[:, -logits_to_keep:, :] |
|
|
elif isinstance(logits_to_keep, slice): |
|
|
hs = hidden_states[:, logits_to_keep, :] |
|
|
else: |
|
|
hs = hidden_states |
|
|
|
|
|
hs = self.model.text_model.norm(hs) |
|
|
logits = self.lm_head(hs) |
|
|
|
|
|
pred = torch.argmax(logits, dim=-1) |
|
|
|
|
|
pos_ids = position_ids[:, -1:] + 1 |
|
|
cache_pos = cache_position[-1:] + 1 |
|
|
mask = torch.ones( |
|
|
hidden_states.shape[0], 1, device=self.device, dtype=torch.long |
|
|
) |
|
|
is_processing_point = torch.any(pred == 5) |
|
|
while is_processing_point: |
|
|
batch_mask = pred[:, -1] == 5 |
|
|
hidden_states = hidden_states[:, -1:, :] |
|
|
x_logits = self.model.region_decoder.decode_coordinate(hidden_states) |
|
|
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1) |
|
|
next_embeds = self.model.region_encoder.encode_coordinate( |
|
|
x_center.to(x_logits.dtype) |
|
|
).unsqueeze(1) |
|
|
model_outputs = self.model( |
|
|
input_ids=None, |
|
|
pixel_values=None, |
|
|
tiling=None, |
|
|
attention_mask=mask, |
|
|
position_ids=pos_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=next_embeds, |
|
|
labels=None, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_pos, |
|
|
logits_to_keep=logits_to_keep, |
|
|
) |
|
|
hidden_states = model_outputs.last_hidden_state |
|
|
y_logits = self.model.region_decoder.decode_coordinate(hidden_states) |
|
|
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1) |
|
|
next_embeds = self.model.region_encoder.encode_coordinate( |
|
|
y_center.to(y_logits.dtype) |
|
|
).unsqueeze(1) |
|
|
coords = torch.cat([x_center, y_center], dim=1) |
|
|
coords = coords * (batch_mask).unsqueeze(1) |
|
|
pos_ids += 1 |
|
|
cache_pos = cache_pos + 1 |
|
|
bbox = None |
|
|
if input_ids.shape[-1] > 1 and input_ids[0, 1] == 7235: |
|
|
model_outputs = self.model( |
|
|
input_ids=None, |
|
|
pixel_values=None, |
|
|
tiling=None, |
|
|
attention_mask=mask, |
|
|
position_ids=pos_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=next_embeds, |
|
|
labels=None, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_pos, |
|
|
logits_to_keep=logits_to_keep, |
|
|
) |
|
|
hidden_states = model_outputs.last_hidden_state |
|
|
size_logits = self.model.region_decoder.decode_size(hidden_states) |
|
|
bins = torch.argmax(size_logits, dim=-1) |
|
|
w_bin = bins[:, 0] |
|
|
h_bin = bins[:, 1] |
|
|
|
|
|
w = torch.pow(2.0, (w_bin.float() / 1023.0) * 10.0 - 10.0) |
|
|
h = torch.pow(2.0, (h_bin.float() / 1023.0) * 10.0 - 10.0) |
|
|
|
|
|
next_embeds = ( |
|
|
self.model.region_encoder.encode_size( |
|
|
torch.stack([w, h], dim=-1).to(size_logits.dtype) |
|
|
) |
|
|
).unsqueeze(1) |
|
|
x_center = x_center.squeeze(1) |
|
|
y_center = y_center.squeeze(1) |
|
|
bbox = [ |
|
|
x_center - w / 2, |
|
|
y_center - h / 2, |
|
|
x_center + w / 2, |
|
|
y_center + h / 2, |
|
|
] |
|
|
bbox = torch.stack(bbox, dim=1) |
|
|
bbox = bbox * (batch_mask).unsqueeze(1) |
|
|
pos_ids += 1 |
|
|
cache_pos = cache_pos + 1 |
|
|
|
|
|
new = coords.unsqueeze(1) if bbox is None else bbox.unsqueeze(1) |
|
|
if self.objects is None: |
|
|
self.objects = new |
|
|
else: |
|
|
self.objects = torch.cat([self.objects, new], dim=1) |
|
|
model_outputs = self.model( |
|
|
input_ids=None, |
|
|
pixel_values=None, |
|
|
tiling=None, |
|
|
attention_mask=mask, |
|
|
position_ids=pos_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=next_embeds, |
|
|
labels=None, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=True, |
|
|
cache_position=cache_pos, |
|
|
logits_to_keep=logits_to_keep, |
|
|
) |
|
|
pos_ids += 1 |
|
|
cache_pos = cache_pos + 1 |
|
|
hidden_states = model_outputs.last_hidden_state |
|
|
|
|
|
indices = torch.tensor( |
|
|
[ |
|
|
self.config.text_config.coord_token_id, |
|
|
0, |
|
|
], |
|
|
device=self.device, |
|
|
) |
|
|
|
|
|
hidden_states = self.model.text_model.norm(hidden_states) |
|
|
logits = ( |
|
|
hidden_states @ self.lm_head.weight[indices].T |
|
|
+ self.lm_head.bias[indices] |
|
|
) |
|
|
|
|
|
logits_full = torch.full( |
|
|
(logits.shape[0], logits.shape[1], self.config.text_config.vocab_size), |
|
|
float("-inf"), |
|
|
device=logits.device, |
|
|
dtype=logits.dtype, |
|
|
) |
|
|
logits_full[:, :, torch.tensor([5, 0])] = logits |
|
|
logits = logits_full |
|
|
pred[batch_mask] = torch.argmax(logits, dim=-1)[batch_mask] |
|
|
is_processing_point = torch.any(pred == 5) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function( |
|
|
logits=logits, labels=labels, vocab_size=self.vocab_size |
|
|
) |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=getattr(model_outputs, "past_key_values", None), |
|
|
hidden_states=getattr(model_outputs, "hidden_states", None), |
|
|
attentions=getattr(model_outputs, "attentions", None), |
|
|
) |
|
|
|
|
|
def generate(self, **kwargs) -> Union[Moondream3GenerateOutput, torch.LongTensor]: |
|
|
outputs = super().generate(**kwargs) |
|
|
if len(self.objects if self.objects is not None else []) > 0: |
|
|
if isinstance(outputs, torch.Tensor): |
|
|
outputs = self.objects |
|
|
self.objects = None |
|
|
else: |
|
|
outputs = Moondream3GenerateOutput(**outputs, objects=self.objects) |
|
|
self.objects = None |
|
|
return outputs |
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, **model_kwargs): |
|
|
model_inputs = super().prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
|
model_inputs["position_ids"] += ( |
|
|
model_inputs["cache_position"].unsqueeze(0) - model_inputs["position_ids"] |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
def _update_model_kwargs_for_generation( |
|
|
self, |
|
|
outputs, |
|
|
model_kwargs, |
|
|
is_encoder_decoder, |
|
|
num_new_tokens: int = 1, |
|
|
): |
|
|
model_kwargs = super()._update_model_kwargs_for_generation( |
|
|
outputs, |
|
|
model_kwargs, |
|
|
is_encoder_decoder=is_encoder_decoder, |
|
|
num_new_tokens=num_new_tokens, |
|
|
) |
|
|
model_kwargs["pixel_values"] = None |
|
|
model_kwargs["tiling"] = None |
|
|
return model_kwargs |
|
|
|
|
|
@staticmethod |
|
|
def _reorder_cache(past_key_values, beam_idx): |
|
|
reordered_past = () |
|
|
for layer_past in past_key_values: |
|
|
reordered_past += ( |
|
|
tuple( |
|
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
|
for past_state in layer_past |
|
|
), |
|
|
) |
|
|
return reordered_past |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"Moondream3Config", |
|
|
"Moondream3TextConfig", |
|
|
"Moondream3VisionConfig", |
|
|
"Moondream3RegionConfig", |
|
|
"Moondream3PreTrainedModel", |
|
|
"Moondream3Model", |
|
|
"Moondream3TextModel", |
|
|
"Moondream3VisionModel", |
|
|
"Moondream3ForConditionalGeneration", |
|
|
] |