moondream3-preview-hf / processing_moondream3.py
NyxKrage's picture
Upload folder using huggingface_hub
c466d58 verified
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Moondream3.
"""
from typing import Optional, Union
import numpy as np
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, is_valid_image
from transformers.processing_utils import (
MultiModalData,
ProcessingKwargs,
ProcessorMixin,
Unpack,
)
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import is_vision_available, logging
logger = logging.get_logger(__name__)
class Moondream3ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_token_type_ids": False
},
"common_kwargs": {
"return_tensors": "pt",
},
}
def _rotate_right_array(x, k: int):
"""
Rotate a 1D or 2D structure k steps to the right along the last axis.
Supports: list, numpy.ndarray, torch.Tensor.
Works even if numpy or torch are not installed.
Raises TypeError for unsupported input types.
"""
# optional imports
try:
import numpy as np
except ImportError:
np = None
try:
import torch
except ImportError:
torch = None
# torch.Tensor
if torch is not None and isinstance(x, torch.Tensor):
if x.size(-1) == 0:
return x
return torch.roll(x, shifts=k % x.size(-1), dims=-1)
# numpy.ndarray
if np is not None and isinstance(x, np.ndarray):
if x.shape[-1] == 0:
return x
return np.roll(x, k % x.shape[-1], axis=-1)
# python list (1D or 2D)
if isinstance(x, list):
if not x: # empty list
return x
# 2D (batch, seq)
if isinstance(x[0], list):
out = []
for row in x:
if not row:
out.append(row)
continue
shift = k % len(row)
out.append(row[-shift:] + row[:-shift] if shift else row[:])
return out
# 1D
shift = k % len(x)
return x[-shift:] + x[:-shift] if shift else x[:]
# unsupported type
raise TypeError(
f"Unsupported type {type(x).__name__} for rotation. "
f"Expected list, numpy.ndarray, or torch.Tensor. "
f"(numpy or torch are optional dependencies)"
)
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
class Moondream3Processor(ProcessorMixin):
r"""
Constructs a Moondream3 processor which wraps a Moondream3 image processor and a Moondream3 tokenizer into a single processor.
[`Moondream3Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~Moondream3Processor.__call__`] and [`~Moondream3Processor.decode`] for more information.
Args:
image_processor ([`Moondream3ImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*, defaults to 16):
Patch size from the vision tower.
spatial_merge_size (`int`, *optional*, defaults to 1):
The downsampling factor for the spatial merge operation.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"[IMG]"`):
Special token used to denote image location.
image_break_token (`str`, *optional*, defaults to `"[IMG_BREAK]"`):
Special token used to denote the end of a line of pixels in an image.
image_end_token (`str`, *optional*, defaults to `"[IMG_END]"`):
Special token used to denote the end of an image input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
chat_template=None,
image_token_id=0,
**kwargs,
):
self.image_token_id = image_token_id
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
**kwargs: Unpack[Moondream3ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Moondream3ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise TypeError("Invalid input text. Please provide a string, or a list of strings")
# try to expand inputs in processing if we have the necessary parts
prompt_strings = text
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None)
# if "input_ids" in text_inputs:
# # prepend 1 bos_token_id and 729 image_token_id to the text_inputs
# for i in range(len(text_inputs["input_ids"])):
# prepended_tokens = [self.tokenizer.bos_token_id] + [self.image_token_id] * 729
# text_inputs["input_ids"][i] = prepended_tokens + text_inputs["input_ids"][i]
# if "attention_mask" in text_inputs:
# # attend to the 730 prepended tokens
# for i in range(len(text_inputs["attention_mask"])):
# prepended_mask = [1] * 730
# text_inputs["attention_mask"][i] = prepended_mask + text_inputs["attention_mask"][i]
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
# def apply_chat_template(
# self,
# conversation: Union[list[dict[str, str]], list[list[dict[str, str]]]],
# chat_template: Optional[str] = None,
# **kwargs,
# ) -> str:
# # Call the original behavior first
# out = super().apply_chat_template(
# conversation=conversation,
# chat_template=chat_template,
# **kwargs,
# )
# # Only post-process when:
# # - user requested assistant mask
# # - output is a dict (tokenized + return_dict=True path)
# if isinstance(out, BatchFeature) and kwargs.get("return_assistant_tokens_mask", False):
# if "assistant_masks" in out and out["assistant_masks"] is not None:
# out["assistant_masks"] = _rotate_right_array(out["assistant_masks"], 730)
# return out
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return tokenizer_input_names + image_processor_input_names + ["image_sizes"]
__all__ = ["Moondream3Processor"]