|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Processor class for Moondream3. |
|
|
""" |
|
|
|
|
|
from typing import Optional, Union |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
|
from transformers.image_utils import ImageInput, is_valid_image |
|
|
from transformers.processing_utils import ( |
|
|
MultiModalData, |
|
|
ProcessingKwargs, |
|
|
ProcessorMixin, |
|
|
Unpack, |
|
|
) |
|
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput |
|
|
from transformers.utils import is_vision_available, logging |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class Moondream3ProcessorKwargs(ProcessingKwargs, total=False): |
|
|
_defaults = { |
|
|
"text_kwargs": { |
|
|
"padding": False, |
|
|
"return_token_type_ids": False |
|
|
}, |
|
|
"common_kwargs": { |
|
|
"return_tensors": "pt", |
|
|
}, |
|
|
} |
|
|
|
|
|
def _rotate_right_array(x, k: int): |
|
|
""" |
|
|
Rotate a 1D or 2D structure k steps to the right along the last axis. |
|
|
Supports: list, numpy.ndarray, torch.Tensor. |
|
|
Works even if numpy or torch are not installed. |
|
|
Raises TypeError for unsupported input types. |
|
|
""" |
|
|
|
|
|
try: |
|
|
import numpy as np |
|
|
except ImportError: |
|
|
np = None |
|
|
|
|
|
try: |
|
|
import torch |
|
|
except ImportError: |
|
|
torch = None |
|
|
|
|
|
|
|
|
if torch is not None and isinstance(x, torch.Tensor): |
|
|
if x.size(-1) == 0: |
|
|
return x |
|
|
return torch.roll(x, shifts=k % x.size(-1), dims=-1) |
|
|
|
|
|
|
|
|
if np is not None and isinstance(x, np.ndarray): |
|
|
if x.shape[-1] == 0: |
|
|
return x |
|
|
return np.roll(x, k % x.shape[-1], axis=-1) |
|
|
|
|
|
|
|
|
if isinstance(x, list): |
|
|
if not x: |
|
|
return x |
|
|
|
|
|
if isinstance(x[0], list): |
|
|
out = [] |
|
|
for row in x: |
|
|
if not row: |
|
|
out.append(row) |
|
|
continue |
|
|
shift = k % len(row) |
|
|
out.append(row[-shift:] + row[:-shift] if shift else row[:]) |
|
|
return out |
|
|
|
|
|
shift = k % len(x) |
|
|
return x[-shift:] + x[:-shift] if shift else x[:] |
|
|
|
|
|
|
|
|
raise TypeError( |
|
|
f"Unsupported type {type(x).__name__} for rotation. " |
|
|
f"Expected list, numpy.ndarray, or torch.Tensor. " |
|
|
f"(numpy or torch are optional dependencies)" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
def is_url(val) -> bool: |
|
|
return isinstance(val, str) and val.startswith("http") |
|
|
|
|
|
|
|
|
|
|
|
def is_image_or_image_url(elem): |
|
|
return is_url(elem) or is_valid_image(elem) |
|
|
|
|
|
|
|
|
class Moondream3Processor(ProcessorMixin): |
|
|
r""" |
|
|
Constructs a Moondream3 processor which wraps a Moondream3 image processor and a Moondream3 tokenizer into a single processor. |
|
|
|
|
|
[`Moondream3Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the |
|
|
[`~Moondream3Processor.__call__`] and [`~Moondream3Processor.decode`] for more information. |
|
|
|
|
|
Args: |
|
|
image_processor ([`Moondream3ImageProcessor`], *optional*): |
|
|
The image processor is a required input. |
|
|
tokenizer ([`LlamaTokenizerFast`], *optional*): |
|
|
The tokenizer is a required input. |
|
|
patch_size (`int`, *optional*, defaults to 16): |
|
|
Patch size from the vision tower. |
|
|
spatial_merge_size (`int`, *optional*, defaults to 1): |
|
|
The downsampling factor for the spatial merge operation. |
|
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages |
|
|
in a chat into a tokenizable string. |
|
|
image_token (`str`, *optional*, defaults to `"[IMG]"`): |
|
|
Special token used to denote image location. |
|
|
image_break_token (`str`, *optional*, defaults to `"[IMG_BREAK]"`): |
|
|
Special token used to denote the end of a line of pixels in an image. |
|
|
image_end_token (`str`, *optional*, defaults to `"[IMG_END]"`): |
|
|
Special token used to denote the end of an image input. |
|
|
""" |
|
|
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
|
image_processor_class = "AutoImageProcessor" |
|
|
tokenizer_class = "AutoTokenizer" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
image_processor=None, |
|
|
tokenizer=None, |
|
|
chat_template=None, |
|
|
image_token_id=0, |
|
|
**kwargs, |
|
|
): |
|
|
self.image_token_id = image_token_id |
|
|
super().__init__(image_processor, tokenizer, chat_template=chat_template) |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
images: Optional[ImageInput] = None, |
|
|
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None, |
|
|
**kwargs: Unpack[Moondream3ProcessorKwargs], |
|
|
) -> BatchFeature: |
|
|
""" |
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
|
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode |
|
|
the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to |
|
|
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring |
|
|
of the above two methods for more information. |
|
|
|
|
|
Args: |
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): |
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
|
tensor. Both channels-first and channels-last formats are supported. |
|
|
text (`str`, `list[str]`, `list[list[str]]`): |
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
|
|
|
|
Returns: |
|
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
|
`None`). |
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
|
""" |
|
|
|
|
|
output_kwargs = self._merge_kwargs( |
|
|
Moondream3ProcessorKwargs, |
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
if images is not None: |
|
|
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) |
|
|
else: |
|
|
image_inputs = {} |
|
|
|
|
|
if isinstance(text, str): |
|
|
text = [text] |
|
|
elif not isinstance(text, list) and not isinstance(text[0], str): |
|
|
raise TypeError("Invalid input text. Please provide a string, or a list of strings") |
|
|
|
|
|
|
|
|
prompt_strings = text |
|
|
|
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) |
|
|
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
def model_input_names(self): |
|
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
|
image_processor_input_names = self.image_processor.model_input_names |
|
|
return tokenizer_input_names + image_processor_input_names + ["image_sizes"] |
|
|
|
|
|
|
|
|
__all__ = ["Moondream3Processor"] |
|
|
|