--- license: mit pipeline_tag: object-detection tags: - tensorflow - keras - opencv - wall-crack-detection - real-time - mobile datasets: [] --- # Wall Crack Detection Model This project uses a **deep learning model** to detect cracks in walls using **real-time video feed** from a mobile phone camera. It is built with **TensorFlow**, **Keras**, and **OpenCV**. --- ## Model Overview - **Model Type:** Object Detection (Binary – Crack / No Crack) - **Framework:** TensorFlow / Keras - **File:** `crack_detector.h5` - **Input:** Image frame (from video feed or camera) - **Output:** Crack detection result (with bounding boxes or classification) --- ## Project Structure ```bash project/ │-- crack_detector.h5 # Trained model file │-- main.py # Real-time detection script │-- concrete_data/ # Dataset folder (if training from scratch) │ ├── train/ │ │ ├── Positive/ │ │ └── Negative/ │ └── val/ │ ├── Positive/ │ └── Negative/ │-- detection_log.csv # Optional log for predictions │-- README.md --- ## Requirements - Python 3.10+ - TensorFlow 2.x - OpenCV - NumPy ### Install Dependencies ```bash pip install tensorflow opencv-python numpy ``` For Best Results, create a virtual Environment: ``` Using Conda: conda --version conda create --name wallcrack-env python=3.10 conda activate wallcrack-env pip install tensorflow opencv-python numpy ``` ### Usage Set up DroidCam IP or any camera stream URL in main.py Run the detection script: ``` python main.py ``` The model will process live video feed and detect cracks in walls in real time. ### Notes If you want to retrain, use images in the concrete_data folder. The detection_log.csv file can store timestamped predictions for later analysis.