File size: 11,787 Bytes
ea829e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------'
import os
import torch
import yaml
from yacs.config import CfgNode as CN
# pytorch major version (1.x or 2.x)
PYTORCH_MAJOR_VERSION = int(torch.__version__.split('.')[0])
_C = CN()
# Base config files
_C.BASE = ['']
# -----------------------------------------------------------------------------
# Data settings
# -----------------------------------------------------------------------------
_C.DATA = CN()
# Batch size for a single GPU, could be overwritten by command line argument
_C.DATA.BATCH_SIZE = 128
# Path to dataset, could be overwritten by command line argument
_C.DATA.DATA_PATH = ''
# Dataset name
_C.DATA.DATASET = 'imagenet'
# Input image size
_C.DATA.IMG_SIZE = 224
# Interpolation to resize image (random, bilinear, bicubic)
_C.DATA.INTERPOLATION = 'bicubic'
# Use zipped dataset instead of folder dataset
# could be overwritten by command line argument
_C.DATA.ZIP_MODE = False
# Cache Data in Memory, could be overwritten by command line argument
_C.DATA.CACHE_MODE = 'part'
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
_C.DATA.PIN_MEMORY = True
# Number of data loading threads
_C.DATA.NUM_WORKERS = 8
# [SimMIM] Mask patch size for MaskGenerator
_C.DATA.MASK_PATCH_SIZE = 32
# [SimMIM] Mask ratio for MaskGenerator
_C.DATA.MASK_RATIO = 0.6
# -----------------------------------------------------------------------------
# Model settings
# -----------------------------------------------------------------------------
_C.MODEL = CN()
# Model type
_C.MODEL.TYPE = 'swin'
# Model name
_C.MODEL.NAME = 'swin_tiny_patch4_window7_224'
# Pretrained weight from checkpoint, could be imagenet22k pretrained weight
# could be overwritten by command line argument
_C.MODEL.PRETRAINED = ''
# Checkpoint to resume, could be overwritten by command line argument
_C.MODEL.RESUME = ''
# Number of classes, overwritten in data preparation
_C.MODEL.NUM_CLASSES = 1000
# Dropout rate
_C.MODEL.DROP_RATE = 0.0
# Drop path rate
_C.MODEL.DROP_PATH_RATE = 0.1
# Label Smoothing
_C.MODEL.LABEL_SMOOTHING = 0.1
# Swin Transformer parameters
_C.MODEL.SWIN = CN()
_C.MODEL.SWIN.PATCH_SIZE = 4
_C.MODEL.SWIN.IN_CHANS = 3
_C.MODEL.SWIN.EMBED_DIM = 96
_C.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWIN.WINDOW_SIZE = 7
_C.MODEL.SWIN.MLP_RATIO = 4.
_C.MODEL.SWIN.QKV_BIAS = True
_C.MODEL.SWIN.QK_SCALE = None
_C.MODEL.SWIN.APE = False
_C.MODEL.SWIN.PATCH_NORM = True
# Swin Transformer V2 parameters
_C.MODEL.SWINV2 = CN()
_C.MODEL.SWINV2.PATCH_SIZE = 4
_C.MODEL.SWINV2.IN_CHANS = 3
_C.MODEL.SWINV2.EMBED_DIM = 96
_C.MODEL.SWINV2.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWINV2.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWINV2.WINDOW_SIZE = 7
_C.MODEL.SWINV2.MLP_RATIO = 4.
_C.MODEL.SWINV2.QKV_BIAS = True
_C.MODEL.SWINV2.APE = False
_C.MODEL.SWINV2.PATCH_NORM = True
_C.MODEL.SWINV2.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0]
# Swin Transformer MoE parameters
_C.MODEL.SWIN_MOE = CN()
_C.MODEL.SWIN_MOE.PATCH_SIZE = 4
_C.MODEL.SWIN_MOE.IN_CHANS = 3
_C.MODEL.SWIN_MOE.EMBED_DIM = 96
_C.MODEL.SWIN_MOE.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWIN_MOE.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWIN_MOE.WINDOW_SIZE = 7
_C.MODEL.SWIN_MOE.MLP_RATIO = 4.
_C.MODEL.SWIN_MOE.QKV_BIAS = True
_C.MODEL.SWIN_MOE.QK_SCALE = None
_C.MODEL.SWIN_MOE.APE = False
_C.MODEL.SWIN_MOE.PATCH_NORM = True
_C.MODEL.SWIN_MOE.MLP_FC2_BIAS = True
_C.MODEL.SWIN_MOE.INIT_STD = 0.02
_C.MODEL.SWIN_MOE.PRETRAINED_WINDOW_SIZES = [0, 0, 0, 0]
_C.MODEL.SWIN_MOE.MOE_BLOCKS = [[-1], [-1], [-1], [-1]]
_C.MODEL.SWIN_MOE.NUM_LOCAL_EXPERTS = 1
_C.MODEL.SWIN_MOE.TOP_VALUE = 1
_C.MODEL.SWIN_MOE.CAPACITY_FACTOR = 1.25
_C.MODEL.SWIN_MOE.COSINE_ROUTER = False
_C.MODEL.SWIN_MOE.NORMALIZE_GATE = False
_C.MODEL.SWIN_MOE.USE_BPR = True
_C.MODEL.SWIN_MOE.IS_GSHARD_LOSS = False
_C.MODEL.SWIN_MOE.GATE_NOISE = 1.0
_C.MODEL.SWIN_MOE.COSINE_ROUTER_DIM = 256
_C.MODEL.SWIN_MOE.COSINE_ROUTER_INIT_T = 0.5
_C.MODEL.SWIN_MOE.MOE_DROP = 0.0
_C.MODEL.SWIN_MOE.AUX_LOSS_WEIGHT = 0.01
# Swin MLP parameters
_C.MODEL.SWIN_MLP = CN()
_C.MODEL.SWIN_MLP.PATCH_SIZE = 4
_C.MODEL.SWIN_MLP.IN_CHANS = 3
_C.MODEL.SWIN_MLP.EMBED_DIM = 96
_C.MODEL.SWIN_MLP.DEPTHS = [2, 2, 6, 2]
_C.MODEL.SWIN_MLP.NUM_HEADS = [3, 6, 12, 24]
_C.MODEL.SWIN_MLP.WINDOW_SIZE = 7
_C.MODEL.SWIN_MLP.MLP_RATIO = 4.
_C.MODEL.SWIN_MLP.APE = False
_C.MODEL.SWIN_MLP.PATCH_NORM = True
# [SimMIM] Norm target during training
_C.MODEL.SIMMIM = CN()
_C.MODEL.SIMMIM.NORM_TARGET = CN()
_C.MODEL.SIMMIM.NORM_TARGET.ENABLE = False
_C.MODEL.SIMMIM.NORM_TARGET.PATCH_SIZE = 47
# -----------------------------------------------------------------------------
# Training settings
# -----------------------------------------------------------------------------
_C.TRAIN = CN()
_C.TRAIN.START_EPOCH = 0
_C.TRAIN.EPOCHS = 300
_C.TRAIN.WARMUP_EPOCHS = 20
_C.TRAIN.WEIGHT_DECAY = 0.05
_C.TRAIN.BASE_LR = 5e-4
_C.TRAIN.WARMUP_LR = 5e-7
_C.TRAIN.MIN_LR = 5e-6
# Clip gradient norm
_C.TRAIN.CLIP_GRAD = 5.0
# Auto resume from latest checkpoint
_C.TRAIN.AUTO_RESUME = True
# Gradient accumulation steps
# could be overwritten by command line argument
_C.TRAIN.ACCUMULATION_STEPS = 1
# Whether to use gradient checkpointing to save memory
# could be overwritten by command line argument
_C.TRAIN.USE_CHECKPOINT = False
# LR scheduler
_C.TRAIN.LR_SCHEDULER = CN()
_C.TRAIN.LR_SCHEDULER.NAME = 'cosine'
# Epoch interval to decay LR, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30
# LR decay rate, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1
# warmup_prefix used in CosineLRScheduler
_C.TRAIN.LR_SCHEDULER.WARMUP_PREFIX = True
# [SimMIM] Gamma / Multi steps value, used in MultiStepLRScheduler
_C.TRAIN.LR_SCHEDULER.GAMMA = 0.1
_C.TRAIN.LR_SCHEDULER.MULTISTEPS = []
# Optimizer
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'adamw'
# Optimizer Epsilon
_C.TRAIN.OPTIMIZER.EPS = 1e-8
# Optimizer Betas
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
# SGD momentum
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
# [SimMIM] Layer decay for fine-tuning
_C.TRAIN.LAYER_DECAY = 1.0
# MoE
_C.TRAIN.MOE = CN()
# Only save model on master device
_C.TRAIN.MOE.SAVE_MASTER = False
# -----------------------------------------------------------------------------
# Augmentation settings
# -----------------------------------------------------------------------------
_C.AUG = CN()
# Color jitter factor
_C.AUG.COLOR_JITTER = 0.4
# Use AutoAugment policy. "v0" or "original"
_C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1'
# Random erase prob
_C.AUG.REPROB = 0.25
# Random erase mode
_C.AUG.REMODE = 'pixel'
# Random erase count
_C.AUG.RECOUNT = 1
# Mixup alpha, mixup enabled if > 0
_C.AUG.MIXUP = 0.8
# Cutmix alpha, cutmix enabled if > 0
_C.AUG.CUTMIX = 1.0
# Cutmix min/max ratio, overrides alpha and enables cutmix if set
_C.AUG.CUTMIX_MINMAX = None
# Probability of performing mixup or cutmix when either/both is enabled
_C.AUG.MIXUP_PROB = 1.0
# Probability of switching to cutmix when both mixup and cutmix enabled
_C.AUG.MIXUP_SWITCH_PROB = 0.5
# How to apply mixup/cutmix params. Per "batch", "pair", or "elem"
_C.AUG.MIXUP_MODE = 'batch'
# -----------------------------------------------------------------------------
# Testing settings
# -----------------------------------------------------------------------------
_C.TEST = CN()
# Whether to use center crop when testing
_C.TEST.CROP = True
# Whether to use SequentialSampler as validation sampler
_C.TEST.SEQUENTIAL = False
_C.TEST.SHUFFLE = False
# -----------------------------------------------------------------------------
# Misc
# -----------------------------------------------------------------------------
# [SimMIM] Whether to enable pytorch amp, overwritten by command line argument
_C.ENABLE_AMP = False
# Enable Pytorch automatic mixed precision (amp).
_C.AMP_ENABLE = True
# [Deprecated] Mixed precision opt level of apex, if O0, no apex amp is used ('O0', 'O1', 'O2')
_C.AMP_OPT_LEVEL = ''
# Path to output folder, overwritten by command line argument
_C.OUTPUT = ''
# Tag of experiment, overwritten by command line argument
_C.TAG = 'default'
# Frequency to save checkpoint
_C.SAVE_FREQ = 1
# Frequency to logging info
_C.PRINT_FREQ = 10
# Fixed random seed
_C.SEED = 0
# Perform evaluation only, overwritten by command line argument
_C.EVAL_MODE = False
# Test throughput only, overwritten by command line argument
_C.THROUGHPUT_MODE = False
# local rank for DistributedDataParallel, given by command line argument
_C.LOCAL_RANK = 0
# for acceleration
_C.FUSED_WINDOW_PROCESS = False
_C.FUSED_LAYERNORM = False
def _update_config_from_file(config, cfg_file):
config.defrost()
with open(cfg_file, 'r') as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, os.path.join(os.path.dirname(cfg_file), cfg)
)
print('=> merge config from {}'.format(cfg_file))
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
_update_config_from_file(config, args.cfg)
config.defrost()
if args.opts:
config.merge_from_list(args.opts)
def _check_args(name):
if hasattr(args, name) and eval(f'args.{name}'):
return True
return False
# merge from specific arguments
if _check_args('batch_size'):
config.DATA.BATCH_SIZE = args.batch_size
if _check_args('data_path'):
config.DATA.DATA_PATH = args.data_path
if _check_args('zip'):
config.DATA.ZIP_MODE = True
if _check_args('cache_mode'):
config.DATA.CACHE_MODE = args.cache_mode
if _check_args('pretrained'):
config.MODEL.PRETRAINED = args.pretrained
if _check_args('resume'):
config.MODEL.RESUME = args.resume
if _check_args('accumulation_steps'):
config.TRAIN.ACCUMULATION_STEPS = args.accumulation_steps
if _check_args('use_checkpoint'):
config.TRAIN.USE_CHECKPOINT = True
if _check_args('amp_opt_level'):
print("[warning] Apex amp has been deprecated, please use pytorch amp instead!")
if args.amp_opt_level == 'O0':
config.AMP_ENABLE = False
if _check_args('disable_amp'):
config.AMP_ENABLE = False
if _check_args('output'):
config.OUTPUT = args.output
if _check_args('tag'):
config.TAG = args.tag
if _check_args('eval'):
config.EVAL_MODE = True
if _check_args('throughput'):
config.THROUGHPUT_MODE = True
# [SimMIM]
if _check_args('enable_amp'):
config.ENABLE_AMP = args.enable_amp
# for acceleration
if _check_args('fused_window_process'):
config.FUSED_WINDOW_PROCESS = True
if _check_args('fused_layernorm'):
config.FUSED_LAYERNORM = True
## Overwrite optimizer if not None, currently we use it for [fused_adam, fused_lamb]
if _check_args('optim'):
config.TRAIN.OPTIMIZER.NAME = args.optim
# set local rank for distributed training
if PYTORCH_MAJOR_VERSION == 1:
config.LOCAL_RANK = args.local_rank
else:
config.LOCAL_RANK = int(os.environ['LOCAL_RANK'])
# output folder
config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG)
config.freeze()
def get_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
update_config(config, args)
return config
|