File size: 37,401 Bytes
29547e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 |
// Pipeline GEMM kernel. This version is rushed written and may not applied to all shape.
// Currently, only selected parameters is tested. (See gemm_launcher )
#ifndef GEMM_KERNEL
#define GEMM_KERNEL
#include <cstdio>
#include <hip/amd_detail/amd_hip_runtime.h>
#include <hip/amd_detail/amd_warp_functions.h>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-attributes"
#include "../include/gpu_libs.h"
#include "../include/gpu_types.h"
#include "../src/utils/arithmetic.h"
#include "../include/clangd_workaround.h"
#include <cstdlib>
#include <cfloat>
namespace gemm_kernel {
template <typename data_type, int BATCH_SIZE> __device__ inline void read_batch(data_type *dst, const data_type *src) {
if constexpr ((sizeof(data_type) * BATCH_SIZE) == 2 * sizeof(ulong4)) {
*(reinterpret_cast<ulong4 *>(dst) + 0) = *(reinterpret_cast<const ulong4 *>(src) + 0);
*(reinterpret_cast<ulong4 *>(dst) + 1) = *(reinterpret_cast<const ulong4 *>(src) + 1);
} else if constexpr ((sizeof(data_type) * BATCH_SIZE) == sizeof(ulong4)) {
*reinterpret_cast<ulong4 *>(dst) = *reinterpret_cast<const ulong4 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong2)) {
*reinterpret_cast<ulong2 *>(dst) = *reinterpret_cast<const ulong2 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong1)) {
*reinterpret_cast<ulong1 *>(dst) = *reinterpret_cast<const ulong1 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(uint1)) {
*reinterpret_cast<uint1 *>(dst) = *reinterpret_cast<const uint1 *>(src);
} else {
#pragma unroll
for (int b = 0; b < BATCH_SIZE; ++b) {
dst[b] = src[b];
}
}
}
template <typename data_type, int BATCH_SIZE> __device__ inline void zero_batch(data_type *dst) {
if constexpr ((sizeof(data_type) * BATCH_SIZE) == sizeof(ulong4)) {
*reinterpret_cast<ulong4 *>(dst) = ulong4{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong2)) {
*reinterpret_cast<ulong2 *>(dst) = ulong2{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong1)) {
*reinterpret_cast<ulong1 *>(dst) = ulong1{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(uint1)) {
*reinterpret_cast<uint *>(dst) = uint{};
} else {
#pragma unroll
for (int b = 0; b < BATCH_SIZE; ++b) {
dst[b] = 0;
}
}
}
template <typename data_type, int DST_Y, int DST_X, int SRC_Y, int SRC_X, int BLOCK_DIM, int BATCH_SIZE>
__device__ inline void load_input(data_type dst[DST_Y][DST_X], const data_type src[SRC_Y][SRC_X], const int begin_x,
const int begin_y) {
static_assert(BATCH_SIZE > 0);
/**
Consider (SRC_X % DST_X == 0) && (SRC_Y % DST_Y == 0)
Step 1:
[ ][***][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
Step 2:
[ ][ ][ ][ ]
[ ][***][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
*/
static_assert((SRC_X % BATCH_SIZE == 0) && (SRC_Y % BATCH_SIZE == 0));
static_assert((DST_X % BATCH_SIZE == 0) && (DST_Y % BATCH_SIZE == 0));
static_assert(BATCH_SIZE <= DST_X && DST_X % BATCH_SIZE == 0);
const int begin_idx = threadIdx.x * BATCH_SIZE;
const constexpr int total_elements = DST_X * DST_Y;
const constexpr int elements_per_step = BLOCK_DIM * BATCH_SIZE;
// FIXME: loop unrolling
#pragma unroll
for (int k = begin_idx; k < total_elements; k += elements_per_step) {
int l_kx = k % DST_X;
int l_ky = k / DST_X;
int g_kx = l_kx + begin_x;
int g_ky = l_ky + begin_y;
auto *dst_flatten = &dst[l_ky][l_kx];
// const auto *src_flatten = &src[g_ky][g_kx];
// read_batch<data_type, BATCH_SIZE>(dst_flatten, src_flatten);
if (((SRC_X % DST_X == 0) || (g_kx < SRC_X)) && ((SRC_Y % DST_Y == 0) || (g_ky < SRC_Y))) {
const auto *src_flatten = &src[g_ky][g_kx];
read_batch<data_type, BATCH_SIZE>(dst_flatten, src_flatten);
} else {
zero_batch<data_type, BATCH_SIZE>(dst_flatten);
}
}
}
template <int PM, int PN, int QM, int QN, int QK, int QUANT_SIZE, int BLOCK_SIZE, int BATCH_SIZE>
__device__ void load_scale(float s_s[PM][PN], const float sa[QK][QM], const float sb[QK][QN], const int m, const int n,
const int k) {
constexpr int total_elements = PM * PN;
constexpr int elements_per_step = BLOCK_SIZE * BATCH_SIZE;
// static_assert(PN % BATCH_SIZE)
const int begin_idx = threadIdx.x * BATCH_SIZE;
#pragma unroll
for (int idx = begin_idx; idx < total_elements; idx += elements_per_step) {
static_assert(BATCH_SIZE == 1);
int i = idx / PN;
int j = idx % PN;
if (((QM % PM == 0) || (m + i < QM)) && ((QN % PN == 0) || ((n + j) / QUANT_SIZE < QN))) {
s_s[i][j] = sa[k / QUANT_SIZE][(m + i)] * sb[k / QUANT_SIZE][(n) / QUANT_SIZE + j];
} else {
s_s[i][j] = 1.0f;
}
}
}
// don't use __builtin_readcyclecounter(), which would insert waitcnt
__device__ auto getclock() {
uint64_t clk;
asm volatile("s_memtime %0" : "=r"(clk));
return clk;
}
template <typename Elem> __global__ void check_trans(const Elem *origin, const Elem *tranposed, int m, int n) {
auto x = threadIdx.x + blockIdx.x * blockDim.x;
auto y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < m && y < n) {
if (origin[x * n + y] != tranposed[y * m + x]) {
printf("Error: %d %d\n", x, y);
}
}
}
template <typename in_data_type, typename acc_data_type, typename FragC, typename FragA, typename FragB, int PM, int PN,
int BM, int BN, int BK, int FRAG_M, int FRAG_N, int FRAG_K, int WMMA_M, int WMMA_N, int WMMA_K, int WARP_M,
int WARP_N, int BLOCK_SIZE, int BATCH_SIZE, int QUANT_SIZE>
__device__ void wmma_compute(const in_data_type s_a[BM][BK + 8], const in_data_type s_b[BN][BK + 8],
const float s_s[PN][PM], FragC frag_r[FRAG_M][FRAG_N], const int comp_c_frag_m,
const int comp_c_frag_n) {
FragC frag_c[FRAG_M][FRAG_N];
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
wmma::fill_fragment(frag_c[i][j], 0.0F);
}
}
#pragma unroll
for (int k = 0; k < FRAG_K; ++k) {
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
FragA frag_a;
int s_a_row = k * WMMA_K;
int s_a_col = (comp_c_frag_m * FRAG_M + i) * WMMA_M;
wmma::load_matrix_sync(frag_a, &s_a[s_a_col][s_a_row], BK + 8);
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
FragB frag_b;
int s_b_row = k * WMMA_K;
int s_b_col = (comp_c_frag_n * FRAG_N + j) * WMMA_N;
wmma::load_matrix_sync(frag_b, &s_b[s_b_col][s_b_row], BK + 8);
wmma::mma_sync(frag_c[i][j], frag_a, frag_b, frag_c[i][j]);
}
}
}
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
#pragma unroll
for (int k = 0; k < FragC::num_elements; ++k) {
#ifdef TEST_ON_RDNA4 // RDNA4, WAVE_SIZE = 32
int m = ((threadIdx.x & 16) >> 1) | (k & 7) | (comp_c_frag_m * FRAG_M + i) * WMMA_M;
#else // CDNA3, WAVE_SIZE = 64
// int m = ((threadIdx.x & 48) >> 2) | (k & 3) | (comp_c_frag_m * FRAG_M + i) * WMMA_M;
#endif
// int n = ((threadIdx.x & 15) | (comp_c_frag_n * FRAG_N + j) * WMMA_N) / QUANT_SIZE;
auto lane = threadIdx.x % 64;
int m, n;
if constexpr (WMMA_M == 32) {
// C or D i: (8 * floor(GPR_num / 4) % 32) + 4 * floor(lane / 32) + (GPR_num % 4)
// C or D j: (lane % 32)
m = (8 * (k / 4) % 32) + 4 * (lane / 32) + (k % 4);
n = lane % 32;
} else {
// C or D i: 4 * floor(lane / 16) + (GPR_num % 4)
// C or D j: (lane % 16)
m = 4 * (lane / 16) + (k % 4);
n = lane % 16;
}
m += (comp_c_frag_m * FRAG_M + i) * WMMA_M;
n += (comp_c_frag_n * FRAG_N + j) * WMMA_N;
n = n / QUANT_SIZE;
// if(threadIdx.x == 192 && blockIdx.x ==0 && blockIdx.y == 0 && blockIdx.z == 0)
// printf("m: %d, n: %d\n", m, n);
float scale = s_s[n][m];
frag_r[i][j].x[k] += (acc_data_type)scale * (acc_data_type)frag_c[i][j].x[k];
}
}
}
}
__device__ rocwmma::bfloat16_t fast_f32tob16(float f) {
union {
float fp32;
unsigned int u32;
} u = {f};
u.u32 += 0x7fff + ((u.u32 >> 16) & 1);
auto ret = u.u32 >> 16;
return reinterpret_cast<rocwmma::bfloat16_t &>(ret);
}
template <typename acc_data_type, typename out_data_type, typename FragC, typename FragOut, int WMMA_M, int WMMA_N,
int BM, int BN, int M, int N, int FRAG_M, int FRAG_N>
__device__ inline void store_result(out_data_type c[M][N], FragC frag_r[FRAG_M][FRAG_N], const int m, const int n,
const int comp_c_frag_m, const int comp_c_frag_n) {
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
int frag_m = comp_c_frag_m * FRAG_M + i;
int frag_n = comp_c_frag_n * FRAG_N + j;
int row = m + frag_m * WMMA_M;
int col = n + frag_n * WMMA_N;
if (((M % BM == 0) || (row < M)) && ((N % BN == 0) || (col < N))) {
out_data_type *c_ptr = &c[row][col];
if constexpr (sizeof(acc_data_type) == sizeof(out_data_type)) { // split_k
auto lane = threadIdx.x % 64;
#pragma unroll
for (int k = 0; k < FragC::num_elements; ++k) {
int m, n;
if constexpr (WMMA_M == 32) {
// C or D i: (8 * floor(GPR_num / 4) % 32) + 4 * floor(lane / 32) + (GPR_num % 4)
// C or D j: (lane % 32)
m = (8 * (k / 4) % 32) + 4 * (lane / 32) + (k % 4);
n = lane % 32;
} else {
// C or D i: 4 * floor(lane / 16) + (GPR_num % 4)
// C or D j: (lane % 16)
m = 4 * (lane / 16) + (k % 4);
n = lane % 16;
}
c_ptr[m * N + n] = frag_r[i][j].x[k];;
}
// wmma::store_matrix_sync(reinterpret_cast<out_data_type *>(c_ptr), frag_r[i][j], N,
// wmma::mem_row_major);
} else if constexpr (sizeof(out_data_type) == sizeof(half)) {
FragOut frag_out;
static_assert(sizeof(half) == sizeof(out_data_type));
static_assert(FragOut::num_elements == FragC::num_elements);
for (int k = 0; k < FragOut::num_elements; ++k) {
auto reg = fast_f32tob16(frag_r[i][j].x[k]);
frag_out.x[k] = *reinterpret_cast<half *>(®);
}
wmma::store_matrix_sync(reinterpret_cast<half *>(c_ptr), frag_out, N, wmma::mem_row_major);
} else {
static_assert(0, "Unsupported data type for output");
}
}
}
}
}
// a dummy template to allow inlcuding this file
template <int Splitk> __global__ void reduce(uint32_t m, uint32_t n, const float *c_splitk, __hip_bfloat16 *c) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= m * n) {
return;
}
float4 sum{};
#pragma unroll
for (auto i = 0; i < Splitk; ++i) {
sum += *(float4 *)&c_splitk[i * (m * n) + tid * 4];
}
auto res =
rocwmma::make_vector(fast_f32tob16(sum.x), fast_f32tob16(sum.y), fast_f32tob16(sum.z), fast_f32tob16(sum.w));
*(decltype(res) *)&c[tid * 4] = res;
}
template<int M, int N, int SPLITK_FACTOR, int BLOCK_SIZE>
__launch_bounds__(BLOCK_SIZE)
__global__ void reduce_kernel(const float c_splitk[SPLITK_FACTOR][M][N], __hip_bfloat16 c[M][N]) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= M * N) {
return;
}
float4 sum{};
#pragma unroll
for (auto i = 0; i < SPLITK_FACTOR; ++i) {
sum += *(float4 *)&reinterpret_cast<const float*>(c_splitk)[i * (M * N) + tid * 4];
}
auto res =
rocwmma::make_vector(fast_f32tob16(sum.x), fast_f32tob16(sum.y), fast_f32tob16(sum.z), fast_f32tob16(sum.w));
*(decltype(res) *)&reinterpret_cast< __BF16_TYPE*>(c)[tid * 4] = res;
}
#ifdef PARAMETERIZE_LIBRARY
template <typename in_data_type,
typename acc_data_type, // Accumulator type (e.g., float)
typename out_data_type, // Output type (e.g., __hip_bfloat16)
int M, int N, int K, // Matrix dimensions
int BM, int BN, int BK, // Tile dimensions
int QUANT_SIZE, // Quantization block size
int BLOCK_SIZE, // Block size
int WARP_M, int WARP_N, // Warp dimensions
int LDA, int LDB,
int LOAD_BATCH_SIZE> // Load batch size for vectorized memory operations
#else
using in_data_type = __FP8_TYPE;
using out_data_type = __BF16_TYPE;
using acc_data_type = float;
// constexpr int M = 4096, N = 4096, K = 4096;
constexpr int M = 6144, N = 4608, K = 7168;
constexpr int LDA = K, LDB = K;
// constexpr int M = 512, N = 512, K = 512;
constexpr int BM = 256, BN = 128, BK = 128;
constexpr int QUANT_SIZE = 128, BLOCK_SIZE = 512;
constexpr int LOAD_BATCH_SIZE = 16;
#ifdef TEST_ON_RDNA4 // RDNA4, WAVE_SIZE = 32
constexpr int WARP_M = 4, WARP_N = 2;
#else // CDNA3, WAVE_SIZE = 64
constexpr int WARP_M = 4, WARP_N = 2;
#endif
#endif // End of parameterization
__global__ __launch_bounds__(BLOCK_SIZE) void gemm_kernel(
const in_data_type a[M][LDA], const in_data_type b[N][LDB], out_data_type c[M][N],
const float sa[ceil_div(K, QUANT_SIZE)][M / 1], // Assuming M is divisible by 1 (always true)
const float sb[ceil_div(K, QUANT_SIZE)][ceil_div(N, QUANT_SIZE)]) {
// --- Start: Derived parameters and constants ---
constexpr int WMMA_M = 16; // Fixed WMMA dimension M
constexpr int WMMA_N = 16; // Fixed WMMA dimension N
constexpr int WMMA_K = 32; // Fixed WMMA dimension K (for FP8)
// WARP_M/N define the 2D arrangement of warps in the block grid.
// These might need adjustment based on BLOCK_DIM_X/Y strategy.
// Using fixed values based on the non-parameterized version for now.
// TODO: Derive WARP_M/N from BLOCK_DIM_X/Y if a flexible strategy is needed.
constexpr int WARP_NUM = WARP_M * WARP_N; // Total warps per block
// Assertion: Check if the assumed warp layout matches the block size
static_assert(WARP_NUM * WAVE_SIZE == BLOCK_SIZE, "WARP_M * WARP_N * WAVE_SIZE must equal BLOCK_SIZE");
// Fragments per warp
constexpr int FRAG_M_PER_WARP = BM / WMMA_M / WARP_M;
constexpr int FRAG_N_PER_WARP = BN / WMMA_N / WARP_N;
constexpr int FRAG_K = BK / WMMA_K; // Fragments along K dimension tile
static_assert(BM % (WMMA_M * WARP_M) == 0, "BM must be divisible by WMMA_M * WARP_M");
static_assert(BN % (WMMA_N * WARP_N) == 0, "BN must be divisible by WMMA_N * WARP_N");
static_assert(BK % WMMA_K == 0, "BK must be divisible by WMMA_K");
static_assert(BK >= 32, "BK must be at least 32");
// --- End: Derived parameters and constants ---
constexpr int QM = M; // Dimension M for scale A
constexpr int QN = ceil_div(N, QUANT_SIZE); // Dimension N for scale B (quantized)
constexpr int QK = ceil_div(K, QUANT_SIZE); // Dimension K for scales (quantized)
constexpr int PM = BM; // Block size M for scale A * B
constexpr int PN = ceil_div(BN, QUANT_SIZE); // Block size N for scale A * B
// Ensure derived fragment counts are positive
static_assert(FRAG_M_PER_WARP > 0, "FRAG_M_PER_WARP must be positive");
static_assert(FRAG_N_PER_WARP > 0, "FRAG_N_PER_WARP must be positive");
static_assert(FRAG_K > 0, "FRAG_K must be positive");
using FragA = wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, in_data_type, wmma::row_major>;
using FragB = wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, in_data_type, wmma::col_major>;
using FragC = wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, acc_data_type>;
using FragOut = wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K,
half>; // Output uses half for storage via bfloat16 reinterpret
__shared__ in_data_type s_a[BM][BK + 8];
__shared__ in_data_type s_b[BN][BK + 8];
__shared__ acc_data_type s_s[PN][PM]; // Accumulator type for scales
FragC frag_r[FRAG_M_PER_WARP][FRAG_N_PER_WARP]; // Accumulator fragments
// handle splitk
a = (decltype(a))((in_data_type *)a + blockIdx.z * K);
b = (decltype(b))((in_data_type *)b + blockIdx.z * K);
c += blockIdx.z * M;
sa += blockIdx.z * QK;
sb += blockIdx.z * QK;
int tid = threadIdx.x; // Linear thread ID within the block
int wid = tid / WAVE_SIZE; // Warp ID within the block
// Spilt and compute fragments
constexpr int iteration_over_k = ceil_div(K, BK); // Use ceil_div for potentially non-divisible K
static_assert(LOAD_BATCH_SIZE > 0, "LOAD_BATCH_SIZE must be positive");
constexpr auto PIPELINE = true;
// using LoadVec = rocwmma::VecT<float, LOAD_BATCH_SIZE / sizeof(float)>;
using LoadVec = __attribute__((__vector_size__(LOAD_BATCH_SIZE))) float;
static_assert(((BK * BM) % (BLOCK_SIZE * LOAD_BATCH_SIZE)) == 0,
"BK * BM must be divisible by BLOCK_SIZE * LOAD_BATCH_SIZE");
static_assert(BK % LOAD_BATCH_SIZE == 0, "BK must be divisible by LOAD_BATCH_SIZE");
LoadVec reg_a[BK * BM / BLOCK_SIZE / LOAD_BATCH_SIZE];
LoadVec reg_b[BK * BN / BLOCK_SIZE / LOAD_BATCH_SIZE];
constexpr auto PK = ceil_div(BK, QUANT_SIZE);
static_assert(PK == 1, "PK must be 1 for now");
float reg_sa[ceil_div(PM, BLOCK_SIZE)];
float reg_sb[ceil_div(PN, BLOCK_SIZE)];
// threadblock swizzle
auto log_tile = 1;
auto block_idx_x = blockIdx.x >> log_tile;
auto block_idx_y = (blockIdx.y << log_tile) + ((blockIdx.x) & ((1 << (log_tile)) - 1));
if (block_idx_x >= ceil_div(N, BN) || block_idx_y >= ceil_div(M, BM)) {
return;
}
const int m = block_idx_y * BM;
const int n = block_idx_x * BN;
int k = 0;
auto global2reg = [&]() {
#pragma unroll
for (int reg = 0; reg < sizeof(reg_sa) / sizeof(float); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid + reg * BLOCK_SIZE;
// NOTE: don't branch here
// if (t > PM) {
// break;
// }
int i = t / PM;
int j = t % PM;
reg_sa[reg] = sa[k / QUANT_SIZE][(m + j)];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_sb) / sizeof(float); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid + reg * BLOCK_SIZE;
// NOTE: don't branch here
// if (t > PN) {
// break;
// }
int i = t / PN;
int j = t % PN;
reg_sb[reg] = sb[k / QUANT_SIZE][(n) / QUANT_SIZE + j];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_a) / sizeof(LoadVec); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
reg_a[reg] = *(LoadVec *)&a[m + i][k + j];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_b) / sizeof(LoadVec); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
reg_b[reg] = *(LoadVec *)&b[n + i][k + j];
}
};
auto reg2lds = [&]() {
#pragma unroll
for (int rega = 0; rega < sizeof(reg_sa) / sizeof(float); rega++) {
int ta = tid + rega * BLOCK_SIZE;
int j = ta % PM;
#pragma unroll
for (int regb = 0; regb < sizeof(reg_sb) / sizeof(float); regb++) {
int tb = tid + regb * BLOCK_SIZE;
int i = tb % PN;
s_s[i][j] = reg_sa[rega] * reg_sb[regb];
}
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_a) / sizeof(LoadVec); reg++) {
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
*(LoadVec *)&s_a[i][j] = reg_a[reg];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_b) / sizeof(LoadVec); reg++) {
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
*(LoadVec *)&s_b[i][j] = reg_b[reg];
}
};
if constexpr (PIPELINE) {
global2reg();
}
// Initialize the output accumulator fragments to zero
#pragma unroll
for (int i = 0; i < FRAG_M_PER_WARP; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N_PER_WARP; j++) {
wmma::fill_fragment(frag_r[i][j], 0.0f); // Use float literal
}
}
if constexpr (!PIPELINE) {
global2reg();
}
reg2lds();
for (int bk = 1; bk < iteration_over_k; bk++) {
k = bk * BK;
// Calculate remaining K for boundary checks if needed (not currently used by load_input)
// const int k_rem = K - k;
// Load data into shared memory
// load_input<in_data_type, BK, BM, K, M, BLOCK_SIZE, 32>(
// s_a, a, m, k);
// load_input<in_data_type, BK, BN, K, N, BLOCK_SIZE, 32>(
// s_b, b, n, k);
// Load scales into shared memory (using acc_data_type for s_s)
// load_scale<PM, PN, QM, QN, QK, QUANT_SIZE, BLOCK_SIZE, 1>(
// s_s, sa, sb, m, n, k);
if constexpr (PIPELINE) {
global2reg();
}
__syncthreads();
// Perform matrix multiplication using WMMA
wmma_compute<in_data_type, acc_data_type, FragC, FragA, FragB, PM, PN, BM, BN, BK, FRAG_M_PER_WARP,
FRAG_N_PER_WARP, FRAG_K, WMMA_M, WMMA_N, WMMA_K, WARP_M, WARP_N, BLOCK_SIZE, LOAD_BATCH_SIZE,
QUANT_SIZE>( // Pass calculated BLOCK_SIZE and LOAD_BATCH_SIZE
s_a, s_b, s_s, frag_r, wid / WARP_N, wid % WARP_N);
__syncthreads();
if constexpr (!PIPELINE) {
global2reg();
}
// __builtin_amdgcn_sched_barrier(0);
reg2lds();
}
__syncthreads();
wmma_compute<in_data_type, acc_data_type, FragC, FragA, FragB, PM, PN, BM, BN, BK, FRAG_M_PER_WARP, FRAG_N_PER_WARP,
FRAG_K, WMMA_M, WMMA_N, WMMA_K, WARP_M, WARP_N, BLOCK_SIZE, LOAD_BATCH_SIZE,
QUANT_SIZE>( // Pass calculated BLOCK_SIZE and LOAD_BATCH_SIZE
s_a, s_b, s_s, frag_r, wid / WARP_N, wid % WARP_N);
// Store results from accumulator fragments to global memory
store_result<acc_data_type, out_data_type, FragC, FragOut, WMMA_M, WMMA_N, BM, BN, M, N, FRAG_M_PER_WARP,
FRAG_N_PER_WARP>(c, frag_r, block_idx_y * BM, block_idx_x * BN, wid / WARP_N, wid % WARP_N);
};
}; // namespace gemm_kernel
HOST_CODE_BELOW
#ifndef PARAMETERIZE_LIBRARY
// Define type aliases to match those in the namespace
using fp8_type = gemm_kernel::in_data_type; // __hip_fp8_e4m3
using fp16_type = gemm_kernel::out_data_type; // __hip_bfloat16
using acc_data_type = gemm_kernel::acc_data_type; // float
// Define constants to match those in the namespace
constexpr int M = gemm_kernel::M; // 4096
constexpr int N = gemm_kernel::N; // 4096
constexpr int K = gemm_kernel::K; // 4096
constexpr int BM = gemm_kernel::BM; // 256
constexpr int BN = gemm_kernel::BN; // 128
constexpr int BK = gemm_kernel::BK; // 32
constexpr int BLOCK_SIZE = gemm_kernel::BLOCK_SIZE;
constexpr int QUANT_SIZE = gemm_kernel::QUANT_SIZE; // 128
// Define derived constants for the test
constexpr int QK = K / QUANT_SIZE;
constexpr int QM = M;
constexpr int QN = N / QUANT_SIZE;
// Helper function to check HIP errors
#define CHECK_HIP_ERROR(val) check((val), #val, __FILE__, __LINE__)
template <typename T> void check(T err, const char *const func, const char *const file, const int line) {
if (err != hipSuccess) {
fprintf(stderr, "HIP Runtime Error at: %s:%d\n", file, line);
fprintf(stderr, "%s %s\n", hipGetErrorString(err), func);
exit(1);
}
}
// Define a macro to check HIP errors
#define HIP_CALL(call) \
do { \
hipError_t err = call; \
if (err != hipSuccess) { \
fprintf(stderr, "HIP Error: %s at %s:%d\n", hipGetErrorString(err), __FILE__, __LINE__); \
exit(EXIT_FAILURE); \
} \
} while (0)
// CPU matrix multiplication implementation for result verification
void cpu_gemm(const fp8_type a[K][M], const fp8_type b[K][N], fp16_type c[M][N], const float sa[QK][QM],
const float sb[QK][QN]) {
float(*rc)[N] = new float[M][N];
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
rc[m][n] = 0.0f;
}
}
for (int k = 0; k < K; ++k) {
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
float scale = sa[k / QUANT_SIZE][m] * sb[k / QUANT_SIZE][n / QUANT_SIZE];
rc[m][n] += (scale * (float)a[k][m] * (float)b[k][n]);
}
}
}
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
c[m][n] = (fp16_type)rc[m][n];
}
}
delete[] rc;
}
int main() {
// Allocate host memory
fp8_type(*h_a)[M] = new fp8_type[K][M];
fp8_type(*h_b)[N] = new fp8_type[K][N];
fp16_type(*h_c)[N] = new fp16_type[M][N];
fp16_type(*h_c_ref)[N] = new fp16_type[M][N];
// Allocate host memory for quantization scale factors
float(*h_sa)[QM] = new float[QK][QM];
float(*h_sb)[QN] = new float[QK][QN];
// Initialize input data
for (int i = 0; i < K; ++i) {
for (int j = 0; j < M; ++j) {
h_a[i][j] = (fp8_type)((rand() % 10000) / 10000.0f);
}
}
for (int i = 0; i < K; ++i) {
for (int j = 0; j < N; ++j) {
h_b[i][j] = (fp8_type)((rand() % 10000) / 10000.0f);
}
}
// Initialize quantization scale factors
for (int i = 0; i < QK; ++i) {
for (int j = 0; j < QM; ++j) {
h_sa[i][j] = 1.0f;
}
}
for (int i = 0; i < QK; ++i) {
for (int j = 0; j < QN; ++j) {
h_sb[i][j] = 1.0f;
}
}
// Allocate device memory
fp8_type(*d_a)[K];
fp8_type(*d_b)[K];
fp16_type(*d_c)[N];
float(*d_sa)[QM];
float(*d_sb)[QN];
CHECK_HIP_ERROR(hipMalloc(&d_a, K * M * sizeof(fp8_type)));
CHECK_HIP_ERROR(hipMalloc(&d_b, K * N * sizeof(fp8_type)));
CHECK_HIP_ERROR(hipMalloc(&d_c, M * N * sizeof(fp16_type)));
CHECK_HIP_ERROR(hipMalloc(&d_sa, QK * QM * sizeof(float)));
CHECK_HIP_ERROR(hipMalloc(&d_sb, QK * QN * sizeof(float)));
// Copy data from host memory to device memory
CHECK_HIP_ERROR(hipMemcpy(d_a, h_a, K * M * sizeof(fp8_type), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_b, h_b, K * N * sizeof(fp8_type), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_sa, h_sa, QK * QM * sizeof(float), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_sb, h_sb, QK * QN * sizeof(float), hipMemcpyHostToDevice));
// Calculate grid and block sizes - ensure coverage of the entire matrix
dim3 grid((N + BN - 1) / BN, (M + BM - 1) / BM);
dim3 block(BLOCK_SIZE);
// Ensure block size is a multiple of 32, since warp size is 32
if (BLOCK_SIZE % 32 != 0) {
printf("Error: Block size must be a multiple of warp size (32)\n");
return 1;
}
// Check if device supports required compute capability
int deviceId;
HIP_CALL(hipGetDevice(&deviceId));
hipDeviceProp_t deviceProp;
HIP_CALL(hipGetDeviceProperties(&deviceProp, deviceId));
if (deviceProp.major < 7) {
printf("Error: This kernel requires a GPU with compute capability 7.0 or higher\n");
return 1;
}
printf("Running GEMM kernel with grid(%d,%d), block(%d)...\n", grid.x, grid.y, block.x);
// Query and print kernel and device information
printf("Querying kernel and device information...\n");
// Get device properties
HIP_CALL(hipGetDeviceProperties(&deviceProp, deviceId));
printf("Device Name: %s\n", deviceProp.name);
printf("Total Global Memory: %lu bytes\n", deviceProp.totalGlobalMem);
printf("Shared Memory per Block: %lu bytes\n", deviceProp.sharedMemPerBlock);
printf("Registers per Block: %d\n", deviceProp.regsPerBlock);
printf("Warp Size: %d\n", deviceProp.warpSize);
printf("Max Threads per Block: %d\n", deviceProp.maxThreadsPerBlock);
printf("Max Threads per Multiprocessor: %d\n", deviceProp.maxThreadsPerMultiProcessor);
printf("Number of Multiprocessors: %d\n", deviceProp.multiProcessorCount);
// Query kernel attributes
hipFuncAttributes funcAttr;
HIP_CALL(hipFuncGetAttributes(&funcAttr, (const void *)gemm_kernel::gemm_kernel));
printf("Kernel Attributes:\n");
printf(" Shared Memory Size: %lu bytes\n", funcAttr.sharedSizeBytes);
printf(" Number of Registers: %d\n", funcAttr.numRegs);
printf(" Max Threads per Block: %d\n", funcAttr.maxThreadsPerBlock);
printf(" Local Memory Size: %lu bytes\n", funcAttr.localSizeBytes);
// Zero the C matrix before launching kernel
CHECK_HIP_ERROR(hipMemset(d_c, 0, M * N * sizeof(fp16_type)));
// Perform warmup runs
printf("Performing warmup runs...\n");
gemm_kernel::gemm_kernel<<<grid, block>>>(d_a, d_b, d_c, d_sa, d_sb);
CHECK_HIP_ERROR(hipDeviceSynchronize());
gemm_kernel::gemm_kernel<<<grid, block>>>(d_a, d_b, d_c, d_sa, d_sb);
CHECK_HIP_ERROR(hipDeviceSynchronize());
// Declare and create timing events
hipEvent_t start, stop;
HIP_CALL(hipEventCreate(&start));
HIP_CALL(hipEventCreate(&stop));
// Ensure device synchronization before formal timing
CHECK_HIP_ERROR(hipDeviceSynchronize());
HIP_CALL(hipEventRecord(start));
// Launch kernel
printf("Launching kernel...\n");
gemm_kernel::gemm_kernel<<<grid, block>>>(d_a, d_b, d_c, d_sa, d_sb);
// Record end time and calculate execution time
HIP_CALL(hipEventRecord(stop));
// Record end time and calculate execution time
HIP_CALL(hipEventSynchronize(stop));
float milliseconds = 0;
HIP_CALL(hipEventElapsedTime(&milliseconds, start, stop));
printf("Kernel execution time: %f ms\n", milliseconds);
// Check HIP errors
CHECK_HIP_ERROR(hipGetLastError());
// Calculate GPU performance metrics
double operations = 2.0 * M * N * K; // Each multiply-add operation counts as 2 floating-point operations
double seconds = milliseconds / 1000.0;
double tflops = (operations / seconds) / 1e12;
printf("GPU Performance: %.2f TFLOPS\n", tflops);
return 0;
// Copy results from device memory back to host memory
CHECK_HIP_ERROR(hipMemcpy(h_c, d_c, M * N * sizeof(fp16_type), hipMemcpyDeviceToHost));
// Calculate reference results
printf("Computing reference result on CPU...\n");
cpu_gemm(h_a, h_b, h_c_ref, h_sa, h_sb);
// Print the first 10 values for comparison
printf("First 10 values (GPU vs CPU):\n");
int print_count = 0;
for (int i = 0; i < M && print_count < 10; ++i) {
for (int j = 0; j < N && print_count < 10; ++j) {
printf(" [%d, %d]: GPU=%f, CPU=%f\n", i, j, (float)h_c[i][j], (float)h_c_ref[i][j]);
print_count++;
}
}
// Verify results
printf("Verifying results...\n");
int errors = 0;
float max_abs_diff = 0.0f;
float max_rel_diff = 0.0f;
struct ErrorInfo {
int row, col;
float gpu_val, cpu_val, abs_diff, rel_diff;
};
ErrorInfo first_10_errors[10];
ErrorInfo max_10_errors[10] = {};
// Add a configurable variable for the number of errors to output
int max_errors_to_output = 10; // You can modify this value as needed
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
float gpu_val = (float)h_c[i][j];
float cpu_val = (float)h_c_ref[i][j];
float abs_diff;
float rel_diff;
if (std::isnan(gpu_val) || std::isnan(cpu_val)) {
abs_diff = INFINITY;
rel_diff = INFINITY;
} else {
abs_diff = abs(gpu_val - cpu_val);
rel_diff = abs_diff / (abs(cpu_val) + FLT_EPSILON);
}
// Track max absolute and relative differences
max_abs_diff = fmaxf(max_abs_diff, abs_diff);
max_rel_diff = fmaxf(max_rel_diff, rel_diff);
// Record first 10 errors
if (errors < max_errors_to_output && (rel_diff > 1e-2 || abs_diff > 1e-3)) {
first_10_errors[errors] = {i, j, gpu_val, cpu_val, abs_diff, rel_diff};
}
// Track top 10 largest errors
if (rel_diff > 1e-2 || abs_diff > 1e-3) {
errors++;
for (int k = 0; k < max_errors_to_output; ++k) {
if (abs_diff > max_10_errors[k].abs_diff) {
for (int l = max_errors_to_output - 1; l > k; --l) {
max_10_errors[l] = max_10_errors[l - 1];
}
max_10_errors[k] = {i, j, gpu_val, cpu_val, abs_diff, rel_diff};
break;
}
}
}
}
}
// Print first 10 errors
printf("First %d errors:\n", max_errors_to_output);
for (int i = 0; i < fmin(errors, max_errors_to_output); ++i) {
printf("Error at [%d, %d]: GPU=%f, CPU=%f, AbsDiff=%f, RelDiff=%f\n", first_10_errors[i].row,
first_10_errors[i].col, first_10_errors[i].gpu_val, first_10_errors[i].cpu_val,
first_10_errors[i].abs_diff, first_10_errors[i].rel_diff);
}
// Print top 10 largest errors
printf("Top %d largest errors:\n", max_errors_to_output);
for (int i = 0; i < max_errors_to_output && max_10_errors[i].abs_diff > 0; ++i) {
printf("Error at [%d, %d]: GPU=%f, CPU=%f, AbsDiff=%f, RelDiff=%f\n", max_10_errors[i].row,
max_10_errors[i].col, max_10_errors[i].gpu_val, max_10_errors[i].cpu_val, max_10_errors[i].abs_diff,
max_10_errors[i].rel_diff);
}
printf("Max abs_diff: %f, Max rel_diff: %f\n", max_abs_diff, max_rel_diff);
if (errors == 0) {
printf("Test PASSED!\n");
} else {
printf("Test FAILED with %d errors\n", errors);
}
// Calculate performance
double flops = 2.0 * M * N * K;
double gflops = (flops * 1e-9) / (milliseconds * 1e-3);
printf("Performance: %.2f GFLOPS\n", gflops);
// Free memory
delete[] h_a;
delete[] h_b;
delete[] h_c;
delete[] h_c_ref;
delete[] h_sa;
delete[] h_sb;
HIP_CALL(hipFree(d_a));
HIP_CALL(hipFree(d_b));
HIP_CALL(hipFree(d_c));
HIP_CALL(hipFree(d_sa));
HIP_CALL(hipFree(d_sb));
HIP_CALL(hipEventDestroy(start));
HIP_CALL(hipEventDestroy(stop));
return 0;
}
#endif
#pragma clang diagnostic pop
#endif |