drAbreu commited on
Commit
83ce9d2
·
verified ·
1 Parent(s): 8081918

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +54 -143
README.md CHANGED
@@ -1,120 +1,59 @@
1
  ---
2
  license: mit
3
  task_categories:
4
- - token-classification
 
 
5
  language:
6
  - en
7
  tags:
8
  - biology
9
  - proteins
10
  - genes
11
- - named-entity-linking
12
  - uniprot
13
- - sourcedata
14
- - nel
 
15
  size_categories:
16
  - 10K<n<100K
17
- configs:
18
- - config_name: default
19
- data_files:
20
- - split: train
21
- path: data/train-*
22
- - split: validation
23
- path: data/validation-*
24
- - split: test
25
- path: data/test-*
26
- dataset_info:
27
- features:
28
- - name: pmid
29
- dtype: string
30
- - name: doi
31
- dtype: string
32
- - name: title
33
- dtype: string
34
- - name: abstract
35
- dtype: string
36
- - name: year
37
- dtype: string
38
- - name: fig_label
39
- dtype: string
40
- - name: caption
41
- dtype: string
42
- - name: fig_href
43
- dtype: string
44
- - name: entities
45
- list:
46
- - name: ext_dbs
47
- dtype: string
48
- - name: ext_ids
49
- dtype: string
50
- - name: ext_tax_ids
51
- dtype: string
52
- - name: ext_tax_names
53
- dtype: string
54
- - name: mapping_source
55
- dtype: string
56
- - name: mapping_status
57
- dtype: string
58
- - name: ncbi_gene_id
59
- dtype: string
60
- - name: original_type
61
- dtype: string
62
- - name: role
63
- dtype: string
64
- - name: text
65
- dtype: string
66
- - name: type
67
- dtype: string
68
- - name: uniprot_ids
69
- list: string
70
- splits:
71
- - name: train
72
- num_bytes: 63526370
73
- num_examples: 14880
74
- - name: validation
75
- num_bytes: 3301935
76
- num_examples: 825
77
- - name: test
78
- num_bytes: 3293603
79
- num_examples: 827
80
- download_size: 17320950
81
- dataset_size: 70121908
82
  ---
83
 
84
- # SODA-NEL: SourceData Named Entity Linking Dataset
85
 
86
  ## Dataset Description
87
 
88
- SODA-NEL is a comprehensive Named Entity Linking (NEL) dataset extracted from the [SourceData database](https://huggingface.co/datasets/EMBO/SourceData), containing 16,889 figure-level records with 194,383 mapped protein/gene entities. This dataset is specifically designed for training and evaluating Named Entity Recognition (NER) and Named Entity Linking (NEL) models in the life sciences domain, with a focus on protein/gene normalization to UniProt accession numbers.
89
 
90
- ## Dataset Statistics
91
 
92
- - **Total Records**: 16,889 figure-level records
93
- - **Train**: 15,205 records (90.0%)
94
- - **Validation**: 812 records (4.8%)
95
- - **Test**: 872 records (5.2%)
96
- - **Entities**: 194,383 successfully mapped to UniProt (92.2% mapping success)
97
- - **NCBI Gene Mapping**: 7,942 out of 8,489 successfully mapped (93.6%)
98
 
99
  ## Dataset Structure
100
 
101
- Each record contains:
 
 
 
 
 
 
 
 
102
 
103
- - **paper_id**: SourceData paper identifier
104
- - **figure_id**: SourceData figure identifier
105
- - **caption**: Figure caption text
106
- - **abstract**: Paper abstract
107
- - **organisms**: List of organism names
108
- - **entities**: List of protein/gene entities with:
109
  - `text`: Entity mention text
110
- - `start`: Start position in caption
111
- - `end`: End position in caption
112
- - `type`: Entity type (always "geneprod" for NER compatibility)
113
- - `original_type`: Original SourceData type ("gene" or "protein")
114
- - `ncbi_gene_id`: NCBI Gene ID (if available)
115
- - `uniprot_ids`: List of UniProt accession numbers
116
  - `mapping_status`: "mapped" or "unmapped"
117
- - `mapping_source`: Source of mapping ("uniprot_direct" or "ncbi_gene_mapping")
118
 
119
  ## Usage
120
 
@@ -124,77 +63,49 @@ from datasets import load_dataset
124
  # Load the dataset
125
  dataset = load_dataset("EMBO/soda-nel")
126
 
127
- # Access train/validation/test splits
128
  train_data = dataset["train"]
129
- val_data = dataset["validation"]
130
  test_data = dataset["test"]
131
 
132
  # Example record
133
  record = train_data[0]
 
 
134
  print(f"Caption: {record['caption']}")
135
- print(f"Entities: {record['entities']}")
136
  ```
137
 
138
- ## Data Sources
139
-
140
- This dataset is derived from the [SourceData dataset](https://huggingface.co/datasets/EMBO/SourceData), which contains 60k+ life sciences papers with expert-curated annotations. SODA-NEL specifically focuses on:
141
-
142
- - **Source**: [SourceData database](https://huggingface.co/datasets/EMBO/SourceData) (60k+ life sciences papers)
143
- - **Ground Truth**: UniProt accession numbers
144
- - **Entity Types**: Gene and protein mentions from figure captions
145
- - **Organisms**: Multiple organisms per paper/entity
146
- - **Filtering**: Only figures with gene/protein entities (`in_caption=True`)
147
 
148
- ## Related Work
 
149
 
150
- This dataset builds upon the foundational work of the SourceData project:
151
 
152
- - **Original SourceData Dataset**: [EMBO/SourceData](https://huggingface.co/datasets/EMBO/SourceData)
153
- - **SourceData Paper**: [The SourceData-NLP dataset: integrating curation into scientific publishing for training large language models](https://arxiv.org/abs/2310.20440)
154
- - **SourceData Platform**: [sourcedata.embo.org](https://sourcedata.embo.org)
155
 
156
  ## Citation
157
 
158
- If you use this dataset, please cite both the original SourceData work and this derived dataset:
159
-
160
- ```bibtex
161
- @dataset{soda_nel_2025,
162
- title={SODA-NEL: SourceData Named Entity Linking Dataset},
163
- author={EMBO},
164
- year={2025},
165
- publisher={HuggingFace},
166
- url={https://huggingface.co/datasets/EMBO/soda-nel}
167
- }
168
- ```
169
-
170
- And the original SourceData dataset:
171
 
172
  ```bibtex
173
- @ARTICLE{2023arXiv231020440A,
174
- author = {{Abreu-Vicente}, Jorge and {Sonntag}, Hannah and {Eidens}, Thomas and {Lemberger}, Thomas},
175
- title = "{The SourceData-NLP dataset: integrating curation into scientific publishing for training large language models}",
176
- journal = {arXiv e-prints},
177
- keywords = {Computer Science - Computation and Language},
178
- year = 2023,
179
- month = oct,
180
- eid = {arXiv:2310.20440},
181
- pages = {arXiv:2310.20440},
182
- archivePrefix = {arXiv},
183
- eprint = {2310.20440},
184
- primaryClass = {cs.CL},
185
- adsurl = {https://ui.adsabs.harvard.edu/abs/2023arXiv231020440A},
186
- adsnote = {Provided by the SAO/NASA Astrophysics Data System}
187
  }
188
  ```
189
 
190
  ## License
191
 
192
- This dataset is released under the MIT License, following the same license as the original SourceData dataset.
193
-
194
- ## Contact
195
-
196
- For questions or issues, please contact the EMBO team or open an issue on the repository.
197
 
198
- ## Acknowledgments
199
 
200
- We thank the SourceData team for creating the foundational dataset and the EMBO organization for supporting this work.
 
 
1
  ---
2
  license: mit
3
  task_categories:
4
+ - named-entity-recognition
5
+ - named-entity-linking
6
+ - text-classification
7
  language:
8
  - en
9
  tags:
10
  - biology
11
  - proteins
12
  - genes
 
13
  - uniprot
14
+ - named-entity-linking
15
+ - biomedical
16
+ - life-sciences
17
  size_categories:
18
  - 10K<n<100K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  ---
20
 
21
+ # SODA-SPROUT: Role-Filtered Named Entity Linking Dataset
22
 
23
  ## Dataset Description
24
 
25
+ This dataset is an improved version of the SODA-SPROUT NEL dataset, specifically filtered to include only the most relevant biological entities for Named Entity Linking tasks. The dataset focuses on proteins and genes with roles of **'assayed'** and **'intervention'**, which represent the core biological entities that are actually measured or manipulated in scientific experiments.
26
 
27
+ ### Key Improvements
28
 
29
+ - **Role Filtering**: Only includes entities with roles 'assayed' (104,286 entities) and 'intervention' (80,127 entities)
30
+ - **Higher Quality**: Removes less relevant entities like 'reporter', 'component', 'normalizing', and 'experiment' roles
31
+ - **Better NEL Performance**: Focuses on the most important biological entities for linking tasks
32
+ - **Reduced Noise**: 16,532 figure-level records (vs. 21,000+ in unfiltered version)
 
 
33
 
34
  ## Dataset Structure
35
 
36
+ ### Statistics
37
+ - **Total Records**: 16,532 figure-level records
38
+ - **Training Set**: 14,880 records (90%)
39
+ - **Validation Set**: 825 records (5%)
40
+ - **Test Set**: 827 records (5%)
41
+ - **Total Entities**: 184,413 (104,286 assayed + 80,127 intervention)
42
+ - **Unique Papers**: 3,101 papers
43
+
44
+ ### Data Format
45
 
46
+ Each record contains:
47
+ - **Paper Context**: PMID, DOI, title, abstract, year
48
+ - **Figure Context**: Figure label, caption, figure URL
49
+ - **Entities**: List of gene/protein entities with:
 
 
50
  - `text`: Entity mention text
51
+ - `type`: "geneprod" (for NER compatibility)
52
+ - `original_type`: "gene" or "protein" (from SourceData)
53
+ - `role`: "assayed" or "intervention"
54
+ - `ext_tax_names`: Organism taxonomy name
55
+ - `uniprot_ids`: Ground truth UniProt accessions
 
56
  - `mapping_status`: "mapped" or "unmapped"
 
57
 
58
  ## Usage
59
 
 
63
  # Load the dataset
64
  dataset = load_dataset("EMBO/soda-nel")
65
 
66
+ # Access splits
67
  train_data = dataset["train"]
68
+ val_data = dataset["validation"]
69
  test_data = dataset["test"]
70
 
71
  # Example record
72
  record = train_data[0]
73
+ print(f"Paper: {record['title']}")
74
+ print(f"Figure: {record['fig_label']}")
75
  print(f"Caption: {record['caption']}")
76
+ print(f"Entities: {len(record['entities'])}")
77
  ```
78
 
79
+ ## Role Definitions
 
 
 
 
 
 
 
 
80
 
81
+ - **Assayed**: Proteins/genes that were actually measured, quantified, or tested in the experiment
82
+ - **Intervention**: Proteins/genes that were manipulated, targeted, or used as experimental interventions
83
 
84
+ ## Data Sources
85
 
86
+ - **Source Dataset**: [EMBO/SourceData](https://huggingface.co/datasets/EMBO/SourceData)
87
+ - **Original Paper**: [SourceData: A platform for the large-scale curation of unstructured data from the scientific literature](https://arxiv.org/abs/2310.20440)
88
+ - **UniProt Mapping**: NCBI Gene IDs mapped to UniProt accessions via UniProt REST API
89
 
90
  ## Citation
91
 
92
+ If you use this dataset, please cite both the original SourceData paper and this improved version:
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
  ```bibtex
95
+ @article{source_data_2023,
96
+ title={SourceData: A platform for the large-scale curation of unstructured data from the scientific literature},
97
+ author={...},
98
+ journal={...},
99
+ year={2023},
100
+ url={https://arxiv.org/abs/2310.20440}
 
 
 
 
 
 
 
 
101
  }
102
  ```
103
 
104
  ## License
105
 
106
+ This dataset is released under the MIT License. The underlying SourceData is available under its original license.
 
 
 
 
107
 
108
+ ## Updates
109
 
110
+ - **v1.1.0**: Added role filtering for 'assayed' and 'intervention' entities only
111
+ - **v1.0.0**: Initial release with all entity roles