root commited on
Commit
76b8566
·
1 Parent(s): 971080c
Files changed (2) hide show
  1. README.md +72 -6
  2. README_zh.md +69 -0
README.md CHANGED
@@ -1,6 +1,72 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
4
-
5
-
6
- # This is ExpressiveSpeech.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ # ExpressiveSpeech Dataset
5
+
6
+ [**中文版说明 (Chinese Version)**](./README_zh.md)
7
+
8
+ ## About The Dataset
9
+
10
+ **ExpressiveSpeech** is a **high-quality**, **expressive**, and **bilingual** (Chinese-English) speech dataset created to address the common lack of consistent vocal expressiveness in existing dialogue datasets.
11
+
12
+ This dataset is meticulously curated from five renowned open-source emotional dialogue datasets: Expresso, NCSSD, M3ED, MultiDialog, and IEMOCAP. Through a rigorous processing and selection pipeline, ExpressiveSpeech ensures that every utterance meets high standards for both acoustic quality and expressive richness. It is designed for tasks in expressive Speech-to-Speech (S2S), Text-to-Speech (TTS), voice conversion, speech emotion recognition, and other fields requiring high-fidelity, emotionally resonant audio.
13
+
14
+ ## Key Features
15
+
16
+ - **High Expressiveness**: Achieves a significantly high average expressiveness score of **80.2** by **DeEAR**, far surpassing the original source datasets.
17
+ - **Bilingual Content**: Contains a balanced mix of Chinese and English speech, with a language ratio close to **1:1**.
18
+ - **Substantial Scale**: Comprises approximately **14,000 utterances**, totaling **51 hours** of audio.
19
+ - **Rich Metadata**: Includes ASR-generated text transcriptions, expressiveness scores, and source information for each utterance.
20
+
21
+ ## Dataset Statistics
22
+
23
+ | Metric | Value |
24
+ | :--- | :--- |
25
+ | Total Utterances | ~14,000 |
26
+ | Total Duration | ~51 hours |
27
+ | Languages | Chinese, English |
28
+ | Language Ratio (CN:EN) | Approx. 1:1 |
29
+ | Sampling Rate | 16kHz, Mono |
30
+ | Avg. Expressiveness Score (DeEAR) | 80.2 |
31
+
32
+
33
+
34
+
35
+ ## Data Format
36
+
37
+ The dataset is organized as follows:
38
+
39
+ ```
40
+ ExpressiveSpeech.tar.gz/
41
+ ├── audio/
42
+ │ ├── M3ED
43
+ │ │ ├── audio_00001.wav
44
+ │ │ └── ...
45
+ │ ├── NCSSD
46
+ │ ├── IEMOCAP
47
+ │ ├── MultiDialog
48
+ │ └── Expresso
49
+ └── metadata.jsonl
50
+ ```
51
+
52
+ - **`ExpressiveSpeech.tar.gz`**: This package contains all the audio files in `.wav` format (16kHz, 16-bit, mono).
53
+ - **`metadata.jsonl`**: A jsonl file containing detailed information for each utterance. The metadata includes:
54
+ - `audio_path`: The relative path to the audio file.
55
+ - `value`: The ASR-generated text transcription.
56
+ - `emotion`: Emotion labels from the original datasets.
57
+ - `expressiveness_scores`: The expressiveness score from the **DeEAR** model.
58
+
59
+
60
+ ## License
61
+
62
+ In line with the non-commercial restrictions of its source datasets, the ExpressiveSpeech dataset is released under the **Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license**.
63
+
64
+ You can view the full license [here](https://creativecommons.org/licenses/by-nc-sa/4.0/).
65
+
66
+ ## Citation
67
+
68
+ If you use this dataset in your research, please cite our paper:
69
+
70
+ ```bibtex
71
+
72
+ ```
README_zh.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ---
4
+
5
+ # ExpressiveSpeech 数据集
6
+
7
+ [**English Version**](./README.md)
8
+
9
+ ## 关于数据集
10
+
11
+ **ExpressiveSpeech** 是一个**高质量**、**富有表现力**的**双语**(中文-英文)语音数据集,旨在解决现有对话数据集中普遍存在的语音缺乏表现力的问题。
12
+
13
+ 该数据集精心整理自五个知名的开源情感对话数据集:Expresso、NCSSD、M3ED、MultiDialog 和 IEMOCAP。通过一套严谨的数据处理与筛选流程,ExpressiveSpeech 确保了每一条语音片段都在声学质量和情感表现力丰富度上达到高标准。该数据集专为表现力语音转换 (Expressive S2S)、语音合成 (TTS)、声音转换 (Voice Conversion)、语音情感识别 (Speech Emotion Recognition) 以及其他需要高保真、富含情感的音频应用领域而设计。
14
+
15
+ ## 主要特点
16
+
17
+ - **高表现力**: 平均表现力得分高达 **80.2**,显著优于其原始来源数据集。
18
+ - **双语内容**: 包含均衡的中英文语音内容,语言比例接近 **1:1**。
19
+ - **数据规模可观**: 包含约 **14,000** 条语音片段,总时长达 **51** 小时。
20
+ - **丰富的元数据**: 为每条语音提供由 ASR 生成的文本转录、表现力得分以及来源信息。
21
+
22
+ ## 数据集统计
23
+
24
+ | 指标 | 数值 |
25
+ | :--- | :--- |
26
+ | 总语音条数 | ~14,000 |
27
+ | 总时长 | ~51 小时 |
28
+ | 语言 | 中文, 英文 |
29
+ | 语言比例 (中:英) | 约 1:1 |
30
+ | 采样率 | 16kHz, 单声道 |
31
+ | 平均表现力得分 (DeEAR) | 80.2 |
32
+
33
+ ## 数据格式
34
+
35
+ 数据集的组织结构如下:
36
+
37
+ ```
38
+ ExpressiveSpeech.tar.gz/
39
+ ├── audio/
40
+ │ ├── M3ED
41
+ │ │ ├── audio_00001.wav
42
+ │ │ └── ...
43
+ │ ├── NCSSD
44
+ │ ├── IEMOCAP
45
+ │ ├── MultiDialog
46
+ │ └── Expresso
47
+ └── metadata.jsonl
48
+ ```
49
+
50
+ - **`ExpressiveSpeech.tar.gz`**: 该压缩包包含所有 `.wav` 格式的音频文件(16kHz, 16-bit, 单声道)。
51
+ - **`metadata.jsonl`**: 一个 `jsonl` 文件,其中包含每条语音的详细信息。元数据包括:
52
+ - `audio_path`: 音频文件的相对路径。
53
+ - `value`: 由 ASR 生成的文本转录。
54
+ - `emotion`: 来自原数据集的情感标签。
55
+ - `expressiveness_scores`: 来自 **DeEAR** 模型的表现力得分。
56
+
57
+ ## 授权协议
58
+
59
+ 为遵循其源数据集的非商业性使用限制,ExpressiveSpeech 数据集在 **知识共享署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0) 许可协议**下发布。
60
+
61
+ 您可以在[此处](https://creativecommons.org/licenses/by-nc-sa/4.0/)查看完整的许可协议。
62
+
63
+ ## 如何引用
64
+
65
+ 如果您在研究中使用了本数据集,请引用我们的论文:
66
+
67
+ ```bibtex
68
+
69
+ ```