Update README.md
Browse files
README.md
CHANGED
|
@@ -33,26 +33,31 @@ configs:
|
|
| 33 |
path: data/location-*
|
| 34 |
- split: placement
|
| 35 |
path: data/placement-*
|
|
|
|
| 36 |
---
|
| 37 |
|
| 38 |
|
| 39 |
|
| 40 |
<!-- New benchmark release announcement -->
|
|
|
|
| 41 |
<div style="background-color: #ecfdf5; border-left: 4px solid #10b981; padding: 0.75em 1em; margin-top: 1em; color: #065f46; font-weight: bold; border-radius: 0.375em;">
|
| 42 |
π This repository contains the new version of <strong>RefSpatial-Bench</strong> β <strong>RefSpatial-Expand-Bench</strong>!<br>
|
| 43 |
Based on the original benchmark, the new version <strong>extends indoor scenes</strong> (e.g., factories, stores) and adds <strong>previously uncovered outdoor scenarios</strong> (e.g., streets, parking lots), providing a more comprehensive evaluation of spatial referring tasks.
|
| 44 |
</div>
|
| 45 |
|
|
|
|
| 46 |
<div style="background-color: #fef3c7; border-left: 4px solid #f59e0b; padding: 0.75em 1em; margin-top: 1em; color: #78350f; font-weight: bold; border-radius: 0.375em;">
|
| 47 |
π The paper associated with this benchmark, <strong>RoboRefer</strong>, has been accepted to <strong>NeurIPS 2025</strong>!<br>
|
| 48 |
Thank you all for your attention and support! π
|
| 49 |
</div>
|
| 50 |
|
| 51 |
|
|
|
|
| 52 |
<h1 style="display: flex; align-items: center; justify-content: center; font-size: 1.75em; font-weight: 600;">
|
| 53 |
-
|
|
|
|
| 54 |
<img src="https://huggingface.co/datasets/BAAI/RefSpatial-Bench/resolve/main/assets/logo.png" style="height: 60px; flex-shrink: 0;">
|
| 55 |
-
|
| 56 |
<span style="line-height: 1.2; margin-left: 0px; text-align: center;">
|
| 57 |
RefSpatial-Bench: A Benchmark for Multi-step Spatial Referring
|
| 58 |
</span>
|
|
@@ -63,7 +68,7 @@ configs:
|
|
| 63 |
<!-- # RefSpatial-Bench: A Benchmark for Multi-step Spatial Referring with Reasoning -->
|
| 64 |
|
| 65 |
<!-- [](https://huggingface.co/datasets/BAAI/RefSpatial-Bench) -->
|
| 66 |
-
|
| 67 |
<p align="center">
|
| 68 |
<a href="https://zhoues.github.io/RoboRefer"><img src="https://img.shields.io/badge/%F0%9F%8F%A0%20Project-Homepage-blue" alt="HomePage"></a>
|
| 69 |
|
|
@@ -77,6 +82,7 @@ configs:
|
|
| 77 |
</p>
|
| 78 |
|
| 79 |
|
|
|
|
| 80 |
Welcome to **RefSpatial-Bench**, a challenging benchmark based on real-world cluttered scenes to evaluate more complex multi-step spatial referring with reasoning.
|
| 81 |
|
| 82 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
|
@@ -85,6 +91,7 @@ Welcome to **RefSpatial-Bench**, a challenging benchmark based on real-world clu
|
|
| 85 |
|
| 86 |
|
| 87 |
<!-- ## π Table of Contents
|
|
|
|
| 88 |
* [π― Tasks](#π―-tasks)
|
| 89 |
* [π§ Reasoning Steps](#π§ -reasoning-steps)
|
| 90 |
* [π Dataset Structure](#π-dataset-structure)
|
|
@@ -99,16 +106,12 @@ Welcome to **RefSpatial-Bench**, a challenging benchmark based on real-world clu
|
|
| 99 |
* [π Dataset Statistics](#π-dataset-statistics)
|
| 100 |
* [π Performance Highlights](#π-performance-highlights)
|
| 101 |
* [π Citation](#π-citation)
|
| 102 |
-
--- -->
|
| 103 |
|
| 104 |
## π― Task Split
|
| 105 |
-
- Location Task: This task contains **100** samples, which requires model to predicts a 2D point indicating the **unique target object**.
|
| 106 |
-
|
| 107 |
-
- Placement Task: This task contains **100** samples, which requires model to predicts a 2D point within the **desired free space**.
|
| 108 |
|
| 109 |
-
-
|
| 110 |
-
|
| 111 |
-
<div style="background-color: #ffe4e6; border-left: 4px solid #dc2626; padding: 0.75em 1em; margin-top: 1em; color: #b91c1c; font-weight: bold; border-radius: 0.375em;"> β οΈ Warning: If your model is not trained with RefSpatial, Unseen set should not be used for evaluation. </div>
|
| 112 |
|
| 113 |
|
| 114 |
## π§ Reasoning Steps
|
|
@@ -124,6 +127,7 @@ We provide two formats:
|
|
| 124 |
<details>
|
| 125 |
<summary><strong>Hugging Face Datasets Format</strong></summary>
|
| 126 |
|
|
|
|
| 127 |
`data/` folder contains HF-compatible splits:
|
| 128 |
|
| 129 |
* `location`
|
|
@@ -135,6 +139,7 @@ Each sample includes:
|
|
| 135 |
| Field | Description |
|
| 136 |
| :------- | :----------------------------------------------------------- |
|
| 137 |
| `id` | Unique integer ID |
|
|
|
|
| 138 |
| `object` | Natural language description of target (object or free area), which is extracted from the `prompt` |
|
| 139 |
| `prompt` | Full Referring expressions |
|
| 140 |
| `suffix` | Instruction for answer formatting (**different models may use different suffixes or none**; we provide the format used by RoboRefer) |
|
|
@@ -147,6 +152,7 @@ Each sample includes:
|
|
| 147 |
<details>
|
| 148 |
<summary><strong>Raw Data Format</strong></summary>
|
| 149 |
|
|
|
|
| 150 |
For full reproducibility and visualization, we also include the original files under:
|
| 151 |
|
| 152 |
* `Location/`
|
|
@@ -173,9 +179,11 @@ Each entry in `question.json` has the following format:
|
|
| 173 |
"rgb_path": "image/40.png",
|
| 174 |
"mask_path": "mask/40.png",
|
| 175 |
"category": "location",
|
| 176 |
-
"step": 2
|
|
|
|
| 177 |
}
|
| 178 |
```
|
|
|
|
| 179 |
</details>
|
| 180 |
|
| 181 |
|
|
@@ -191,6 +199,7 @@ The following provides a quick guide on how to load and use the RefSpatial-Bench
|
|
| 191 |
<details>
|
| 192 |
<summary><strong>Method 1: Using Hugging Face Library</strong></summary>
|
| 193 |
|
|
|
|
| 194 |
You can load the dataset easily using the `datasets` library:
|
| 195 |
|
| 196 |
```python
|
|
@@ -218,12 +227,14 @@ print(f"Prompt (from HF Dataset): {sample['prompt']}")
|
|
| 218 |
print(f"Suffix (from HF Dataset): {sample['suffix']}")
|
| 219 |
print(f"Reasoning Steps (from HF Dataset): {sample['step']}")
|
| 220 |
```
|
|
|
|
| 221 |
</details>
|
| 222 |
|
| 223 |
<details>
|
| 224 |
<summary><strong>Method 2: Using Raw Data Files (JSON and Images)</strong></summary>
|
| 225 |
|
| 226 |
|
|
|
|
| 227 |
If you are working with the raw data format (e.g., after cloning the repository or downloading the raw files), you can load the questions from the `question.json` file for each split and then load the images and masks using a library like Pillow (PIL).
|
| 228 |
|
| 229 |
This example assumes you have the `location`, `placement`, and `unseen` folders (each containing `image/`, `mask/`, and `question.json`) in a known `base_data_path`.
|
|
@@ -272,17 +283,19 @@ if samples:
|
|
| 272 |
else:
|
| 273 |
print("No samples loaded.")
|
| 274 |
```
|
|
|
|
| 275 |
</details>
|
| 276 |
|
| 277 |
|
| 278 |
<details>
|
| 279 |
<summary><strong>Evaluating RoboRefer / RoboPoint</strong></summary>
|
| 280 |
|
|
|
|
| 281 |
To evaluate RoboRefer on RefSpatial-Bench:
|
| 282 |
|
| 283 |
1. **Prepare Input Prompt:**
|
| 284 |
|
| 285 |
-
|
| 286 |
|
| 287 |
```python
|
| 288 |
# Example for constructing the full input for a sample
|
|
@@ -324,7 +337,7 @@ To evaluate RoboRefer on RefSpatial-Bench:
|
|
| 324 |
# These scaled_roborefer_points are then used for evaluation against the mask.
|
| 325 |
```
|
| 326 |
|
| 327 |
-
|
| 328 |
|
| 329 |
</details>
|
| 330 |
|
|
@@ -332,6 +345,7 @@ To evaluate RoboRefer on RefSpatial-Bench:
|
|
| 332 |
<summary><strong>Evaluating Gemini Series</strong></summary>
|
| 333 |
|
| 334 |
|
|
|
|
| 335 |
To evaluate Gemini Series on RefSpatial-Bench:
|
| 336 |
|
| 337 |
1. **Prepare Input Prompt:**
|
|
@@ -345,46 +359,47 @@ To evaluate Gemini Series on RefSpatial-Bench:
|
|
| 345 |
|
| 346 |
2. **Model Prediction & JSON Parsing & Coordinate Scaling:**
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
|
|
|
| 365 |
|
| 366 |
-
|
| 367 |
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
|
| 389 |
3. **Evaluation:** Compare `scaled_gemini_points` against `sample["mask"]`. The main metric is **average success rate** β the percentage of predictions falling within the mask.
|
| 390 |
|
|
@@ -393,6 +408,7 @@ To evaluate Gemini Series on RefSpatial-Bench:
|
|
| 393 |
<details>
|
| 394 |
<summary><strong>Evaluating the Molmo</strong></summary>
|
| 395 |
|
|
|
|
| 396 |
To evaluate a Molmo model on this benchmark:
|
| 397 |
|
| 398 |
1. **Prepare Input Prompt:**
|
|
@@ -414,6 +430,7 @@ To evaluate a Molmo model on this benchmark:
|
|
| 414 |
|
| 415 |
1. Divide each coordinate by 100.0 to normalize it to the 0.0-1.0 range.
|
| 416 |
2. Scaled to the original image dimensions (height for y, width for x).
|
|
|
|
| 417 |
```python
|
| 418 |
# Example: model_output_molmo is '<points x1="61.5" y1="40.4" x2="76.8" y2="21.8"/>' from Molmo
|
| 419 |
# and sample["image"] is a PIL Image object loaded by the datasets library or loaded from the raw data
|
|
@@ -431,45 +448,70 @@ To evaluate a Molmo model on this benchmark:
|
|
| 431 |
```
|
| 432 |
|
| 433 |
3. **Evaluation:** Compare `scaled_molmo_points` against `sample["mask"]`. The main metric is **average success rate** β the percentage of predictions falling within the mask.
|
| 434 |
-
</details>
|
| 435 |
|
| 436 |
|
| 437 |
## π Dataset Statistics
|
| 438 |
|
| 439 |
Detailed statistics on `step` distributions and instruction lengths are provided in the table below.
|
| 440 |
|
| 441 |
-
|
|
| 442 |
-
|
|
| 443 |
-
|
|
| 444 |
-
|
|
| 445 |
-
|
|
| 446 |
-
|
| 447 |
-
|
|
| 448 |
-
|
|
| 449 |
-
|
|
| 450 |
-
|
|
| 451 |
-
|
|
| 452 |
-
| **
|
| 453 |
-
|
|
| 454 |
-
|
|
| 455 |
-
|
|
| 456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
|
| 458 |
## π Performance Highlights
|
| 459 |
|
| 460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
-
| **Benchmark** | **Gemini-2.5-Pro** | **SpaceLLaVA** | **RoboPoint** | **Molmo-7B** | **Molmo-72B** | **RoboRefer 2B-SFT** | **RoboRefer 8B-SFT** | **RoboRefer 2B-RFT** |
|
| 463 |
-
| :----------------: | :----------------: | :------------: | :-----------: | :----------: | :-----------: | :------------: | :------------: | :------------: |
|
| 464 |
-
| RefSpatial-Bench-L | 46.96 | 5.82 | 22.87 | 21.91 | 45.77 | <u>47.00</u> | **52.00** | **52.00** |
|
| 465 |
-
| RefSpatial-Bench-P | 24.21 | 4.31 | 9.27 | 12.85 | 14.74 | 48.00 | <u>53.00</u> | **54.00** |
|
| 466 |
-
| RefSpatial-Bench-U | 27.14 | 4.02 | 8.40 | 12.23 | 21.24 | 33.77 | <u>37.66</u> | **41.56** |
|
| 467 |
|
| 468 |
## π« Contact
|
| 469 |
|
| 470 |
If you have any questions about the benchmark, feel free to email Jingkun (anjingkun02@gmail.com) and Enshen (zhouenshen@buaa.edu.cn).
|
| 471 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
| 472 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fanjingkun.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
|
|
|
| 473 |
## π Citation
|
| 474 |
|
| 475 |
Please consider citing our work if this benchmark is useful for your research.
|
|
|
|
| 33 |
path: data/location-*
|
| 34 |
- split: placement
|
| 35 |
path: data/placement-*
|
| 36 |
+
|
| 37 |
---
|
| 38 |
|
| 39 |
|
| 40 |
|
| 41 |
<!-- New benchmark release announcement -->
|
| 42 |
+
|
| 43 |
<div style="background-color: #ecfdf5; border-left: 4px solid #10b981; padding: 0.75em 1em; margin-top: 1em; color: #065f46; font-weight: bold; border-radius: 0.375em;">
|
| 44 |
π This repository contains the new version of <strong>RefSpatial-Bench</strong> β <strong>RefSpatial-Expand-Bench</strong>!<br>
|
| 45 |
Based on the original benchmark, the new version <strong>extends indoor scenes</strong> (e.g., factories, stores) and adds <strong>previously uncovered outdoor scenarios</strong> (e.g., streets, parking lots), providing a more comprehensive evaluation of spatial referring tasks.
|
| 46 |
</div>
|
| 47 |
|
| 48 |
+
|
| 49 |
<div style="background-color: #fef3c7; border-left: 4px solid #f59e0b; padding: 0.75em 1em; margin-top: 1em; color: #78350f; font-weight: bold; border-radius: 0.375em;">
|
| 50 |
π The paper associated with this benchmark, <strong>RoboRefer</strong>, has been accepted to <strong>NeurIPS 2025</strong>!<br>
|
| 51 |
Thank you all for your attention and support! π
|
| 52 |
</div>
|
| 53 |
|
| 54 |
|
| 55 |
+
|
| 56 |
<h1 style="display: flex; align-items: center; justify-content: center; font-size: 1.75em; font-weight: 600;">
|
| 57 |
+
|
| 58 |
+
|
| 59 |
<img src="https://huggingface.co/datasets/BAAI/RefSpatial-Bench/resolve/main/assets/logo.png" style="height: 60px; flex-shrink: 0;">
|
| 60 |
+
|
| 61 |
<span style="line-height: 1.2; margin-left: 0px; text-align: center;">
|
| 62 |
RefSpatial-Bench: A Benchmark for Multi-step Spatial Referring
|
| 63 |
</span>
|
|
|
|
| 68 |
<!-- # RefSpatial-Bench: A Benchmark for Multi-step Spatial Referring with Reasoning -->
|
| 69 |
|
| 70 |
<!-- [](https://huggingface.co/datasets/BAAI/RefSpatial-Bench) -->
|
| 71 |
+
|
| 72 |
<p align="center">
|
| 73 |
<a href="https://zhoues.github.io/RoboRefer"><img src="https://img.shields.io/badge/%F0%9F%8F%A0%20Project-Homepage-blue" alt="HomePage"></a>
|
| 74 |
|
|
|
|
| 82 |
</p>
|
| 83 |
|
| 84 |
|
| 85 |
+
|
| 86 |
Welcome to **RefSpatial-Bench**, a challenging benchmark based on real-world cluttered scenes to evaluate more complex multi-step spatial referring with reasoning.
|
| 87 |
|
| 88 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
<!-- ## π Table of Contents
|
| 94 |
+
|
| 95 |
* [π― Tasks](#π―-tasks)
|
| 96 |
* [π§ Reasoning Steps](#π§ -reasoning-steps)
|
| 97 |
* [π Dataset Structure](#π-dataset-structure)
|
|
|
|
| 106 |
* [π Dataset Statistics](#π-dataset-statistics)
|
| 107 |
* [π Performance Highlights](#π-performance-highlights)
|
| 108 |
* [π Citation](#π-citation)
|
| 109 |
+
--- -->
|
| 110 |
|
| 111 |
## π― Task Split
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
- Location Task: This task contains **241** samples, which requires model to predicts a 2D point indicating the **unique target object**.
|
| 114 |
+
- Placement Task: This task contains **200** samples, which requires model to predicts a 2D point within the **desired free space**.
|
|
|
|
| 115 |
|
| 116 |
|
| 117 |
## π§ Reasoning Steps
|
|
|
|
| 127 |
<details>
|
| 128 |
<summary><strong>Hugging Face Datasets Format</strong></summary>
|
| 129 |
|
| 130 |
+
|
| 131 |
`data/` folder contains HF-compatible splits:
|
| 132 |
|
| 133 |
* `location`
|
|
|
|
| 139 |
| Field | Description |
|
| 140 |
| :------- | :----------------------------------------------------------- |
|
| 141 |
| `id` | Unique integer ID |
|
| 142 |
+
| scene | indoor or outdoor |
|
| 143 |
| `object` | Natural language description of target (object or free area), which is extracted from the `prompt` |
|
| 144 |
| `prompt` | Full Referring expressions |
|
| 145 |
| `suffix` | Instruction for answer formatting (**different models may use different suffixes or none**; we provide the format used by RoboRefer) |
|
|
|
|
| 152 |
<details>
|
| 153 |
<summary><strong>Raw Data Format</strong></summary>
|
| 154 |
|
| 155 |
+
|
| 156 |
For full reproducibility and visualization, we also include the original files under:
|
| 157 |
|
| 158 |
* `Location/`
|
|
|
|
| 179 |
"rgb_path": "image/40.png",
|
| 180 |
"mask_path": "mask/40.png",
|
| 181 |
"category": "location",
|
| 182 |
+
"step": 2,
|
| 183 |
+
"scene": indoor
|
| 184 |
}
|
| 185 |
```
|
| 186 |
+
|
| 187 |
</details>
|
| 188 |
|
| 189 |
|
|
|
|
| 199 |
<details>
|
| 200 |
<summary><strong>Method 1: Using Hugging Face Library</strong></summary>
|
| 201 |
|
| 202 |
+
|
| 203 |
You can load the dataset easily using the `datasets` library:
|
| 204 |
|
| 205 |
```python
|
|
|
|
| 227 |
print(f"Suffix (from HF Dataset): {sample['suffix']}")
|
| 228 |
print(f"Reasoning Steps (from HF Dataset): {sample['step']}")
|
| 229 |
```
|
| 230 |
+
|
| 231 |
</details>
|
| 232 |
|
| 233 |
<details>
|
| 234 |
<summary><strong>Method 2: Using Raw Data Files (JSON and Images)</strong></summary>
|
| 235 |
|
| 236 |
|
| 237 |
+
|
| 238 |
If you are working with the raw data format (e.g., after cloning the repository or downloading the raw files), you can load the questions from the `question.json` file for each split and then load the images and masks using a library like Pillow (PIL).
|
| 239 |
|
| 240 |
This example assumes you have the `location`, `placement`, and `unseen` folders (each containing `image/`, `mask/`, and `question.json`) in a known `base_data_path`.
|
|
|
|
| 283 |
else:
|
| 284 |
print("No samples loaded.")
|
| 285 |
```
|
| 286 |
+
|
| 287 |
</details>
|
| 288 |
|
| 289 |
|
| 290 |
<details>
|
| 291 |
<summary><strong>Evaluating RoboRefer / RoboPoint</strong></summary>
|
| 292 |
|
| 293 |
+
|
| 294 |
To evaluate RoboRefer on RefSpatial-Bench:
|
| 295 |
|
| 296 |
1. **Prepare Input Prompt:**
|
| 297 |
|
| 298 |
+
Concatenate `sample["prompt"]` and `sample["suffix"]` to form the complete instruction.
|
| 299 |
|
| 300 |
```python
|
| 301 |
# Example for constructing the full input for a sample
|
|
|
|
| 337 |
# These scaled_roborefer_points are then used for evaluation against the mask.
|
| 338 |
```
|
| 339 |
|
| 340 |
+
3. **Evaluation:** Compare `scaled_roborefer_points` against `sample["mask"]`. The main metric is **average success rate** β the percentage of predictions falling within the mask.
|
| 341 |
|
| 342 |
</details>
|
| 343 |
|
|
|
|
| 345 |
<summary><strong>Evaluating Gemini Series</strong></summary>
|
| 346 |
|
| 347 |
|
| 348 |
+
|
| 349 |
To evaluate Gemini Series on RefSpatial-Bench:
|
| 350 |
|
| 351 |
1. **Prepare Input Prompt:**
|
|
|
|
| 359 |
|
| 360 |
2. **Model Prediction & JSON Parsing & Coordinate Scaling:**
|
| 361 |
|
| 362 |
+
* **Model Prediction:** After providing the image (`sample["image"]`) and `full_input_instruction` to the Gemini model series, it outputs **normalized coordinates in an JSON format** like `"```json\n[\n {\"point\": [y, x], \"label\": \"free space\"}, ...\n]\n```"`, where each `y` and `x` value is normalized to a range of 0-1000.
|
| 363 |
+
|
| 364 |
+
* **JSON Parsing:** Parse this JSON string to extract the coordinate attributes (e.g., `x1`, `y1`, `x2`, `y2`, etc.).
|
| 365 |
+
|
| 366 |
+
* **Coordinate Conversion:** To use these coordinates for evaluation against the mask, they must be:
|
| 367 |
+
|
| 368 |
+
1. Divided by 1000.0 to normalize them to the 0.0-1.0 range.
|
| 369 |
+
2. Scaled to the original image dimensions (height for y, width for x).
|
| 370 |
+
|
| 371 |
+
```python
|
| 372 |
+
# Example: model_output_gemini is "```json\n[\n {\"point\": [438, 330], \"label\": \"free space\"}\n]\n```" from Gemini
|
| 373 |
+
# and sample["image"] is a PIL Image object loaded by the datasets library or loaded from the raw data
|
| 374 |
+
|
| 375 |
+
def json2pts(text, width, height):
|
| 376 |
+
match = re.search(r"```(?:\w+)?\n(.*?)```", text, re.DOTALL)
|
| 377 |
+
if not match:
|
| 378 |
+
print("No valid code block found.")
|
| 379 |
+
return np.empty((0, 2), dtype=int)
|
| 380 |
|
| 381 |
+
json_cleaned = match.group(1).strip()
|
| 382 |
|
| 383 |
+
try:
|
| 384 |
+
data = json.loads(json_cleaned)
|
| 385 |
+
except json.JSONDecodeError as e:
|
| 386 |
+
print(f"JSON decode error: {e}")
|
| 387 |
+
return np.empty((0, 2), dtype=int)
|
| 388 |
|
| 389 |
+
points = []
|
| 390 |
+
for item in data:
|
| 391 |
+
if "point" in item and isinstance(item["point"], list) and len(item["point"]) == 2:
|
| 392 |
+
y_norm, x_norm = item["point"]
|
| 393 |
+
x = int(x_norm / 1000 * width)
|
| 394 |
+
y = int(y_norm / 1000 * height)
|
| 395 |
+
points.append((x, y))
|
| 396 |
|
| 397 |
+
return np.array(points)
|
| 398 |
+
|
| 399 |
+
width, height = sample["image"].size
|
| 400 |
+
scaled_gemini_points = json2pts(model_output_gemini, width, height)
|
| 401 |
+
# These scaled_gemini_points are then used for evaluation against the mask.
|
| 402 |
+
```
|
| 403 |
|
| 404 |
3. **Evaluation:** Compare `scaled_gemini_points` against `sample["mask"]`. The main metric is **average success rate** β the percentage of predictions falling within the mask.
|
| 405 |
|
|
|
|
| 408 |
<details>
|
| 409 |
<summary><strong>Evaluating the Molmo</strong></summary>
|
| 410 |
|
| 411 |
+
|
| 412 |
To evaluate a Molmo model on this benchmark:
|
| 413 |
|
| 414 |
1. **Prepare Input Prompt:**
|
|
|
|
| 430 |
|
| 431 |
1. Divide each coordinate by 100.0 to normalize it to the 0.0-1.0 range.
|
| 432 |
2. Scaled to the original image dimensions (height for y, width for x).
|
| 433 |
+
|
| 434 |
```python
|
| 435 |
# Example: model_output_molmo is '<points x1="61.5" y1="40.4" x2="76.8" y2="21.8"/>' from Molmo
|
| 436 |
# and sample["image"] is a PIL Image object loaded by the datasets library or loaded from the raw data
|
|
|
|
| 448 |
```
|
| 449 |
|
| 450 |
3. **Evaluation:** Compare `scaled_molmo_points` against `sample["mask"]`. The main metric is **average success rate** β the percentage of predictions falling within the mask.
|
| 451 |
+
</details>
|
| 452 |
|
| 453 |
|
| 454 |
## π Dataset Statistics
|
| 455 |
|
| 456 |
Detailed statistics on `step` distributions and instruction lengths are provided in the table below.
|
| 457 |
|
| 458 |
+
| Task Type | Indoor | Outdoor | Total |
|
| 459 |
+
| --------- | ------- | ------- | ------- |
|
| 460 |
+
| Location | 115 | 126 | 241 |
|
| 461 |
+
| Placement | 120 | 80 | 200 |
|
| 462 |
+
| **Total** | **235** | **206** | **441** |
|
| 463 |
+
|
| 464 |
+
| Task Type | Step | Samples | Avg. Prompt Length |
|
| 465 |
+
| --------- | -------------- | ------- | ------------------ |
|
| 466 |
+
| Location | Step 1 | 54 | 10.61 |
|
| 467 |
+
| | Step 2 | 129 | 12.56 |
|
| 468 |
+
| | Step 3 | 58 | 16.10 |
|
| 469 |
+
| | **Avg. (All)** | **241** | **12.98** |
|
| 470 |
+
| Placement | Step 1 | 3 | 15.00 |
|
| 471 |
+
| | Step 2 | 86 | 15.14 |
|
| 472 |
+
| | Step 3 | 75 | 16.95 |
|
| 473 |
+
| | Step 4 | 29 | 22.24 |
|
| 474 |
+
| | Step 5 | 7 | 22.71 |
|
| 475 |
+
| | **Avg. (All)** | **200** | **17.11** |
|
| 476 |
+
|
| 477 |
+
|
| 478 |
|
| 479 |
## π Performance Highlights
|
| 480 |
|
| 481 |
+
Detailed accuracy results of RoboRefer-2B-SFT and RoboRefer-8B-SFT Models on RefSpatial-Bench-Expand
|
| 482 |
+
|
| 483 |
+
#### **Location Task**
|
| 484 |
+
|
| 485 |
+
| Category | 2B SFT | 8B SFT |
|
| 486 |
+
| -------- | ------ | ------ |
|
| 487 |
+
| Overall | 50.21 | 61.00 |
|
| 488 |
+
| Indoor | 49.57 | 58.26 |
|
| 489 |
+
| Outdoor | 50.79 | 63.49 |
|
| 490 |
+
| Step 1 | 61.11 | 72.22 |
|
| 491 |
+
| Step 2 | 52.71 | 62.02 |
|
| 492 |
+
| Step 3 | 34.48 | 48.28 |
|
| 493 |
+
|
| 494 |
+
#### **Placement Task**
|
| 495 |
+
|
| 496 |
+
| Category | 2B SFT | 8B SFT |
|
| 497 |
+
| -------- | ------ | ------ |
|
| 498 |
+
| Overall | 48.50 | 60.00 |
|
| 499 |
+
| Indoor | 50.83 | 60.00 |
|
| 500 |
+
| Outdoor | 45.00 | 60.00 |
|
| 501 |
+
| Step 1 | 33.33 | 33.33 |
|
| 502 |
+
| Step 2 | 41.86 | 51.16 |
|
| 503 |
+
| Step 3 | 54.67 | 70.67 |
|
| 504 |
+
| Step 4 | 48.28 | 55.17 |
|
| 505 |
+
| Step 5 | 71.43 | 85.71 |
|
| 506 |
+
|
| 507 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
## π« Contact
|
| 510 |
|
| 511 |
If you have any questions about the benchmark, feel free to email Jingkun (anjingkun02@gmail.com) and Enshen (zhouenshen@buaa.edu.cn).
|
| 512 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
| 513 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fanjingkun.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
| 514 |
+
|
| 515 |
## π Citation
|
| 516 |
|
| 517 |
Please consider citing our work if this benchmark is useful for your research.
|