Update README.md
Browse files
README.md
CHANGED
|
@@ -59,15 +59,14 @@ configs:
|
|
| 59 |
<img src="https://huggingface.co/datasets/BAAI/RefSpatial-Bench/resolve/main/assets/logo.png" style="height: 60px; flex-shrink: 0;">
|
| 60 |
|
| 61 |
<span style="line-height: 1.2; margin-left: 0px; text-align: center;">
|
| 62 |
-
RefSpatial-Bench: A Benchmark for Multi-step Spatial Referring
|
| 63 |
</span>
|
| 64 |
|
| 65 |
</h1>
|
| 66 |
|
|
|
|
| 67 |
|
| 68 |
-
<!--
|
| 69 |
-
|
| 70 |
-
<!-- [](https://huggingface.co/datasets/BAAI/RefSpatial-Bench) -->
|
| 71 |
|
| 72 |
<p align="center">
|
| 73 |
<a href="https://zhoues.github.io/RoboRefer"><img src="https://img.shields.io/badge/%F0%9F%8F%A0%20Project-Homepage-blue" alt="HomePage"></a>
|
|
@@ -83,7 +82,7 @@ configs:
|
|
| 83 |
|
| 84 |
|
| 85 |
|
| 86 |
-
Welcome to **RefSpatial-Bench**, a challenging benchmark based on real-world cluttered scenes to evaluate more complex multi-step spatial referring with reasoning.
|
| 87 |
|
| 88 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
| 89 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fanjingkun.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
|
@@ -132,14 +131,13 @@ We provide two formats:
|
|
| 132 |
|
| 133 |
* `location`
|
| 134 |
* `placement`
|
| 135 |
-
* `unseen`
|
| 136 |
|
| 137 |
Each sample includes:
|
| 138 |
|
| 139 |
| Field | Description |
|
| 140 |
| :------- | :----------------------------------------------------------- |
|
| 141 |
| `id` | Unique integer ID |
|
| 142 |
-
| scene
|
| 143 |
| `object` | Natural language description of target (object or free area), which is extracted from the `prompt` |
|
| 144 |
| `prompt` | Full Referring expressions |
|
| 145 |
| `suffix` | Instruction for answer formatting (**different models may use different suffixes or none**; we provide the format used by RoboRefer) |
|
|
@@ -157,7 +155,6 @@ For full reproducibility and visualization, we also include the original files u
|
|
| 157 |
|
| 158 |
* `Location/`
|
| 159 |
* `Placement/`
|
| 160 |
-
* `Unseen/`
|
| 161 |
|
| 162 |
Each folder contains:
|
| 163 |
|
|
@@ -180,7 +177,7 @@ Each entry in `question.json` has the following format:
|
|
| 180 |
"mask_path": "mask/40.png",
|
| 181 |
"category": "location",
|
| 182 |
"step": 2,
|
| 183 |
-
"scene": indoor
|
| 184 |
}
|
| 185 |
```
|
| 186 |
|
|
@@ -190,10 +187,10 @@ Each entry in `question.json` has the following format:
|
|
| 190 |
## π How to Use RefSpaital-Bench
|
| 191 |
|
| 192 |
|
| 193 |
-
<!-- This section explains different ways to load and use the RefSpatial-Bench dataset. -->
|
| 194 |
|
| 195 |
The official evaluation code is available at https://github.com/Zhoues/RoboRefer.
|
| 196 |
-
The following provides a quick guide on how to load and use the RefSpatial-Bench.
|
| 197 |
|
| 198 |
|
| 199 |
<details>
|
|
@@ -207,13 +204,13 @@ from datasets import load_dataset
|
|
| 207 |
|
| 208 |
# Load the entire dataset (all splits: location, placement, unseen)
|
| 209 |
# This returns a DatasetDict
|
| 210 |
-
dataset_dict = load_dataset("
|
| 211 |
|
| 212 |
# Access a specific split, for example 'location'
|
| 213 |
location_split_hf = dataset_dict["location"]
|
| 214 |
|
| 215 |
# Or load only a specific split directly (returns a Dataset object)
|
| 216 |
-
# location_split_direct = load_dataset("
|
| 217 |
|
| 218 |
# Access a sample from the location split
|
| 219 |
sample = location_split_hf[0]
|
|
@@ -291,7 +288,7 @@ else:
|
|
| 291 |
<summary><strong>Evaluating RoboRefer / RoboPoint</strong></summary>
|
| 292 |
|
| 293 |
|
| 294 |
-
To evaluate RoboRefer on RefSpatial-Bench:
|
| 295 |
|
| 296 |
1. **Prepare Input Prompt:**
|
| 297 |
|
|
@@ -346,7 +343,7 @@ To evaluate RoboRefer on RefSpatial-Bench:
|
|
| 346 |
|
| 347 |
|
| 348 |
|
| 349 |
-
To evaluate Gemini Series on RefSpatial-Bench:
|
| 350 |
|
| 351 |
1. **Prepare Input Prompt:**
|
| 352 |
|
|
@@ -478,7 +475,7 @@ Detailed statistics on `step` distributions and instruction lengths are provided
|
|
| 478 |
|
| 479 |
## π Performance Highlights
|
| 480 |
|
| 481 |
-
Detailed accuracy results of RoboRefer-2B-SFT and RoboRefer-8B-SFT Models on RefSpatial-Bench
|
| 482 |
|
| 483 |
#### **Location Task**
|
| 484 |
|
|
|
|
| 59 |
<img src="https://huggingface.co/datasets/BAAI/RefSpatial-Bench/resolve/main/assets/logo.png" style="height: 60px; flex-shrink: 0;">
|
| 60 |
|
| 61 |
<span style="line-height: 1.2; margin-left: 0px; text-align: center;">
|
| 62 |
+
RefSpatial-Expand-Bench: A Benchmark for Multi-step Spatial Referring
|
| 63 |
</span>
|
| 64 |
|
| 65 |
</h1>
|
| 66 |
|
| 67 |
+
<!-- # RefSpatial-Expand-Bench: A Benchmark for Multi-step Spatial Referring with Reasoning -->
|
| 68 |
|
| 69 |
+
<!-- [](https://huggingface.co/datasets/JingkunAn/RefSpatial-Expand-Bench) -->
|
|
|
|
|
|
|
| 70 |
|
| 71 |
<p align="center">
|
| 72 |
<a href="https://zhoues.github.io/RoboRefer"><img src="https://img.shields.io/badge/%F0%9F%8F%A0%20Project-Homepage-blue" alt="HomePage"></a>
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
|
| 85 |
+
Welcome to **RefSpatial-Expand-Bench**, a challenging benchmark based on real-world cluttered scenes to evaluate more complex multi-step spatial referring with reasoning.
|
| 86 |
|
| 87 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
| 88 |
<img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fanjingkun.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
|
|
|
|
| 131 |
|
| 132 |
* `location`
|
| 133 |
* `placement`
|
|
|
|
| 134 |
|
| 135 |
Each sample includes:
|
| 136 |
|
| 137 |
| Field | Description |
|
| 138 |
| :------- | :----------------------------------------------------------- |
|
| 139 |
| `id` | Unique integer ID |
|
| 140 |
+
| `scene` | Indoor or outdoor |
|
| 141 |
| `object` | Natural language description of target (object or free area), which is extracted from the `prompt` |
|
| 142 |
| `prompt` | Full Referring expressions |
|
| 143 |
| `suffix` | Instruction for answer formatting (**different models may use different suffixes or none**; we provide the format used by RoboRefer) |
|
|
|
|
| 155 |
|
| 156 |
* `Location/`
|
| 157 |
* `Placement/`
|
|
|
|
| 158 |
|
| 159 |
Each folder contains:
|
| 160 |
|
|
|
|
| 177 |
"mask_path": "mask/40.png",
|
| 178 |
"category": "location",
|
| 179 |
"step": 2,
|
| 180 |
+
"scene": "indoor"
|
| 181 |
}
|
| 182 |
```
|
| 183 |
|
|
|
|
| 187 |
## π How to Use RefSpaital-Bench
|
| 188 |
|
| 189 |
|
| 190 |
+
<!-- This section explains different ways to load and use the RefSpatial-Expand-Bench dataset. -->
|
| 191 |
|
| 192 |
The official evaluation code is available at https://github.com/Zhoues/RoboRefer.
|
| 193 |
+
The following provides a quick guide on how to load and use the RefSpatial-Expand-Bench.
|
| 194 |
|
| 195 |
|
| 196 |
<details>
|
|
|
|
| 204 |
|
| 205 |
# Load the entire dataset (all splits: location, placement, unseen)
|
| 206 |
# This returns a DatasetDict
|
| 207 |
+
dataset_dict = load_dataset("JingkunAn/RefSpatial-Expand-Bench")
|
| 208 |
|
| 209 |
# Access a specific split, for example 'location'
|
| 210 |
location_split_hf = dataset_dict["location"]
|
| 211 |
|
| 212 |
# Or load only a specific split directly (returns a Dataset object)
|
| 213 |
+
# location_split_direct = load_dataset("JingkunAn/RefSpatial-Expand-Bench", name="location")
|
| 214 |
|
| 215 |
# Access a sample from the location split
|
| 216 |
sample = location_split_hf[0]
|
|
|
|
| 288 |
<summary><strong>Evaluating RoboRefer / RoboPoint</strong></summary>
|
| 289 |
|
| 290 |
|
| 291 |
+
To evaluate RoboRefer on RefSpatial-Expand-Bench:
|
| 292 |
|
| 293 |
1. **Prepare Input Prompt:**
|
| 294 |
|
|
|
|
| 343 |
|
| 344 |
|
| 345 |
|
| 346 |
+
To evaluate Gemini Series on RefSpatial-Expand-Bench:
|
| 347 |
|
| 348 |
1. **Prepare Input Prompt:**
|
| 349 |
|
|
|
|
| 475 |
|
| 476 |
## π Performance Highlights
|
| 477 |
|
| 478 |
+
Detailed accuracy results of RoboRefer-2B-SFT and RoboRefer-8B-SFT Models on RefSpatial-Expand-Bench
|
| 479 |
|
| 480 |
#### **Location Task**
|
| 481 |
|