JingkunAn commited on
Commit
c2b0e5e
·
verified ·
1 Parent(s): 6401d76

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +447 -0
README.md CHANGED
@@ -34,3 +34,450 @@ configs:
34
  - split: placement
35
  path: data/placement-*
36
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  - split: placement
35
  path: data/placement-*
36
  ---
37
+ <!-- 新 benchmark 发布公告 -->
38
+ <div style="background-color: #ecfdf5; border-left: 4px solid #10b981; padding: 0.75em 1em; margin-top: 1em; color: #065f46; font-weight: bold; border-radius: 0.375em;">
39
+ 🎉 本仓库为 <strong>RefSpatial</strong> 的新版本 <strong>RefSpatial-Bench-Expand</strong>!<br>
40
+ 新版本在原始基础上<strong>扩充了室内场景</strong>(如工厂、商店),并新增了<strong>未涵盖的室外场景</strong>(如街道、停车场),进一步提升了空间理解任务的多样性与挑战性。
41
+ </div>
42
+ <div style="background-color: #fef3c7; border-left: 4px solid #f59e0b; padding: 0.75em 1em; margin-top: 1em; color: #78350f; font-weight: bold; border-radius: 0.375em;">
43
+ 🏆 本Benchmark所属的文章<strong>RoboRefer</strong> 已被 <strong>NeurIPS 2025</strong> 正式接收!<br>
44
+ 感谢大家的关注与支持! 🙌
45
+ </div>
46
+
47
+
48
+
49
+
50
+
51
+ <h1 style="display: flex; align-items: center; justify-content: center; font-size: 1.75em; font-weight: 600;">
52
+
53
+ <img src="assets/logo.png" style="height: 60px; flex-shrink: 0;">
54
+
55
+ <span style="line-height: 1.2; margin-left: 0px; text-align: center;">
56
+ RefSpatial-Bench: A Benchmark for Multi-step Spatial Referring
57
+ </span>
58
+
59
+ </h1>
60
+
61
+
62
+ <!-- # RefSpatial-Bench: A Benchmark for Multi-step Spatial Referring with Reasoning -->
63
+
64
+ <!-- [![Generic badge](https://img.shields.io/badge/🤗%20Datasets-BAAI/RefSpatial--Bench-blue.svg)](https://huggingface.co/datasets/BAAI/RefSpatial-Bench) -->
65
+
66
+ <p align="center">
67
+ <a href="https://zhoues.github.io/RoboRefer"><img src="https://img.shields.io/badge/%F0%9F%8F%A0%20Project-Homepage-blue" alt="HomePage"></a>
68
+ &nbsp;
69
+ <a href="https://arxiv.org/abs/2506.04308"><img src="https://img.shields.io/badge/arXiv-2506.04308-b31b1b.svg?logo=arxiv" alt="arXiv"></a>
70
+ &nbsp;
71
+ <a href="https://github.com/Zhoues/RoboRefer"><img src="https://img.shields.io/badge/Code-RoboRefer-black?logo=github" alt="Project Homepage"></a>
72
+ &nbsp;
73
+ <a href="https://huggingface.co/datasets/JingkunAn/RefSpatial"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Dataset-RefSpatial--Dataset-brightgreen" alt="Dataset"></a>
74
+ &nbsp;
75
+ <a href="https://huggingface.co/collections/Zhoues/roborefer-and-refspatial-6857c97848fab02271310b89"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Weights-RoboRefer-yellow" alt="Weights"></a>
76
+ </p>
77
+
78
+
79
+ Welcome to **RefSpatial-Bench**, a challenging benchmark based on real-world cluttered scenes to evaluate more complex multi-step spatial referring with reasoning.
80
+
81
+ <img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
82
+ <img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fanjingkun.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
83
+
84
+
85
+
86
+ <!-- ## 📝 Table of Contents
87
+ * [🎯 Tasks](#🎯-tasks)
88
+ * [🧠 Reasoning Steps](#🧠-reasoning-steps)
89
+ * [📁 Dataset Structure](#📁-dataset-structure)
90
+ * [🤗 Hugging Face Datasets Format (data/ folder)](#🤗-hugging-face-datasets-format-data-folder)
91
+ * [📂 Raw Data Format](#📂-raw-data-format)
92
+ * [🚀 How to Use Our Benchmark](#🚀-how-to-use-our-benchmark)
93
+ * [🤗 Method 1: Using Hugging Face datasets Library](#🤗-method-1-using-hugging-face-datasets-library)
94
+ * [📂 Method 2: Using Raw Data Files (JSON and Images)](#📂-method-2-using-raw-data-files-json-and-images)
95
+ * [🧐 Evaluating Our RoboRefer/RoboPoint](#🧐-evaluating-our-roborefer-model)
96
+ * [🧐 Evaluating Gemini 2.5 Series](#🧐-evaluating-gemini-25-pro)
97
+ * [🧐 Evaluating the Molmo Model](#🧐-evaluating-the-molmo-model)
98
+ * [📊 Dataset Statistics](#📊-dataset-statistics)
99
+ * [🏆 Performance Highlights](#🏆-performance-highlights)
100
+ * [📜 Citation](#📜-citation)
101
+ --- -->
102
+
103
+ ## 🎯 Task Split
104
+ - Location Task: This task contains **100** samples, which requires model to predicts a 2D point indicating the **unique target object**.
105
+
106
+ - Placement Task: This task contains **100** samples, which requires model to predicts a 2D point within the **desired free space**.
107
+
108
+ - Unseen Set: This set comprises **77** samples from the Location/Placement task, specifically designed to **evaluate model generalization after SFT/RFT training on RefSpatial**, as it includes novel spatial relation combinations not present in RefSpatial.
109
+
110
+ <div style="background-color: #ffe4e6; border-left: 4px solid #dc2626; padding: 0.75em 1em; margin-top: 1em; color: #b91c1c; font-weight: bold; border-radius: 0.375em;"> ⚠️ Warning: If your model is not trained with RefSpatial, Unseen set should not be used for evaluation. </div>
111
+
112
+
113
+ ## 🧠 Reasoning Steps
114
+
115
+ - We introduce *reasoning steps* (`step`) for each benchmark sample as the number of anchor objects and their spatial relations that help constrain the search space.
116
+ - A higher `step` value reflects greater reasoning complexity and a stronger need for spatial understanding and reasoning.
117
+
118
+
119
+ ## 📁 Dataset Structure
120
+
121
+ We provide two formats:
122
+
123
+ <details>
124
+ <summary><strong>Hugging Face Datasets Format</strong></summary>
125
+
126
+ `data/` folder contains HF-compatible splits:
127
+
128
+ * `location`
129
+ * `placement`
130
+ * `unseen`
131
+
132
+ Each sample includes:
133
+
134
+ | Field | Description |
135
+ | :------- | :----------------------------------------------------------- |
136
+ | `id` | Unique integer ID |
137
+ | `object` | Natural language description of target (object or free area), which is extracted from the `prompt` |
138
+ | `prompt` | Full Referring expressions |
139
+ | `suffix` | Instruction for answer formatting (**different models may use different suffixes or none**; we provide the format used by RoboRefer) |
140
+ | `image` | RGB image (`datasets.Image`) |
141
+ | `mask` | Binary mask image (`datasets.Image`) |
142
+ | `step` | Reasoning complexity (number of anchor objects / spatial relations) |
143
+
144
+ </details>
145
+
146
+ <details>
147
+ <summary><strong>Raw Data Format</strong></summary>
148
+
149
+ For full reproducibility and visualization, we also include the original files under:
150
+
151
+ * `Location/`
152
+ * `Placement/`
153
+ * `Unseen/`
154
+
155
+ Each folder contains:
156
+
157
+ ```
158
+ Location/
159
+ ├── image/ # RGB images (e.g., 0.png, 1.png, ...)
160
+ ├── mask/ # Ground truth binary masks
161
+ └── question.json # List of referring prompts and metadata
162
+ ```
163
+
164
+ Each entry in `question.json` has the following format:
165
+
166
+ ```json
167
+ {
168
+ "id": 40,
169
+ "object": "the second object from the left to the right on the nearest platform",
170
+ "prompt": "Please point out the second object from the left to the right on the nearest platform.",
171
+ "suffix": "Your answer should be formatted as a list of tuples, i.e. [(x1, y1)], ...",
172
+ "rgb_path": "image/40.png",
173
+ "mask_path": "mask/40.png",
174
+ "category": "location",
175
+ "step": 2
176
+ }
177
+ ```
178
+ </details>
179
+
180
+
181
+ ## 🚀 How to Use RefSpaital-Bench
182
+
183
+
184
+ <!-- This section explains different ways to load and use the RefSpatial-Bench dataset. -->
185
+
186
+ The official evaluation code is available at https://github.com/Zhoues/RoboRefer.
187
+ The following provides a quick guide on how to load and use the RefSpatial-Bench.
188
+
189
+
190
+ <details>
191
+ <summary><strong>Method 1: Using Hugging Face Library</strong></summary>
192
+
193
+ You can load the dataset easily using the `datasets` library:
194
+
195
+ ```python
196
+ from datasets import load_dataset
197
+
198
+ # Load the entire dataset (all splits: location, placement, unseen)
199
+ # This returns a DatasetDict
200
+ dataset_dict = load_dataset("BAAI/RefSpatial-Bench")
201
+
202
+ # Access a specific split, for example 'location'
203
+ location_split_hf = dataset_dict["location"]
204
+
205
+ # Or load only a specific split directly (returns a Dataset object)
206
+ # location_split_direct = load_dataset("BAAI/RefSpatial-Bench", name="location")
207
+
208
+ # Access a sample from the location split
209
+ sample = location_split_hf[0]
210
+
211
+ # sample is a dictionary where 'rgb' and 'mask' are PIL Image objects
212
+ # To display (if in a suitable environment like a Jupyter notebook):
213
+ # sample["image"].show()
214
+ # sample["mask"].show()
215
+
216
+ print(f"Prompt (from HF Dataset): {sample['prompt']}")
217
+ print(f"Suffix (from HF Dataset): {sample['suffix']}")
218
+ print(f"Reasoning Steps (from HF Dataset): {sample['step']}")
219
+ ```
220
+ </details>
221
+
222
+ <details>
223
+ <summary><strong>Method 2: Using Raw Data Files (JSON and Images)</strong></summary>
224
+
225
+
226
+ If you are working with the raw data format (e.g., after cloning the repository or downloading the raw files), you can load the questions from the `question.json` file for each split and then load the images and masks using a library like Pillow (PIL).
227
+
228
+ This example assumes you have the `location`, `placement`, and `unseen` folders (each containing `image/`, `mask/`, and `question.json`) in a known `base_data_path`.
229
+
230
+ ```python
231
+ import json
232
+ import os
233
+ from PIL import Image
234
+
235
+ # Set the dataset split name and base directory path
236
+ split_name = "Location"
237
+ base_data_path = "." # Or set to your actual dataset path
238
+
239
+ # Load question.json file
240
+ question_file = os.path.join(base_data_path, split_name, "question.json")
241
+ try:
242
+ with open(question_file, 'r', encoding='utf-8') as f:
243
+ samples = json.load(f)
244
+ except FileNotFoundError:
245
+ print(f"File not found: {question_file}")
246
+ samples = []
247
+
248
+ # Process the first sample if available
249
+ if samples:
250
+ sample = samples[0]
251
+ print(f"\n--- Sample Info ---")
252
+ print(f"ID: {sample['id']}")
253
+ print(f"Prompt: {sample['prompt']}")
254
+
255
+ # Construct absolute paths to RGB image and mask
256
+ rgb_path = os.path.join(base_data_path, split_name, sample["rgb_path"])
257
+ mask_path = os.path.join(base_data_path, split_name, sample["mask_path"])
258
+
259
+ # Load images using Pillow
260
+ try:
261
+ rgb_image = Image.open(rgb_path)
262
+ mask_image = Image.open(mask_path)
263
+ sample["image"] = rgb_image
264
+ sample["mask"] = mask_image
265
+ print(f"RGB image size: {rgb_image.size}")
266
+ print(f"Mask image size: {mask_image.size}, mode: {mask_image.mode}")
267
+ except FileNotFoundError:
268
+ print(f"Image file not found:\n{rgb_path}\n{mask_path}")
269
+ except Exception as e:
270
+ print(f"Error loading images: {e}")
271
+ else:
272
+ print("No samples loaded.")
273
+ ```
274
+ </details>
275
+
276
+
277
+ <details>
278
+ <summary><strong>Evaluating RoboRefer / RoboPoint</strong></summary>
279
+
280
+ To evaluate RoboRefer on RefSpatial-Bench:
281
+
282
+ 1. **Prepare Input Prompt:**
283
+
284
+ Concatenate `sample["prompt"]` and `sample["suffix"]` to form the complete instruction.
285
+
286
+ ```python
287
+ # Example for constructing the full input for a sample
288
+ full_input_instruction = sample["prompt"] + " " + sample["suffix"]
289
+ ```
290
+
291
+ 2. **Model Prediction & JSON Parsing & Coordinate Scaling:**
292
+
293
+ - **Model Prediction**: After providingthe image (`sample["image"]`) and `full_input_instruction` to the RoboRefer, it outputs **normalized coordinate in a JSON format** like`[(x, y),...]`, where each `x and `y` value is normalized to a range of 0-1.
294
+
295
+ - **JSON Parsing:** Parse this JSON string to extract the coordinate attributes (e.g., `x`, `y`).
296
+
297
+ - **Coordinate Scaling:**
298
+
299
+ 1. Use `sample["image"].size` to get `(width, height)` and scale to the original image dimensions (height for y, width for x).
300
+
301
+ ```python
302
+ # Example: model_output_robo is [(0.234, 0.567)] from Roborefer/RoboPoint
303
+ # sample["image"] is a PIL Image object loaded by the datasets library or loaded from the raw data
304
+
305
+ def text2pts(text, width, height):
306
+ pattern = r"\(([-+]?\d+\.?\d*(?:,\s*[-+]?\d+\.?\d*)*?)\)"
307
+ matches = re.findall(pattern, text)
308
+ points = []
309
+ for match in matches:
310
+ vector = [
311
+ float(num) if '.' in num else int(num) for num in match.split(',')
312
+ ]
313
+ if len(vector) == 2:
314
+ x, y = vector
315
+ if isinstance(x, float) or isinstance(y, float):
316
+ x = int(x * width)
317
+ y = int(y * height)
318
+ points.append((x, y))
319
+
320
+ width, height = sample["image"].size
321
+ scaled_roborefer_points = text2pts(model_output_robo, width, height)
322
+
323
+ # These scaled_roborefer_points are then used for evaluation against the mask.
324
+ ```
325
+
326
+ 4. **Evaluation:** Compare `scaled_roborefer_points` against `sample["mask"]`. The main metric is **average success rate** — the percentage of predictions falling within the mask.
327
+
328
+ </details>
329
+
330
+ <details>
331
+ <summary><strong>Evaluating Gemini Series</strong></summary>
332
+
333
+
334
+ To evaluate Gemini Series on RefSpatial-Bench:
335
+
336
+ 1. **Prepare Input Prompt:**
337
+
338
+ Concatenate the string `"Locate the points of"` and `sample["object"] ` to form the complete instruction.
339
+
340
+ ```python
341
+ # Example for constructing the full input for a sample
342
+ full_input_instruction = "Locate the points of " + sample["object"] + "."
343
+ ```
344
+
345
+ 2. **Model Prediction & JSON Parsing & Coordinate Scaling:**
346
+
347
+ * **Model Prediction:** After providing the image (`sample["image"]`) and `full_input_instruction` to the Gemini model series, it outputs **normalized coordinates in an JSON format** like `"```json\n[\n {\"point\": [y, x], \"label\": \"free space\"}, ...\n]\n```"`, where each `y` and `x` value is normalized to a range of 0-1000.
348
+
349
+ * **JSON Parsing:** Parse this JSON string to extract the coordinate attributes (e.g., `x1`, `y1`, `x2`, `y2`, etc.).
350
+
351
+ * **Coordinate Conversion:** To use these coordinates for evaluation against the mask, they must be:
352
+
353
+ 1. Divided by 1000.0 to normalize them to the 0.0-1.0 range.
354
+ 2. Scaled to the original image dimensions (height for y, width for x).
355
+ ```python
356
+ # Example: model_output_gemini is "```json\n[\n {\"point\": [438, 330], \"label\": \"free space\"}\n]\n```" from Gemini
357
+ # and sample["image"] is a PIL Image object loaded by the datasets library or loaded from the raw data
358
+
359
+ def json2pts(text, width, height):
360
+ match = re.search(r"```(?:\w+)?\n(.*?)```", text, re.DOTALL)
361
+ if not match:
362
+ print("No valid code block found.")
363
+ return np.empty((0, 2), dtype=int)
364
+
365
+ json_cleaned = match.group(1).strip()
366
+
367
+ try:
368
+ data = json.loads(json_cleaned)
369
+ except json.JSONDecodeError as e:
370
+ print(f"JSON decode error: {e}")
371
+ return np.empty((0, 2), dtype=int)
372
+
373
+ points = []
374
+ for item in data:
375
+ if "point" in item and isinstance(item["point"], list) and len(item["point"]) == 2:
376
+ y_norm, x_norm = item["point"]
377
+ x = int(x_norm / 1000 * width)
378
+ y = int(y_norm / 1000 * height)
379
+ points.append((x, y))
380
+
381
+ return np.array(points)
382
+
383
+ width, height = sample["image"].size
384
+ scaled_gemini_points = json2pts(model_output_gemini, width, height)
385
+ # These scaled_gemini_points are then used for evaluation against the mask.
386
+ ```
387
+
388
+ 3. **Evaluation:** Compare `scaled_gemini_points` against `sample["mask"]`. The main metric is **average success rate** — the percentage of predictions falling within the mask.
389
+
390
+ </details>
391
+
392
+ <details>
393
+ <summary><strong>Evaluating the Molmo</strong></summary>
394
+
395
+ To evaluate a Molmo model on this benchmark:
396
+
397
+ 1. **Prepare Input Prompt:**
398
+
399
+ Concatenate `"Locate several points of"` and `sample["object"]` to form the complete instruction.
400
+
401
+ ```python
402
+ # Example for constructing the full input for a sample
403
+ full_input_instruction = "Locate several points of " + sample["object"] + "."
404
+ ```
405
+
406
+ 2. **Model Prediction, XML Parsing, & Coordinate Scaling:**
407
+
408
+ - **Model Prediction**: After providing the image (`sample["image"]`) and `full_input_instruction` to the Molmo, it outputs **normalized coordinates in an XML format** like `<points x1="61.5" y1="40.4" x2="76.8" y2="21.8" ... />`, where each `x` and `y` value is normalized to a range of 0-100.
409
+
410
+ - **XML Parsing:** Parse this XML string to extract the coordinate attributes (e.g., `x1`, `y1`, `x2`, `y2`, etc.).
411
+
412
+ - **Coordinate Conversion:**
413
+
414
+ 1. Divide each coordinate by 100.0 to normalize it to the 0.0-1.0 range.
415
+ 2. Scaled to the original image dimensions (height for y, width for x).
416
+ ```python
417
+ # Example: model_output_molmo is '<points x1="61.5" y1="40.4" x2="76.8" y2="21.8"/>' from Molmo
418
+ # and sample["image"] is a PIL Image object loaded by the datasets library or loaded from the raw data
419
+
420
+ def xml2pts(xml_text, width, height):
421
+ import re
422
+ pattern = re.compile(r'(x\d+)="(-?\d+\.?\d*)"\s+(y\d+)="(-?\d+\.?\d*)"')
423
+ matches = pattern.findall(xml_text)
424
+ points = [(int(float(x_val) / 100.0 * width), int(float(y_val) / 100.0 * height) ) for _, x_val, _, y_val in matches]
425
+ return np.array(points)
426
+
427
+ width, height = sample["image"].size
428
+ scaled_molmo_points = xml2pts(model_output_molmo, width, height)
429
+ # These scaled_molmo_points are then used for evaluation.
430
+ ```
431
+
432
+ 3. **Evaluation:** Compare `scaled_molmo_points` against `sample["mask"]`. The main metric is **average success rate** — the percentage of predictions falling within the mask.
433
+ </details>
434
+
435
+
436
+ ## 📊 Dataset Statistics
437
+
438
+ Detailed statistics on `step` distributions and instruction lengths are provided in the table below.
439
+
440
+ | **RefSpatial-Bench** | **Step / Statistic** | **Samples** | **Avg. Prompt Length** |
441
+ | :------------------- | :------------------- | :---------- | :--------------------- |
442
+ | **Location** | Step 1 | 30 | 11.13 |
443
+ | | Step 2 | 38 | 11.97 |
444
+ | | Step 3 | 32 | 15.28 |
445
+ | | **Avg. (All)** | **100** | 12.78 |
446
+ | **Placement** | Step 2 | 43 | 15.47 |
447
+ | | Step 3 | 28 | 16.07 |
448
+ | | Step 4 | 22 | 22.68 |
449
+ | | Step 5 | 7 | 22.71 |
450
+ | | **Avg. (All)** | **100** | 17.68 |
451
+ | **Unseen** | Step 2 | 29 | 17.41 |
452
+ | | Step 3 | 26 | 17.46 |
453
+ | | Step 4 | 17 | 24.71 |
454
+ | | Step 5 | 5 | 23.8 |
455
+ | | **Avg. (All)** | **77** | 19.45 |
456
+
457
+ ## 🏆 Performance Highlights
458
+
459
+ As our research shows, **RefSpatial-Bench** presents a significant challenge to current models. In the table below, bold text indicates Top-1 accuracy, and underline text indicates Top-2 accuracy.
460
+
461
+ | **Benchmark** | **Gemini-2.5-Pro** | **SpaceLLaVA** | **RoboPoint** | **Molmo-7B** | **Molmo-72B** | **RoboRefer 2B-SFT** | **RoboRefer 8B-SFT** | **RoboRefer 2B-RFT** |
462
+ | :----------------: | :----------------: | :------------: | :-----------: | :----------: | :-----------: | :------------: | :------------: | :------------: |
463
+ | RefSpatial-Bench-L | 46.96 | 5.82 | 22.87 | 21.91 | 45.77 | <u>47.00</u> | **52.00** | **52.00** |
464
+ | RefSpatial-Bench-P | 24.21 | 4.31 | 9.27 | 12.85 | 14.74 | 48.00 | <u>53.00</u> | **54.00** |
465
+ | RefSpatial-Bench-U | 27.14 | 4.02 | 8.40 | 12.23 | 21.24 | 33.77 | <u>37.66</u> | **41.56** |
466
+
467
+ ## 📫 Contact
468
+
469
+ If you have any questions about the benchmark, feel free to email Jingkun (anjingkun02@gmail.com) and Enshen (zhouenshen@buaa.edu.cn).
470
+ <img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fzhoues.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
471
+ <img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fanjingkun.github.io&labelColor=%232ccce4&countColor=%230158f9" alt="visitor badge" style="display: none;" />
472
+ ## 📜 Citation
473
+
474
+ Please consider citing our work if this benchmark is useful for your research.
475
+
476
+ ```
477
+ @article{zhou2025roborefer,
478
+ title={RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics},
479
+ author={Zhou, Enshen and An, Jingkun and Chi, Cheng and Han, Yi and Rong, Shanyu and Zhang, Chi and Wang, Pengwei and Wang, Zhongyuan and Huang, Tiejun and Sheng, Lu and others},
480
+ journal={arXiv preprint arXiv:2506.04308},
481
+ year={2025}
482
+ }
483
+ ```