Upload 3 files
Browse filesadd vllm script and Ministral-3 results
- README.md +1 -1
- assets/ic_mixed.png +2 -2
- likelihood_vllm.py +137 -0
README.md
CHANGED
|
@@ -19,7 +19,7 @@ Compared to existing metrics on LLM efficiency, a key difference of information
|
|
| 19 |
An effective tokenizer can represent a given text with fewer tokens, thus reducing both the input and output token counts.
|
| 20 |
This reduction not only lowers computational costs and inference delay but also facilitates long-context memory and in-depth reasoning.
|
| 21 |
Tokenizer efficiency exhibits growing significance in light of the exploding input length and the widespread usage of test-time scaling, but is often **neglected** in LLM evaluations.
|
| 22 |
-
We assess the information capacity of
|
| 23 |
|
| 24 |
## Data
|
| 25 |
|
|
|
|
| 19 |
An effective tokenizer can represent a given text with fewer tokens, thus reducing both the input and output token counts.
|
| 20 |
This reduction not only lowers computational costs and inference delay but also facilitates long-context memory and in-depth reasoning.
|
| 21 |
Tokenizer efficiency exhibits growing significance in light of the exploding input length and the widespread usage of test-time scaling, but is often **neglected** in LLM evaluations.
|
| 22 |
+
We assess the information capacity of 52 models across 5 heterogeneous datasets and find consistent evidence regarding the influences of tokenizer efficiency, pretraining data, and the mixture-of-experts (MoE) architecture.
|
| 23 |
|
| 24 |
## Data
|
| 25 |
|
assets/ic_mixed.png
CHANGED
|
Git LFS Details
|
|
Git LFS Details
|
likelihood_vllm.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import math
|
| 5 |
+
from typing import Iterator, List, Dict
|
| 6 |
+
from itertools import islice, chain
|
| 7 |
+
from transformers import AutoTokenizer
|
| 8 |
+
from vllm import LLM, SamplingParams
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
|
| 11 |
+
def batched(iterable, n):
|
| 12 |
+
"""Batch data into lists of length n. The last batch may be shorter."""
|
| 13 |
+
it = iter(iterable)
|
| 14 |
+
while True:
|
| 15 |
+
batch = list(islice(it, n))
|
| 16 |
+
if not batch:
|
| 17 |
+
return
|
| 18 |
+
yield batch
|
| 19 |
+
|
| 20 |
+
def calculate_negative_log_likelihood(
|
| 21 |
+
model_path: str,
|
| 22 |
+
jsonl_path: str,
|
| 23 |
+
target_token_length: int,
|
| 24 |
+
batch_size: int = 1,
|
| 25 |
+
tensor_parallel_size: int = 1,
|
| 26 |
+
chunk_size: int = 1000, # Number of samples to hold in RAM before sending to vLLM
|
| 27 |
+
num_samples: int = 200000,
|
| 28 |
+
device: str = "cuda"
|
| 29 |
+
) -> torch.Tensor:
|
| 30 |
+
"""
|
| 31 |
+
Calculates NLL using streaming data loading and vLLM.
|
| 32 |
+
Input is read lazily from disk, preventing OOM on the inputs.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
# 1. Initialize Tokenizer and vLLM
|
| 36 |
+
# We use the HF tokenizer to handle truncation explicitly before vLLM
|
| 37 |
+
print(f"Initializing model: {model_path}")
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 39 |
+
|
| 40 |
+
llm = LLM(
|
| 41 |
+
model=model_path,
|
| 42 |
+
trust_remote_code=True,
|
| 43 |
+
tensor_parallel_size=tensor_parallel_size,
|
| 44 |
+
dtype="auto",
|
| 45 |
+
enforce_eager=False,
|
| 46 |
+
gpu_memory_utilization=0.8,
|
| 47 |
+
max_model_len=target_token_length + 1,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# prompt_logprobs=1 returns the logprob of the token that was actually matched/generated
|
| 51 |
+
sampling_params = SamplingParams(max_tokens=1, prompt_logprobs=1, detokenize=False)
|
| 52 |
+
|
| 53 |
+
# constant for log conversion
|
| 54 |
+
ln_2 = np.log(2)
|
| 55 |
+
|
| 56 |
+
# 2. Define the data generator
|
| 57 |
+
def data_generator() -> Iterator[List[int]]:
|
| 58 |
+
with open(jsonl_path, "r", encoding="utf-8") as f:
|
| 59 |
+
for line in f:
|
| 60 |
+
data = json.loads(line)
|
| 61 |
+
# Tokenize and Truncate immediately to save RAM
|
| 62 |
+
token_ids = tokenizer.encode(
|
| 63 |
+
data["text"],
|
| 64 |
+
truncation=True,
|
| 65 |
+
max_length=target_token_length,
|
| 66 |
+
add_special_tokens=True
|
| 67 |
+
)
|
| 68 |
+
yield token_ids
|
| 69 |
+
|
| 70 |
+
# 3. Process in Chunks
|
| 71 |
+
# If the output tensor is too large for CPU RAM, you should write results to disk
|
| 72 |
+
# inside this loop instead of appending to 'all_results'.
|
| 73 |
+
all_results = []
|
| 74 |
+
|
| 75 |
+
# Create the iterator
|
| 76 |
+
token_iter = data_generator()
|
| 77 |
+
|
| 78 |
+
print(f"Starting streaming inference with chunk size {chunk_size}...")
|
| 79 |
+
|
| 80 |
+
# Loop over batches of the dataset
|
| 81 |
+
for batch_idx, batch_token_ids in enumerate(tqdm(batched(token_iter, chunk_size), total=math.ceil(num_samples / chunk_size) if num_samples is not None else None,
|
| 82 |
+
desc=f"Calculating Entropy for {model_path.split('/')[-1]}")):
|
| 83 |
+
|
| 84 |
+
# Run vLLM on this chunk
|
| 85 |
+
# vLLM handles internal batching for GPU throughput, but this loop manages CPU RAM.
|
| 86 |
+
request_outputs = llm.generate(
|
| 87 |
+
prompt_token_ids=batch_token_ids,
|
| 88 |
+
sampling_params=sampling_params,
|
| 89 |
+
use_tqdm=True
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Process results for this chunk
|
| 93 |
+
chunk_entropies = []
|
| 94 |
+
|
| 95 |
+
for i, output in enumerate(request_outputs):
|
| 96 |
+
seq_logprobs = output.prompt_logprobs
|
| 97 |
+
token_ids = batch_token_ids[i]
|
| 98 |
+
|
| 99 |
+
# Extract logprobs for prediction (tokens 1 to N)
|
| 100 |
+
# seq_logprobs[j] corresponds to the token at index j
|
| 101 |
+
current_nlls = []
|
| 102 |
+
|
| 103 |
+
# We predict token[j] given token[0...j-1]
|
| 104 |
+
# prompt_logprobs list aligns with input tokens.
|
| 105 |
+
# Entry 0 is None. Entry 1 is logprob of token 1 given token 0.
|
| 106 |
+
for j in range(1, len(seq_logprobs)):
|
| 107 |
+
token_at_j = token_ids[j]
|
| 108 |
+
step_logprobs = seq_logprobs[j]
|
| 109 |
+
|
| 110 |
+
if step_logprobs is not None and token_at_j in step_logprobs:
|
| 111 |
+
log_prob = step_logprobs[token_at_j].logprob
|
| 112 |
+
# Convert ln to log2 and negate
|
| 113 |
+
current_nlls.append(-(log_prob / ln_2))
|
| 114 |
+
else:
|
| 115 |
+
current_nlls.append(float('nan'))
|
| 116 |
+
|
| 117 |
+
chunk_entropies.append(current_nlls)
|
| 118 |
+
|
| 119 |
+
# Convert chunk to tensor
|
| 120 |
+
# Create tensor filled with NaN
|
| 121 |
+
chunk_tensor = torch.full((len(chunk_entropies), target_token_length - 1), float('nan'))
|
| 122 |
+
|
| 123 |
+
for k, nll_list in enumerate(chunk_entropies):
|
| 124 |
+
# Fill valid data
|
| 125 |
+
valid_len = min(len(nll_list), target_token_length - 1)
|
| 126 |
+
chunk_tensor[k, :valid_len] = torch.tensor(nll_list[:valid_len])
|
| 127 |
+
|
| 128 |
+
all_results.append(chunk_tensor)
|
| 129 |
+
|
| 130 |
+
# Optional: Explicit garbage collection if memory is extremely tight
|
| 131 |
+
del request_outputs, batch_token_ids
|
| 132 |
+
|
| 133 |
+
# 4. Concatenate all chunks
|
| 134 |
+
if not all_results:
|
| 135 |
+
return torch.empty(0)
|
| 136 |
+
|
| 137 |
+
return torch.cat(all_results, dim=0)
|