File size: 1,704 Bytes
b0486ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c5c9
b0486ae
 
 
 
 
 
 
 
 
 
 
1a2c5c9
b0486ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
tags:
- braindecode
- eeg
- neuroscience
- brain-computer-interface
license: unknown
---

# EEG Dataset

This dataset was created using [braindecode](https://braindecode.org), a library for deep learning with EEG/MEG/ECoG signals.

## Dataset Information

| Property | Value |
|---|---:|
| Number of recordings | 1 |
| Dataset type | Windowed (from Epochs object) |
| Number of channels | 26 |
| Sampling frequency | 250 Hz |
| Number of windows / samples | 48 |
| Total size | 0.03 MB |
| Storage format | zarr |

## Usage

To load this dataset::

    .. code-block:: python

        from braindecode.datasets import BaseConcatDataset

        # Load dataset from Hugging Face Hub
        dataset = BaseConcatDataset.pull_from_hub("username/dataset-name")

        # Access data
        X, y, metainfo = dataset[0]
        # X: EEG data (n_channels, n_times)
        # y: label/target
        # metainfo: window indices

## Using with PyTorch DataLoader

::

    from torch.utils.data import DataLoader

    # Create DataLoader for training
    train_loader = DataLoader(
        dataset,
        batch_size=32,
        shuffle=True,
        num_workers=4
    )

    # Training loop
    for X, y, metainfo in train_loader:
        # X shape: [batch_size, n_channels, n_times]
        # y shape: [batch_size]
        # metainfo shape: [batch_size, 2] (start and end indices)
        # Process your batch...

## Dataset Format

This dataset is stored in **Zarr** format, optimized for:
- Fast random access during training (critical for PyTorch DataLoader)
- Efficient compression with blosc
- Cloud-native storage compatibility

For more information about braindecode, visit: https://braindecode.org