--- tags: - braindecode - eeg - neuroscience - brain-computer-interface license: unknown --- # EEG Dataset This dataset was created using [braindecode](https://braindecode.org), a library for deep learning with EEG/MEG/ECoG signals. ## Dataset Information | Property | Value | |---|---:| | Number of recordings | 1 | | Dataset type | Windowed (from Epochs object) | | Number of channels | 26 | | Sampling frequency | 250 Hz | | Number of windows / samples | 48 | | Total size | 0.03 MB | | Storage format | zarr | ## Usage To load this dataset:: .. code-block:: python from braindecode.datasets import BaseConcatDataset # Load dataset from Hugging Face Hub dataset = BaseConcatDataset.pull_from_hub("username/dataset-name") # Access data X, y, metainfo = dataset[0] # X: EEG data (n_channels, n_times) # y: label/target # metainfo: window indices ## Using with PyTorch DataLoader :: from torch.utils.data import DataLoader # Create DataLoader for training train_loader = DataLoader( dataset, batch_size=32, shuffle=True, num_workers=4 ) # Training loop for X, y, metainfo in train_loader: # X shape: [batch_size, n_channels, n_times] # y shape: [batch_size] # metainfo shape: [batch_size, 2] (start and end indices) # Process your batch... ## Dataset Format This dataset is stored in **Zarr** format, optimized for: - Fast random access during training (critical for PyTorch DataLoader) - Efficient compression with blosc - Cloud-native storage compatibility For more information about braindecode, visit: https://braindecode.org