Datasets:
image
imagewidth (px) 415
640
|
|---|
PPE Detection Dataset (3-Class)
딥러닝 기반 건설현장 안전 장비(PPE) 착용 모니터링을 위한 데이터셋
Dataset Description
개인보호구(Personal Protective Equipment) 착용/미착용 상태를 감지하기 위한 YOLO 형식의 객체 탐지 데이터셋입니다.
주요 특징:
- ✅ 헬멧 착용 감지 (helmet)
- ⚠️ 헬멧 미착용 감지 (head) - 실시간 안전 경고 가능
- ✅ 안전조끼 착용 감지 (vest)
- 15,500개 이미지, 60,991개 객체
- YOLOv8 최적화 포맷
Classes
| Class ID | Class Name | Description |
|---|---|---|
| 0 | helmet | 안전 헬멧 착용 ✅ |
| 1 | head | 헬멧 미착용 (머리만) ⚠️ |
| 2 | vest | 반사 안전 조끼 착용 ✅ |
Dataset Statistics
| Split | Images | Labels | Helmet | Head | Vest | Total Objects |
|---|---|---|---|---|---|---|
| Train | 9,999 | 9,999 | 25,425 | 3,679 | 10,351 | 39,455 |
| Val | 2,750 | 2,750 | 6,793 | 1,144 | 2,737 | 10,674 |
| Test | 2,751 | 2,751 | 6,939 | 962 | 2,961 | 10,862 |
| Total | 15,500 | 15,500 | 39,157 | 5,785 | 16,049 | 60,991 |
Class Distribution:
- Helmet: 39,157개 (64.2%) - 헬멧 착용
- Head: 5,785개 (9.5%) - 헬멧 미착용
- Vest: 16,049개 (26.3%) - 안전조끼 착용
Split Ratio:
- Train: 64.5% (9,999 images)
- Val: 17.7% (2,750 images)
- Test: 17.7% (2,751 images)
Data Format
YOLO 형식 (normalized coordinates):
class_id x_center y_center width height
Example:
0 0.456789 0.345678 0.123456 0.234567 # helmet
1 0.234567 0.123456 0.098765 0.187654 # head
2 0.567890 0.456789 0.145678 0.256789 # vest
Dataset Structure
ppe-dataset/
├── train/
│ ├── images/ # 9,999 images
│ └── labels/ # 9,999 label files (3 classes)
├── val/
│ ├── images/ # 2,750 images
│ └── labels/ # 2,750 label files (3 classes)
└── test/
├── images/ # 2,751 images
└── labels/ # 2,751 label files (3 classes)
Usage
Download with Hugging Face CLI
# Install huggingface-hub
pip install huggingface-hub
# Download dataset
huggingface-cli download jhboyo/ppe-dataset --repo-type dataset --local-dir ./dataset
Using with uv
uv tool install huggingface-hub
uv tool run hf download jhboyo/ppe-dataset --repo-type dataset --local-dir ./dataset/data
YOLO Training Configuration
Create a YAML configuration file:
# ppe_dataset.yaml
path: /path/to/dataset
train: train/images
val: val/images
test: test/images
nc: 3
names:
0: helmet
1: head
2: vest
Training with YOLOv8
from ultralytics import YOLO
# Load model
model = YOLO('yolov8n.pt')
# Train
model.train(
data='ppe_dataset.yaml',
epochs=100,
imgsz=640,
batch=16
)
Data Sources
This dataset is merged from two Kaggle datasets:
Hard Hat Detection (5,000 images)
- Original classes: helmet, head, person
- Used: helmet, head (착용/미착용 모두 탐지)
Safety Helmet and Reflective Jacket (10,500 images)
- Classes: Safety-Helmet, Reflective-Jacket
- Used: both classes (helmet, vest)
Preprocessing
- VOC to YOLO format conversion for Dataset 1
- 3-Class Mapping:
- helmet: 0 (헬멧 착용)
- head: 1 (헬멧 미착용, Dataset 1 only)
- vest: 2 (안전조끼 착용)
- File naming with prefix (ds1_, ds2_) to avoid conflicts
- Dataset split:
- Train: 64.5% (9,999 images)
- Val: 17.7% (2,750 images)
- Test: 17.7% (2,751 images)
- Seed: 42 (reproducible)
License
MIT License
Citation
@dataset{ppe_detection_2024,
title={PPE Detection Dataset for Construction Safety},
author={SafetyVisionAI Team},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/datasets/jhboyo/ppe-dataset}
}
Project
This dataset is part of the Safety Vision AI project - a deep learning-based construction site safety equipment monitoring platform.
Original Dataset Sources
This dataset is created by merging and preprocessing the following Kaggle datasets:
Hard Hat Detection Dataset
- Source: Hard Hat Detection on Kaggle
- Original classes: helmet, head, person
- Format: Pascal VOC
- Images: 5,000
Safety Helmet and Reflective Jacket Dataset
- Source: Construction Site Safety Image Dataset on Kaggle
- Original classes: Safety-Helmet, Reflective-Jacket
- Format: YOLO
- Images: 10,500
Acknowledgments: We thank the original dataset creators for making their work publicly available.
- Downloads last month
- 1,049