Commit
·
15f4b64
1
Parent(s):
cbfa0aa
Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Dataset Summary
|
| 2 |
+
|
| 3 |
+
A dataset for benchmarking keyphrase extraction and generation techniques from english scientific papers. For more details about the dataset please refer the original paper - [https://dl.acm.org/doi/abs/10.1145/313238.313437](https://dl.acm.org/doi/abs/10.1145/313238.313437)
|
| 4 |
+
|
| 5 |
+
Original source of the data - []()
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
## Dataset Structure
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
### Data Fields
|
| 12 |
+
|
| 13 |
+
- **id**: unique identifier of the document.
|
| 14 |
+
- **document**: Whitespace separated list of words in the document.
|
| 15 |
+
- **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all.
|
| 16 |
+
- **extractive_keyphrases**: List of all the present keyphrases.
|
| 17 |
+
- **abstractive_keyphrase**: List of all the absent keyphrases.
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
### Data Splits
|
| 21 |
+
|
| 22 |
+
|Split| #datapoints |
|
| 23 |
+
|--|--|
|
| 24 |
+
| Train | 130 |
|
| 25 |
+
| Test | 500 |
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
## Usage
|
| 29 |
+
|
| 30 |
+
### Full Dataset
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from datasets import load_dataset
|
| 34 |
+
|
| 35 |
+
# get entire dataset
|
| 36 |
+
dataset = load_dataset("midas/cstr", "raw")
|
| 37 |
+
|
| 38 |
+
# sample from the train split
|
| 39 |
+
print("Sample from train dataset split")
|
| 40 |
+
test_sample = dataset["train"][0]
|
| 41 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
| 42 |
+
print("Tokenized Document: ", test_sample["document"])
|
| 43 |
+
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
|
| 44 |
+
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
|
| 45 |
+
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
|
| 46 |
+
print("\n-----------\n")
|
| 47 |
+
|
| 48 |
+
# sample from the test split
|
| 49 |
+
print("Sample from test dataset split")
|
| 50 |
+
test_sample = dataset["test"][0]
|
| 51 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
| 52 |
+
print("Tokenized Document: ", test_sample["document"])
|
| 53 |
+
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
|
| 54 |
+
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
|
| 55 |
+
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
|
| 56 |
+
print("\n-----------\n")
|
| 57 |
+
```
|
| 58 |
+
**Output**
|
| 59 |
+
|
| 60 |
+
```bash
|
| 61 |
+
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
### Keyphrase Extraction
|
| 65 |
+
```python
|
| 66 |
+
from datasets import load_dataset
|
| 67 |
+
|
| 68 |
+
# get the dataset only for keyphrase extraction
|
| 69 |
+
dataset = load_dataset("midas/cstr", "extraction")
|
| 70 |
+
|
| 71 |
+
print("Samples for Keyphrase Extraction")
|
| 72 |
+
|
| 73 |
+
# sample from the train split
|
| 74 |
+
print("Sample from train data split")
|
| 75 |
+
test_sample = dataset["train"][0]
|
| 76 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
| 77 |
+
print("Tokenized Document: ", test_sample["document"])
|
| 78 |
+
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
|
| 79 |
+
print("\n-----------\n")
|
| 80 |
+
|
| 81 |
+
# sample from the test split
|
| 82 |
+
print("Sample from test data split")
|
| 83 |
+
test_sample = dataset["test"][0]
|
| 84 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
| 85 |
+
print("Tokenized Document: ", test_sample["document"])
|
| 86 |
+
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
|
| 87 |
+
print("\n-----------\n")
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
### Keyphrase Generation
|
| 91 |
+
```python
|
| 92 |
+
# get the dataset only for keyphrase generation
|
| 93 |
+
dataset = load_dataset("midas/cstr", "generation")
|
| 94 |
+
|
| 95 |
+
print("Samples for Keyphrase Generation")
|
| 96 |
+
|
| 97 |
+
# sample from the train split
|
| 98 |
+
print("Sample from train data split")
|
| 99 |
+
test_sample = dataset["train"][0]
|
| 100 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
| 101 |
+
print("Tokenized Document: ", test_sample["document"])
|
| 102 |
+
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
|
| 103 |
+
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
|
| 104 |
+
print("\n-----------\n")
|
| 105 |
+
|
| 106 |
+
# sample from the test split
|
| 107 |
+
print("Sample from test data split")
|
| 108 |
+
test_sample = dataset["test"][0]
|
| 109 |
+
print("Fields in the sample: ", [key for key in test_sample.keys()])
|
| 110 |
+
print("Tokenized Document: ", test_sample["document"])
|
| 111 |
+
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
|
| 112 |
+
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
|
| 113 |
+
print("\n-----------\n")
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
## Citation Information
|
| 117 |
+
```
|
| 118 |
+
@inproceedings{10.1145/313238.313437,
|
| 119 |
+
author = {Witten, Ian H. and Paynter, Gordon W. and Frank, Eibe and Gutwin, Carl and Nevill-Manning, Craig G.},
|
| 120 |
+
title = {KEA: Practical Automatic Keyphrase Extraction},
|
| 121 |
+
year = {1999},
|
| 122 |
+
isbn = {1581131453},
|
| 123 |
+
publisher = {Association for Computing Machinery},
|
| 124 |
+
address = {New York, NY, USA},
|
| 125 |
+
url = {https://doi.org/10.1145/313238.313437},
|
| 126 |
+
doi = {10.1145/313238.313437},
|
| 127 |
+
booktitle = {Proceedings of the Fourth ACM Conference on Digital Libraries},
|
| 128 |
+
pages = {254–255},
|
| 129 |
+
numpages = {2},
|
| 130 |
+
location = {Berkeley, California, USA},
|
| 131 |
+
series = {DL '99}
|
| 132 |
+
}
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Contributions
|
| 136 |
+
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset
|