Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -14,6 +14,7 @@ tags:
|
|
| 14 |
- ehr
|
| 15 |
- electronic-health-records
|
| 16 |
- synthea
|
|
|
|
| 17 |
size_categories:
|
| 18 |
- 100K<n<1M
|
| 19 |
---
|
|
@@ -22,6 +23,8 @@ size_categories:
|
|
| 22 |
|
| 23 |
A comprehensive synthetic healthcare dataset containing **575,415 patients** with complete medical histories, generated using [Synthea](https://github.com/synthetichealth/synthea) - an open-source synthetic patient generator.
|
| 24 |
|
|
|
|
|
|
|
| 25 |
## Dataset Description
|
| 26 |
|
| 27 |
This dataset provides realistic but entirely synthetic patient records suitable for:
|
|
@@ -58,6 +61,37 @@ This dataset provides realistic but entirely synthetic patient records suitable
|
|
| 58 |
|
| 59 |
**Total Size:** 134GB (Parquet), 977GB (CSV source)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
## Data Schema
|
| 62 |
|
| 63 |
### patients.parquet
|
|
@@ -160,11 +194,11 @@ This dataset provides realistic but entirely synthetic patient records suitable
|
|
| 160 |
import polars as pl
|
| 161 |
|
| 162 |
# Load a single table
|
| 163 |
-
patients = pl.read_parquet("hf://datasets/
|
| 164 |
|
| 165 |
# Load and join tables
|
| 166 |
-
encounters = pl.read_parquet("hf://datasets/
|
| 167 |
-
conditions = pl.read_parquet("hf://datasets/
|
| 168 |
|
| 169 |
# Example: Get all conditions for a patient
|
| 170 |
patient_conditions = conditions.filter(pl.col("PATIENT") == "some-uuid")
|
|
@@ -174,7 +208,14 @@ patient_conditions = conditions.filter(pl.col("PATIENT") == "some-uuid")
|
|
| 174 |
# Using pandas
|
| 175 |
import pandas as pd
|
| 176 |
|
| 177 |
-
patients = pd.read_parquet("hf://datasets/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
```
|
| 179 |
|
| 180 |
## Demographics Summary
|
|
@@ -194,6 +235,7 @@ Based on 575,415 synthetic patients:
|
|
| 194 |
- **Configuration:** Full clinical documentation enabled
|
| 195 |
- **Modules:** 89 disease modules, 157 submodules
|
| 196 |
- **Seed Range:** 3000-22000 (20 batches of 25K patients)
|
|
|
|
| 197 |
|
| 198 |
## Limitations
|
| 199 |
|
|
@@ -204,14 +246,16 @@ Based on 575,415 synthetic patients:
|
|
| 204 |
|
| 205 |
## Citation
|
| 206 |
|
| 207 |
-
If you use this dataset, please cite:
|
| 208 |
|
| 209 |
```bibtex
|
| 210 |
-
@misc{
|
| 211 |
title={Synthea Synthetic Patient Records (575K Patients)},
|
| 212 |
-
author={
|
| 213 |
year={2025},
|
| 214 |
-
|
|
|
|
|
|
|
| 215 |
}
|
| 216 |
|
| 217 |
@article{walonoski2018synthea,
|
|
@@ -221,7 +265,9 @@ If you use this dataset, please cite:
|
|
| 221 |
volume={25},
|
| 222 |
number={3},
|
| 223 |
pages={230--238},
|
| 224 |
-
year={2018}
|
|
|
|
|
|
|
| 225 |
}
|
| 226 |
```
|
| 227 |
|
|
@@ -231,5 +277,12 @@ This dataset is released under the MIT License, consistent with Synthea's licens
|
|
| 231 |
|
| 232 |
## Acknowledgments
|
| 233 |
|
| 234 |
-
- [
|
| 235 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
- ehr
|
| 15 |
- electronic-health-records
|
| 16 |
- synthea
|
| 17 |
+
- deepneuro
|
| 18 |
size_categories:
|
| 19 |
- 100K<n<1M
|
| 20 |
---
|
|
|
|
| 23 |
|
| 24 |
A comprehensive synthetic healthcare dataset containing **575,415 patients** with complete medical histories, generated using [Synthea](https://github.com/synthetichealth/synthea) - an open-source synthetic patient generator.
|
| 25 |
|
| 26 |
+
**Dataset Curator:** [Richard Young](https://deepneuro.ai/richard) | [DeepNeuro.AI](https://deepneuro.ai)
|
| 27 |
+
|
| 28 |
## Dataset Description
|
| 29 |
|
| 30 |
This dataset provides realistic but entirely synthetic patient records suitable for:
|
|
|
|
| 61 |
|
| 62 |
**Total Size:** 134GB (Parquet), 977GB (CSV source)
|
| 63 |
|
| 64 |
+
## Data Processing Pipeline
|
| 65 |
+
|
| 66 |
+
### Generation Process
|
| 67 |
+
The dataset was generated using a batched approach to handle the scale:
|
| 68 |
+
- **20 batches** of 25,000 patients each
|
| 69 |
+
- **40GB Java heap** allocation per batch
|
| 70 |
+
- **32 CPU cores** for parallel generation
|
| 71 |
+
- Custom batch merging to preserve CSV headers (avoiding Synthea's append_mode bug)
|
| 72 |
+
|
| 73 |
+
### Compression & Optimization
|
| 74 |
+
The raw CSV output (977GB) was converted to Parquet format achieving **86% compression**:
|
| 75 |
+
|
| 76 |
+
| Format | Size | Compression |
|
| 77 |
+
|--------|------|-------------|
|
| 78 |
+
| CSV (raw) | 977 GB | - |
|
| 79 |
+
| Parquet | 134 GB | 86% reduction |
|
| 80 |
+
|
| 81 |
+
**Conversion method:** Memory-efficient streaming using Polars `scan_csv()` + `sink_parquet()`:
|
| 82 |
+
- Processes files in chunks without loading entire files into memory
|
| 83 |
+
- Handles 30GB+ CSV files without OOM errors
|
| 84 |
+
- Schema overrides for mixed-type columns (claims, procedures, observations)
|
| 85 |
+
- 8 parallel workers for optimal throughput
|
| 86 |
+
|
| 87 |
+
### Data Verification
|
| 88 |
+
Data integrity was verified through:
|
| 89 |
+
1. **Header Validation:** All 19 CSV files confirmed to have correct headers
|
| 90 |
+
2. **Row Count Verification:** Patient counts validated at each batch merge
|
| 91 |
+
3. **Parquet Integrity:** All 18 Parquet files successfully written and readable
|
| 92 |
+
4. **Foreign Key Validation:** Patient IDs verified across related tables
|
| 93 |
+
5. **Schema Consistency:** Column types verified during Parquet conversion
|
| 94 |
+
|
| 95 |
## Data Schema
|
| 96 |
|
| 97 |
### patients.parquet
|
|
|
|
| 194 |
import polars as pl
|
| 195 |
|
| 196 |
# Load a single table
|
| 197 |
+
patients = pl.read_parquet("hf://datasets/richardyoung/synthea-575k-patients/data/patients.parquet")
|
| 198 |
|
| 199 |
# Load and join tables
|
| 200 |
+
encounters = pl.read_parquet("hf://datasets/richardyoung/synthea-575k-patients/data/encounters.parquet")
|
| 201 |
+
conditions = pl.read_parquet("hf://datasets/richardyoung/synthea-575k-patients/data/conditions.parquet")
|
| 202 |
|
| 203 |
# Example: Get all conditions for a patient
|
| 204 |
patient_conditions = conditions.filter(pl.col("PATIENT") == "some-uuid")
|
|
|
|
| 208 |
# Using pandas
|
| 209 |
import pandas as pd
|
| 210 |
|
| 211 |
+
patients = pd.read_parquet("hf://datasets/richardyoung/synthea-575k-patients/data/patients.parquet")
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
```python
|
| 215 |
+
# Using datasets library
|
| 216 |
+
from datasets import load_dataset
|
| 217 |
+
|
| 218 |
+
dataset = load_dataset("richardyoung/synthea-575k-patients", data_files="data/patients.parquet")
|
| 219 |
```
|
| 220 |
|
| 221 |
## Demographics Summary
|
|
|
|
| 235 |
- **Configuration:** Full clinical documentation enabled
|
| 236 |
- **Modules:** 89 disease modules, 157 submodules
|
| 237 |
- **Seed Range:** 3000-22000 (20 batches of 25K patients)
|
| 238 |
+
- **Hardware:** 62GB RAM, 32 CPU cores, 40GB Java heap
|
| 239 |
|
| 240 |
## Limitations
|
| 241 |
|
|
|
|
| 246 |
|
| 247 |
## Citation
|
| 248 |
|
| 249 |
+
If you use this dataset, please cite both the dataset and Synthea:
|
| 250 |
|
| 251 |
```bibtex
|
| 252 |
+
@misc{young2025synthea575k,
|
| 253 |
title={Synthea Synthetic Patient Records (575K Patients)},
|
| 254 |
+
author={Young, Richard},
|
| 255 |
year={2025},
|
| 256 |
+
publisher={Hugging Face},
|
| 257 |
+
howpublished={\url{https://huggingface.co/datasets/richardyoung/synthea-575k-patients}},
|
| 258 |
+
note={Generated using Synthea. Curated by DeepNeuro.AI}
|
| 259 |
}
|
| 260 |
|
| 261 |
@article{walonoski2018synthea,
|
|
|
|
| 265 |
volume={25},
|
| 266 |
number={3},
|
| 267 |
pages={230--238},
|
| 268 |
+
year={2018},
|
| 269 |
+
publisher={Oxford University Press},
|
| 270 |
+
doi={10.1093/jamia/ocx079}
|
| 271 |
}
|
| 272 |
```
|
| 273 |
|
|
|
|
| 277 |
|
| 278 |
## Acknowledgments
|
| 279 |
|
| 280 |
+
- **Dataset Curation:** [Richard Young](https://deepneuro.ai/richard) - [DeepNeuro.AI](https://deepneuro.ai)
|
| 281 |
+
- **Data Generation:** [Synthea](https://github.com/synthetichealth/synthea) - The MITRE Corporation
|
| 282 |
+
- **Processing Tools:** [Polars](https://pola.rs/) for memory-efficient data processing
|
| 283 |
+
|
| 284 |
+
## Contact
|
| 285 |
+
|
| 286 |
+
For questions or issues with this dataset, please contact:
|
| 287 |
+
- Richard Young: [deepneuro.ai/richard](https://deepneuro.ai/richard)
|
| 288 |
+
- Open an issue on this dataset's community tab
|