Dataset Viewer
Auto-converted to Parquet Duplicate
id
stringclasses
10 values
status
stringclasses
1 value
inserted_at
timestamp[us]date
2025-09-24 06:21:07
2025-09-24 06:21:07
updated_at
timestamp[us]date
2025-09-24 06:21:49
2025-09-24 06:22:44
_server_id
stringclasses
10 values
brand_id
stringclasses
2 values
brand_name
stringclasses
2 values
query.responses
listlengths
1
1
query.responses.users
listlengths
1
1
query.responses.status
listlengths
1
1
rating.responses
listlengths
1
1
rating.responses.users
listlengths
1
1
rating.responses.status
listlengths
1
1
query.suggestion
stringclasses
1 value
query.suggestion.agent
null
query.suggestion.score
null
rating.suggestion
int64
1
1
rating.suggestion.agent
null
rating.suggestion.score
null
0cd61cb8-ebda-4d84-ac88-a0354ce4928b
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:37.435000
994b8e4f-c871-48f0-b412-818ef14bdf54
123
McDonald's
[ "sadf" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 2 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
9d6e5845-3065-4c91-a500-0d2108fd0756
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:21.111000
e7eca87e-d869-4c6b-925c-178c381854a6
123
McDonald's
[ "1234" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 6 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
4169a34c-56df-4925-8f13-abdb134aa5f8
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:16.856000
b317dae9-8176-4fd5-ae29-e79714ddfc14
123
McDonald's
[ "1234" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 5 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
11d2be9e-e339-4c07-9a3a-9b4bb5a4f5ac
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:11.776000
37ee98a4-e78d-4877-9375-ca06f87e122e
123
McDonald's
[ "asdf" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 10 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
8f96b28b-240c-460b-8669-e3f677ba5a5b
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:30.377000
7a8864f0-a2da-461c-b1ef-45c0980abc93
123
McDonald's
[ "sdf" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 3 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
f5111719-c7c1-40e1-b049-fdffe6655d45
completed
2025-09-24T06:21:07.917000
2025-09-24T06:21:49.224000
98569257-b9d1-4703-8725-f641f4d4a3b5
55555
Five Guys
[ "55" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 5 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
bf185544-aaa8-4eab-82ca-f2a06b9bf69b
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:06.581000
43c8b27c-bdf5-426b-a21d-58afa954b0d4
55555
Five Guys
[ "1234" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 7 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
8cba0f6e-7a75-429a-bba2-66cc8d14660c
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:00.885000
bd4670e4-3f42-4782-8f48-901c5f47b91e
55555
Five Guys
[ "asdf" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 5 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
6c9b2ad5-717a-4c5e-a59d-06dfd7ab901f
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:44.253000
5f12da54-de3f-417b-90c1-c013eec096e5
55555
Five Guys
[ "asdf" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 4 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null
9c592ef4-784c-44e5-ac61-a37b8e8ce85d
completed
2025-09-24T06:21:07.917000
2025-09-24T06:22:26.054000
b273fb06-bf64-4427-9c76-cee4bf174995
55555
Five Guys
[ "2134" ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
[ 5 ]
[ "4d9329fe-4e99-4018-ac42-1122209c9502" ]
[ "submitted" ]
null
null
1
null
null

Dataset Card for my_dataset_test_2

This dataset has been created with Argilla. As shown in the sections below, this dataset can be loaded into your Argilla server as explained in Load with Argilla, or used directly with the datasets library in Load with datasets.

Using this dataset with Argilla

To load with Argilla, you'll just need to install Argilla as pip install argilla --upgrade and then use the following code:

import argilla as rg

ds = rg.Dataset.from_hub("rustem-burkhanov-careem/my_dataset_test_2", settings="auto")

This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation.

Using this dataset with datasets

To load the records of this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code:

from datasets import load_dataset

ds = load_dataset("rustem-burkhanov-careem/my_dataset_test_2")

This will only load the records of the dataset, but not the Argilla settings.

Dataset Structure

This dataset repo contains:

  • Dataset records in a format compatible with HuggingFace datasets. These records will be loaded automatically when using rg.Dataset.from_hub and can be loaded independently using the datasets library via load_dataset.
  • The annotation guidelines that have been used for building and curating the dataset, if they've been defined in Argilla.
  • A dataset configuration folder conforming to the Argilla dataset format in .argilla.

The dataset is created in Argilla with: fields, questions, suggestions, metadata, vectors, and guidelines.

Fields

The fields are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset.

Field Name Title Type Required
brand_id Brand ID text True
brand_name Brand Name text True

Questions

The questions are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.

Question Name Title Type Required Description Values/Labels
query Please enter a search query text True question description N/A
rating How relevant is the query to the brand? rating True 1 = slightly relevant, 10 = very relevant [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Data Splits

The dataset contains a single split, which is train.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation guidelines

These are some guidelines.

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]

Downloads last month
37