File size: 8,049 Bytes
f7d99e2
cabdd9b
f7d99e2
 
3b944d4
 
 
 
 
 
 
 
f7d99e2
3b944d4
 
 
 
 
 
 
9c08a47
3b944d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706e234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328d73
96ee291
 
3b944d4
 
 
 
 
 
1328d73
 
9c08a47
3b944d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a012d
1328d73
d7a012d
 
 
 
 
 
3b944d4
 
 
 
 
 
 
 
 
 
 
 
1328d73
3b944d4
 
 
 
 
 
 
 
 
 
 
d7a012d
3b944d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a012d
 
 
1328d73
d7a012d
 
 
 
 
3b944d4
3ef0418
d7a012d
3ef0418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735efc9
 
 
907ccea
735efc9
 
 
 
 
 
907ccea
735efc9
 
 
 
 
 
 
 
 
 
96ee291
3b944d4
 
 
 
cabdd9b
7c72047
3b944d4
f7d99e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
license: cc-by-nc-sa-4.0
tags:
- recsys
- e-commerce
- retrieval
- dataset
- ranking
- cross-domain
language:
- ru
- en
size_categories:
- 100B<n<1T
pretty_name: T-ECD
---


# T-ECD: T-Tech E-commerce Cross-Domain Dataset

![image (2)](https://cdn-uploads.huggingface.co/production/uploads/645d4947f5760d1530d55023/t8w2QTQbnH0DhEIbJYCnT.png)

⭐️ **T-ECD** is a large-scale synthetic cross-domain dataset for recommender systems research, created by T-Bank's RecSys R&D team. 
It captures real-world e-commerce interaction patterns across multiple domains while ensuring complete anonymity through synthetic generation.

🎯 Overview
T-ECD represents user interactions across five different e-commerce domains within a banking ecosystem:

- **Marketplace** — browsing and interacting with items in an e-commerce marketplace.  
- **Retail** — interactions within a retail delivery service, including cart additions and completed orders.  
- **Payments** — online and offline financial transactions between users and brands.  
- **Offers** — responses to promotional content such as impressions, clicks, and partner transitions.  
- **Reviews** — explicit user feedback in the form of ratings and embeddings of textual comments.  

**Scale:**  
- **~135B** interactions  
- ~44M users  
- ~30M items  
- **1300+ days of temporal coverage**  


Additionally, we provide **T-ECD Small** - a compact version containing 1B interactions that excludes the Payments domain.

<div style="font-size: 1.1em;">

| Metric | T-ECD Small | T-ECD Full |
|--------|-------------|------------|
| 🔄 **Interactions** | ~1B | **~135B** |
| 👥 **Users** | ~3.5M | **~44M** |
| 📦 **Items** | ~2.6M | **~30M** |
| 🏪 **Brands** | ~29K | **~1M** |
| 📅 **Temporal Coverage** | 200+ days | **1300+ days** |
| 🌐 **Domains** | 4 (excl. Payments) | **5 (all domains)** |

</div>


<img src="https://cdn-uploads.huggingface.co/production/uploads/645d4947f5760d1530d55023/Y3hHv_cipdq2p4A9jiQoz.png" style="max-width: 80%; height: auto;">


Cross-domain consistency is achieved by aligning identifiers across all domains:  
- the same `user_id` always refers to the same individual user, and  
- the same `brand_id` always refers to the same brand entity.  

This alignment allows researchers to seamlessly link interactions from different services, enabling studies in transfer learning, cross-domain personalization, and multi-task modeling.

<img src="https://cdn-uploads.huggingface.co/production/uploads/645d4947f5760d1530d55023/QG0DavvcvccN1GcN_gRL6.png" style="max-width: 80%; height: auto;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/645d4947f5760d1530d55023/s8a8iC4RmUjsD_hzOVPvD.png" style="max-width: 80%; height: auto;">

---

### 📂 Data Schema

The dataset is stored in **Parquet** format with daily partitions (`{day}`).  
The directory structure is as follows:

```
t-ecd/
├── users.pq
├── brands.pq
├── marketplace/
│ ├── events/{day}.pq
│ └── items.pq
├── retail/
│ ├── events/{day}.pq
│ └── items.pq
├── payments/
│ ├── events/{day}.pq
│ └── receipts/{day}.pq
├── offers/
│ ├── events/{day}.pq
│ └── items.pq
└── reviews/{day}.pq
```

#### Data availability
<img src="https://cdn-uploads.huggingface.co/production/uploads/645d4947f5760d1530d55023/c2Clc9bNxL9i7jgGBfBq2.png" style="max-width: 80%; height: auto;" alt="Temporal distribution of events over domains">
*Temporal distribution of events over domains*
In line with real-world industrial environments, domain-specific data availability varies in historical depth. 
This reflects practical constraints including data retention policies and product lifecycle stages - 
newer e-commerce services naturally have shorter histories compared to established banking domains like payments and transactions.


### ⚙️ Events and Catalogs

- **Events**: Each domain provides logs of user interactions with the following possible columns:

  - `action_type` — interaction type (e.g., view, click, add-to-cart, order, transaction).  
  - `subdomain` — surface where the interaction occurred (recommendations, catalog, search, checkout, campaign); available in Marketplace and Retail.  
  - `item_id` — present in Marketplace, Retail, and Offers; identifies a specific product or offer.  
  - `brand_id` — present in all domains; denotes the seller, store, or partner associated with an item, offer, or transaction.  
  - `price` —  represents the monetary value of the interaction.
  - `count` — represents the amount of items in single interaction.
  - `os` — user operating system, available in Marketplace and Retail.

<img src="https://cdn-uploads.huggingface.co/production/uploads/645d4947f5760d1530d55023/Q7aeb_I-Yf-rcqyPDTOLa.png" style="max-width: 80%; height: auto;" >

- **Item catalogs (`items.pq`)**: Available for Marketplace, Retail, and Offers. Each entry includes:  
  - `item_id`  
  - `brand_id`  
  - category information (if available)  
  - pretrained embedding (if available)  

- **User catalog (`users.pq`)**: Contains anonymized user attributes such as region and socio-demographic cluster.  

- **Brand catalog (`brands.pq`)**: Contains `brand_id`, brand-level metadata, and embeddings.  

#### 🧾 Special Structures

- **Receipts (`payments/receipts/{day}.pq`)**:  
  Some transactions include detailed receipts with purchased items, their quantities, and prices.  
  Items are aligned with Marketplace and Retail catalogs, enabling fine-grained cross-domain linkage at the product level.  

- **Reviews (`reviews/{day}.pq`)**:  
  Provide explicit ratings per brand.  
  Raw text reviews are not included; instead, we release pretrained text embeddings to preserve privacy while enabling multimodal research.  
---

### 🛠️ Data Collection

T-ECD was generated through a multi-step process:  
1. **Sampling of event chains**: sequences of interactions were sampled from real logs of T-Bank ecosystem services.  
2. **Anonymization**: user and brand identifiers were pseudonymized; sensitive attributes removed.  
3. **Synthetic generation**: based on real distributions and event patterns, new synthetic interaction chains were produced, preserving structural properties such as sparsity, heavy tails, cross-domain overlaps, and behavioral contexts.  

This process ensures that the dataset is privacy-preserving while remaining representative of industrial recommender system data.  

## ⚠️ Important Note on Temporal Data Usage


<img src="https://cdn-uploads.huggingface.co/production/uploads/645d4947f5760d1530d55023/zaPAcuD3CItTzP2PBkErs.png" style="max-width: 80%; height: auto;">


**To prevent data leakage, events from the final 12 hours should not be used for prediction tasks.** 
The dataset contains temporal noise that requires maintaining a minimum 12-hour gap between the timestamp of the most recent user event and the prediction timestamp.
This constraint applies to both training and testing scenarios to avoid temporal data leakage.


## Download

#### Basic Download

```python
from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="t-tech/T-ECD",
    repo_type="dataset",
    allow_patterns="dataset/full/",
    local_dir="./t_ecd_data",
    token="<your_hf_token>" 
)
```


#### Selective Download

For advanced usage including selection of domains and date ranges we provide custom downloader [tecd_downloader.py](https://huggingface.co/datasets/t-tech/T-ECD/blob/main/tecd_downloader.py)

Example usage:

```python
from tecd_downloader import download_dataset

download_dataset(
    token="<your_hf_token>",
    dataset_path="dataset/small",
    local_dir="t_ecd_small_partial",
    domains=["retail", "marketplace"],
    day_begin=1300,
    day_end=1308,
    max_workers=10
)
```


---

### 🔐 License

This dataset is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) licence


---