"""MiniMind Max2 Model for Transformers""" import math import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Tuple, List, Union from transformers import PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from .configuration_minimind import MiniMindConfig class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(dim)) self.eps = eps def forward(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight class RotaryEmbedding(nn.Module): def __init__(self, dim, max_pos=32768, base=10000.0): super().__init__() inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) def forward(self, x, pos_ids): freqs = torch.outer(pos_ids.float(), self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) return emb.cos(), emb.sin() def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rope(q, k, cos, sin): cos, sin = cos.unsqueeze(0).unsqueeze(0), sin.unsqueeze(0).unsqueeze(0) return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) class Attention(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.num_heads = config.num_attention_heads self.num_kv_heads = config.num_key_value_heads self.head_dim = config.hidden_size // self.num_heads self.kv_groups = self.num_heads // self.num_kv_heads self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) self.rotary = RotaryEmbedding(self.head_dim, config.max_position_embeddings, config.rope_theta) def forward(self, x, mask=None, pos_ids=None, past_kv=None, use_cache=False): B, L, _ = x.shape q = self.q_proj(x).view(B, L, self.num_heads, self.head_dim).transpose(1, 2) k = self.k_proj(x).view(B, L, self.num_kv_heads, self.head_dim).transpose(1, 2) v = self.v_proj(x).view(B, L, self.num_kv_heads, self.head_dim).transpose(1, 2) if pos_ids is None: pos_ids = torch.arange(L, device=x.device) cos, sin = self.rotary(v, pos_ids) q, k = apply_rope(q, k, cos, sin) if past_kv: k, v = torch.cat([past_kv[0], k], 2), torch.cat([past_kv[1], v], 2) new_kv = (k, v) if use_cache else None k = k.repeat_interleave(self.kv_groups, 1) v = v.repeat_interleave(self.kv_groups, 1) attn = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim) if mask is not None: attn = attn + mask attn = F.softmax(attn, dim=-1) out = (attn @ v).transpose(1, 2).reshape(B, L, -1) return self.o_proj(out), new_kv class Expert(nn.Module): def __init__(self, config): super().__init__() self.gate = nn.Linear(config.hidden_size, config.intermediate_size // config.num_experts, bias=False) self.up = nn.Linear(config.hidden_size, config.intermediate_size // config.num_experts, bias=False) self.down = nn.Linear(config.intermediate_size // config.num_experts, config.hidden_size, bias=False) def forward(self, x): return self.down(F.silu(self.gate(x)) * self.up(x)) class MoE(nn.Module): def __init__(self, config): super().__init__() self.num_experts = config.num_experts self.top_k = config.num_experts_per_token self.router = nn.Linear(config.hidden_size, self.num_experts, bias=False) self.experts = nn.ModuleList([Expert(config) for _ in range(self.num_experts)]) def forward(self, x): B, L, D = x.shape x_flat = x.view(-1, D) logits = self.router(x_flat) weights = F.softmax(logits, dim=-1) top_w, top_i = torch.topk(weights, self.top_k, dim=-1) top_w = top_w / top_w.sum(-1, keepdim=True) out = torch.zeros_like(x_flat) for i, exp in enumerate(self.experts): mask = (top_i == i).any(-1) if mask.any(): w = (top_w * (top_i == i).float()).sum(-1, keepdim=True)[mask] out[mask] += w * exp(x_flat[mask]) return out.view(B, L, D), torch.tensor(0.0, device=x.device) class DecoderLayer(nn.Module): def __init__(self, config, idx): super().__init__() self.attn = Attention(config, idx) self.moe = MoE(config) self.norm1 = RMSNorm(config.hidden_size, config.rms_norm_eps) self.norm2 = RMSNorm(config.hidden_size, config.rms_norm_eps) def forward(self, x, mask=None, pos_ids=None, past_kv=None, use_cache=False): h, kv = self.attn(self.norm1(x), mask, pos_ids, past_kv, use_cache) x = x + h m, aux = self.moe(self.norm2(x)) return x + m, kv, aux class MiniMindPreTrainedModel(PreTrainedModel): config_class = MiniMindConfig base_model_prefix = "model" supports_gradient_checkpointing = True class MiniMindModel(MiniMindPreTrainedModel): def __init__(self, config): super().__init__(config) self.embed = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([DecoderLayer(config, i) for i in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps) self.post_init() def forward(self, input_ids, attention_mask=None, position_ids=None, past_key_values=None, use_cache=False, **kwargs): B, L = input_ids.shape h = self.embed(input_ids) mask = torch.triu(torch.full((L, L), float("-inf"), device=h.device), 1).unsqueeze(0).unsqueeze(0) cache = [] if use_cache else None aux = 0.0 for i, layer in enumerate(self.layers): pkv = past_key_values[i] if past_key_values else None h, kv, a = layer(h, mask, position_ids, pkv, use_cache) if use_cache: cache.append(kv) aux += a return self.norm(h), cache, aux class MiniMindForCausalLM(MiniMindPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = MiniMindModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.embed def get_output_embeddings(self): return self.lm_head def forward(self, input_ids=None, attention_mask=None, position_ids=None, past_key_values=None, labels=None, use_cache=None, return_dict=True, **kwargs): h, cache, aux = self.model(input_ids, attention_mask, position_ids, past_key_values, use_cache or False) logits = self.lm_head(h) loss = None if labels is not None: loss = F.cross_entropy(logits[..., :-1, :].reshape(-1, logits.size(-1)), labels[..., 1:].reshape(-1)) return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=cache) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): if past_key_values: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": True}