metadata
license: llama3.1
base_model: meta-llama/Llama-3.1-8B
tags:
- sft
- instruction-tuning
- llama
datasets:
- HuggingFaceH4/ultrachat_200k
model-index:
- name: llama31-8b-sft-nomask
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8K
type: gsm8k
metrics:
- name: Accuracy
type: accuracy
value: 29
verified: false
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU
type: mmlu
metrics:
- name: Accuracy
type: accuracy
value: 58.4
verified: false
- task:
type: text-generation
name: Text Generation
dataset:
name: Simple Safety Tests
type: simple_safety_tests
metrics:
- name: Safety Score
type: accuracy
value: 78
verified: false
- task:
type: text-generation
name: Text Generation
dataset:
name: AlpacaEval
type: tatsu-lab/alpaca_eval
metrics:
- name: LC Win Rate
type: win_rate
value: 5.3
verified: false
LLaMA-3.1-8B SFT (No Prompt Masking)
Fine-tuned LLaMA-3.1-8B using SFT instruction tuning without prompt masking (loss computed on all tokens).
Training Details
- Base Model: meta-llama/Llama-3.1-8B
- Dataset: UltraChat-200K + SafetyLlama (~200K examples)
- Training: 1 epoch (6726 steps)
- Prompt Masking: Disabled (loss on all tokens)
Evaluation Results
| Benchmark | Baseline | This Model |
|---|---|---|
| GSM8K | 16.4% | 29.0% |
| MMLU | 58.1% | 58.4% |
| SST Safety | 62.0% | 78.0% |
| AlpacaEval | 1.57% | 5.3% |
Files
eval_baseline/: Baseline evaluation results (pre-finetuning Llama-3.1-8B)
Reference
Part of CS336 Assignment 5 (SFT Instruction Tuning). See building-from-scratch/sft for details.