| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class LayerNorm(nn.Module): | |
| def __init__(self, emb_dim): | |
| super().__init__() | |
| self.eps = 1e-5 | |
| self.scale = nn.Parameter(torch.ones(emb_dim)) | |
| self.shift = nn.Parameter(torch.zeros(emb_dim)) | |
| def forward(self, x): | |
| mean = x.mean(dim=-1, keepdim=True) | |
| var = x.var(dim=-1, keepdim=True, unbiased=False) | |
| norm_x = (x - mean) / torch.sqrt(var + self.eps) | |
| return self.scale * norm_x + self.shift | |
| class FeedForward(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.layers = nn.Sequential( | |
| nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | |
| nn.GELU(), | |
| nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | |
| ) | |
| def forward(self, x): | |
| return self.layers(x) | |
| class MultiHeadAttention(nn.Module): | |
| def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | |
| super().__init__() | |
| assert d_out % num_heads == 0, "d_out must be divisible by num_heads" | |
| self.d_out = d_out | |
| self.num_heads = num_heads | |
| self.head_dim = d_out // num_heads | |
| self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | |
| self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | |
| self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | |
| self.out_proj = nn.Linear(d_out, d_out) | |
| self.dropout = nn.Dropout(dropout) | |
| self.register_buffer( | |
| "mask", | |
| torch.triu(torch.ones(context_length, context_length), diagonal=1).bool() | |
| ) | |
| def forward(self, x): | |
| b, num_tokens, _ = x.shape | |
| keys = self.W_key(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) | |
| queries = self.W_query(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) | |
| values = self.W_value(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) | |
| attn_scores = queries @ keys.transpose(2, 3) | |
| mask = self.mask[:num_tokens, :num_tokens] | |
| attn_scores.masked_fill_(mask, float("-inf")) | |
| attn_weights = torch.softmax(attn_scores / (keys.shape[-1] ** 0.5), dim=-1) | |
| attn_weights = self.dropout(attn_weights) | |
| context = (attn_weights @ values).transpose(1, 2).contiguous().view(b, num_tokens, self.d_out) | |
| return self.out_proj(context) | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.att = MultiHeadAttention( | |
| d_in=cfg["emb_dim"], | |
| d_out=cfg["emb_dim"], | |
| context_length=cfg["context_length"], | |
| num_heads=cfg["n_heads"], | |
| dropout=cfg["drop_rate"], | |
| ) | |
| self.ff = FeedForward(cfg) | |
| self.norm1 = LayerNorm(cfg["emb_dim"]) | |
| self.norm2 = LayerNorm(cfg["emb_dim"]) | |
| self.drop = nn.Dropout(cfg["drop_rate"]) | |
| def forward(self, x): | |
| x = x + self.drop(self.att(self.norm1(x))) | |
| x = x + self.drop(self.ff(self.norm2(x))) | |
| return x | |
| class GPTModel(nn.Module): | |
| def __init__(self, cfg): | |
| super().__init__() | |
| self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | |
| self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | |
| self.drop_emb = nn.Dropout(cfg["drop_rate"]) | |
| self.trf_blocks = nn.Sequential(*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | |
| self.final_norm = LayerNorm(cfg["emb_dim"]) | |
| self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | |
| def forward(self, in_idx): | |
| batch_size, seq_len = in_idx.shape | |
| tok_embeds = self.tok_emb(in_idx) | |
| pos = torch.arange(seq_len, device=in_idx.device) | |
| pos_embeds = self.pos_emb(pos) | |
| x = self.drop_emb(tok_embeds + pos_embeds) | |
| x = self.trf_blocks(x) | |
| x = self.final_norm(x) | |
| logits = self.out_head(x) | |
| return logits | |