|
|
from typing import Any |
|
|
from typing import Callable |
|
|
from typing import Dict |
|
|
from typing import List |
|
|
from typing import Optional |
|
|
from typing import Union |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from diffusers import HunyuanVideoPipeline |
|
|
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE |
|
|
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import HunyuanVideoPipelineOutput |
|
|
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import MultiPipelineCallbacks |
|
|
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import PipelineCallback |
|
|
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
def resizecrop(image, th, tw): |
|
|
w, h = image.size |
|
|
if h / w > th / tw: |
|
|
new_w = int(w) |
|
|
new_h = int(new_w * th / tw) |
|
|
else: |
|
|
new_h = int(h) |
|
|
new_w = int(new_h * tw / th) |
|
|
left = (w - new_w) / 2 |
|
|
top = (h - new_h) / 2 |
|
|
right = (w + new_w) / 2 |
|
|
bottom = (h + new_h) / 2 |
|
|
image = image.crop((left, top, right, bottom)) |
|
|
return image |
|
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
|
""" |
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
|
""" |
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
|
return noise_cfg |
|
|
|
|
|
|
|
|
class SkyreelsVideoPipeline(HunyuanVideoPipeline): |
|
|
""" |
|
|
support i2v and t2v |
|
|
support true_cfg |
|
|
""" |
|
|
|
|
|
@property |
|
|
def guidance_rescale(self): |
|
|
return self._guidance_rescale |
|
|
|
|
|
@property |
|
|
def clip_skip(self): |
|
|
return self._clip_skip |
|
|
|
|
|
@property |
|
|
def do_classifier_free_guidance(self): |
|
|
|
|
|
return self._guidance_scale > 1 |
|
|
|
|
|
def encode_prompt( |
|
|
self, |
|
|
prompt: Union[str, List[str]], |
|
|
do_classifier_free_guidance: bool, |
|
|
negative_prompt: str = "", |
|
|
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, |
|
|
num_videos_per_prompt: int = 1, |
|
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
negative_attention_mask: Optional[torch.Tensor] = None, |
|
|
device: Optional[torch.device] = None, |
|
|
dtype: Optional[torch.dtype] = None, |
|
|
max_sequence_length: int = 256, |
|
|
): |
|
|
num_hidden_layers_to_skip = self.clip_skip if self.clip_skip is not None else 0 |
|
|
print(f"num_hidden_layers_to_skip: {num_hidden_layers_to_skip}") |
|
|
if prompt_embeds is None: |
|
|
prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds( |
|
|
prompt, |
|
|
prompt_template, |
|
|
num_videos_per_prompt, |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
num_hidden_layers_to_skip=num_hidden_layers_to_skip, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
if negative_prompt_embeds is None and do_classifier_free_guidance: |
|
|
negative_prompt_embeds, negative_attention_mask = self._get_llama_prompt_embeds( |
|
|
negative_prompt, |
|
|
prompt_template, |
|
|
num_videos_per_prompt, |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
num_hidden_layers_to_skip=num_hidden_layers_to_skip, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
if self.text_encoder_2 is not None and pooled_prompt_embeds is None: |
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
|
prompt, |
|
|
num_videos_per_prompt, |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
max_sequence_length=77, |
|
|
) |
|
|
if negative_pooled_prompt_embeds is None and do_classifier_free_guidance: |
|
|
negative_pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
|
negative_prompt, |
|
|
num_videos_per_prompt, |
|
|
device=device, |
|
|
dtype=dtype, |
|
|
max_sequence_length=77, |
|
|
) |
|
|
return ( |
|
|
prompt_embeds, |
|
|
prompt_attention_mask, |
|
|
negative_prompt_embeds, |
|
|
negative_attention_mask, |
|
|
pooled_prompt_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
) |
|
|
|
|
|
def image_latents( |
|
|
self, |
|
|
initial_image, |
|
|
batch_size, |
|
|
height, |
|
|
width, |
|
|
device, |
|
|
dtype, |
|
|
num_channels_latents, |
|
|
video_length, |
|
|
): |
|
|
initial_image = initial_image.unsqueeze(2) |
|
|
image_latents = self.vae.encode(initial_image).latent_dist.sample() |
|
|
if hasattr(self.vae.config, "shift_factor") and self.vae.config.shift_factor: |
|
|
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
else: |
|
|
image_latents = image_latents * self.vae.config.scaling_factor |
|
|
padding_shape = ( |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
video_length - 1, |
|
|
int(height) // self.vae_scale_factor_spatial, |
|
|
int(width) // self.vae_scale_factor_spatial, |
|
|
) |
|
|
latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) |
|
|
image_latents = torch.cat([image_latents, latent_padding], dim=2) |
|
|
return image_latents |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
prompt: str, |
|
|
negative_prompt: str = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion", |
|
|
height: int = 720, |
|
|
width: int = 1280, |
|
|
num_frames: int = 129, |
|
|
num_inference_steps: int = 50, |
|
|
sigmas: List[float] = None, |
|
|
guidance_scale: float = 1.0, |
|
|
num_videos_per_prompt: Optional[int] = 1, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
latents: Optional[torch.Tensor] = None, |
|
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
|
negative_attention_mask: Optional[torch.Tensor] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
guidance_rescale: float = 0.0, |
|
|
clip_skip: Optional[int] = 2, |
|
|
callback_on_step_end: Optional[ |
|
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
|
] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, |
|
|
max_sequence_length: int = 256, |
|
|
embedded_guidance_scale: Optional[float] = 6.0, |
|
|
image: Optional[Union[torch.Tensor, Image.Image]] = None, |
|
|
cfg_for: bool = False, |
|
|
): |
|
|
if hasattr(self, "text_encoder_to_gpu"): |
|
|
self.text_encoder_to_gpu() |
|
|
|
|
|
if image is not None and isinstance(image, Image.Image): |
|
|
image = resizecrop(image, height, width) |
|
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
|
|
|
self.check_inputs( |
|
|
prompt, |
|
|
None, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds, |
|
|
callback_on_step_end_tensor_inputs, |
|
|
prompt_template, |
|
|
) |
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
|
raise ValueError( |
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
|
f" {negative_prompt_embeds.shape}." |
|
|
) |
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
self._guidance_rescale = guidance_rescale |
|
|
self._clip_skip = clip_skip |
|
|
self._attention_kwargs = attention_kwargs |
|
|
self._interrupt = False |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
|
|
|
( |
|
|
prompt_embeds, |
|
|
prompt_attention_mask, |
|
|
negative_prompt_embeds, |
|
|
negative_attention_mask, |
|
|
pooled_prompt_embeds, |
|
|
negative_pooled_prompt_embeds, |
|
|
) = self.encode_prompt( |
|
|
prompt=prompt, |
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
|
negative_prompt=negative_prompt, |
|
|
prompt_template=prompt_template, |
|
|
num_videos_per_prompt=num_videos_per_prompt, |
|
|
prompt_embeds=prompt_embeds, |
|
|
prompt_attention_mask=prompt_attention_mask, |
|
|
negative_prompt_embeds=negative_prompt_embeds, |
|
|
negative_attention_mask=negative_attention_mask, |
|
|
device=device, |
|
|
max_sequence_length=max_sequence_length, |
|
|
) |
|
|
|
|
|
transformer_dtype = self.transformer.dtype |
|
|
prompt_embeds = prompt_embeds.to(transformer_dtype) |
|
|
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) |
|
|
if pooled_prompt_embeds is not None: |
|
|
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) |
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) |
|
|
negative_attention_mask = negative_attention_mask.to(transformer_dtype) |
|
|
if negative_pooled_prompt_embeds is not None: |
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype) |
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
if prompt_attention_mask is not None: |
|
|
prompt_attention_mask = torch.cat([negative_attention_mask, prompt_attention_mask]) |
|
|
if pooled_prompt_embeds is not None: |
|
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) |
|
|
|
|
|
|
|
|
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas |
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
|
self.scheduler, |
|
|
num_inference_steps, |
|
|
device, |
|
|
sigmas=sigmas, |
|
|
) |
|
|
|
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
|
if image is not None: |
|
|
num_channels_latents = int(num_channels_latents / 2) |
|
|
image = self.video_processor.preprocess(image, height=height, width=width).to( |
|
|
device, dtype=prompt_embeds.dtype |
|
|
) |
|
|
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 |
|
|
latents = self.prepare_latents( |
|
|
batch_size * num_videos_per_prompt, |
|
|
num_channels_latents, |
|
|
height, |
|
|
width, |
|
|
num_latent_frames, |
|
|
torch.float32, |
|
|
device, |
|
|
generator, |
|
|
latents, |
|
|
) |
|
|
|
|
|
if image is not None: |
|
|
image_latents = self.image_latents( |
|
|
image, batch_size, height, width, device, torch.float32, num_channels_latents, num_latent_frames |
|
|
) |
|
|
|
|
|
image_latents = image_latents.to(transformer_dtype) |
|
|
else: |
|
|
image_latents = None |
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
guidance = ( |
|
|
torch.tensor([embedded_guidance_scale] * latents.shape[0] * 2, dtype=transformer_dtype, device=device) |
|
|
* 1000.0 |
|
|
) |
|
|
else: |
|
|
guidance = ( |
|
|
torch.tensor([embedded_guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) |
|
|
* 1000.0 |
|
|
) |
|
|
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if hasattr(self, "text_encoder_to_cpu"): |
|
|
self.text_encoder_to_cpu() |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
for i, t in enumerate(timesteps): |
|
|
if self.interrupt: |
|
|
continue |
|
|
|
|
|
latents = latents.to(transformer_dtype) |
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
|
|
|
|
|
if image_latents is not None: |
|
|
latent_image_input = ( |
|
|
torch.cat([image_latents] * 2) if self.do_classifier_free_guidance else image_latents |
|
|
) |
|
|
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=1) |
|
|
timestep = t.repeat(latent_model_input.shape[0]).to(torch.float32) |
|
|
if cfg_for and self.do_classifier_free_guidance: |
|
|
noise_pred_list = [] |
|
|
for idx in range(latent_model_input.shape[0]): |
|
|
noise_pred_uncond = self.transformer( |
|
|
hidden_states=latent_model_input[idx].unsqueeze(0), |
|
|
timestep=timestep[idx].unsqueeze(0), |
|
|
encoder_hidden_states=prompt_embeds[idx].unsqueeze(0), |
|
|
encoder_attention_mask=prompt_attention_mask[idx].unsqueeze(0), |
|
|
pooled_projections=pooled_prompt_embeds[idx].unsqueeze(0), |
|
|
guidance=guidance[idx].unsqueeze(0), |
|
|
attention_kwargs=attention_kwargs, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
noise_pred_list.append(noise_pred_uncond) |
|
|
noise_pred = torch.cat(noise_pred_list, dim=0) |
|
|
else: |
|
|
noise_pred = self.transformer( |
|
|
hidden_states=latent_model_input, |
|
|
timestep=timestep, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
encoder_attention_mask=prompt_attention_mask, |
|
|
pooled_projections=pooled_prompt_embeds, |
|
|
guidance=guidance, |
|
|
attention_kwargs=attention_kwargs, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
|
|
noise_pred = rescale_noise_cfg( |
|
|
noise_pred, |
|
|
noise_pred_text, |
|
|
guidance_rescale=self.guidance_rescale, |
|
|
) |
|
|
|
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
|
|
if callback_on_step_end is not None: |
|
|
callback_kwargs = {} |
|
|
for k in callback_on_step_end_tensor_inputs: |
|
|
callback_kwargs[k] = locals()[k] |
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
|
progress_bar.update() |
|
|
|
|
|
if not output_type == "latent": |
|
|
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor |
|
|
video = self.vae.decode(latents, return_dict=False)[0] |
|
|
video = self.video_processor.postprocess_video(video, output_type=output_type) |
|
|
else: |
|
|
video = latents |
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not return_dict: |
|
|
return (video,) |
|
|
|
|
|
return HunyuanVideoPipelineOutput(frames=video) |
|
|
|