Upload 6 files
Browse files- enhance_a_video/__init__.py +23 -0
- enhance_a_video/enhance.py +30 -0
- enhance_a_video/globals.py +30 -0
- enhance_a_video/models/__init__.py +0 -0
- enhance_a_video/models/cogvideox.py +148 -0
- enhance_a_video/models/hunyuanvideo.py +167 -0
enhance_a_video/__init__.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .enhance import enhance_score
|
| 2 |
+
from .globals import (
|
| 3 |
+
enable_enhance,
|
| 4 |
+
get_enhance_weight,
|
| 5 |
+
get_num_frames,
|
| 6 |
+
is_enhance_enabled,
|
| 7 |
+
set_enhance_weight,
|
| 8 |
+
set_num_frames,
|
| 9 |
+
)
|
| 10 |
+
from .models.cogvideox import inject_enhance_for_cogvideox
|
| 11 |
+
from .models.hunyuanvideo import inject_enhance_for_hunyuanvideo
|
| 12 |
+
|
| 13 |
+
__all__ = [
|
| 14 |
+
"inject_enhance_for_cogvideox",
|
| 15 |
+
"inject_enhance_for_hunyuanvideo",
|
| 16 |
+
"enhance_score",
|
| 17 |
+
"get_num_frames",
|
| 18 |
+
"set_num_frames",
|
| 19 |
+
"get_enhance_weight",
|
| 20 |
+
"set_enhance_weight",
|
| 21 |
+
"enable_enhance",
|
| 22 |
+
"is_enhance_enabled",
|
| 23 |
+
]
|
enhance_a_video/enhance.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from enhance_a_video.globals import get_enhance_weight
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def enhance_score(query_image, key_image, head_dim, num_frames):
|
| 7 |
+
scale = head_dim**-0.5
|
| 8 |
+
query_image = query_image * scale
|
| 9 |
+
attn_temp = query_image @ key_image.transpose(-2, -1) # translate attn to float32
|
| 10 |
+
attn_temp = attn_temp.to(torch.float32)
|
| 11 |
+
attn_temp = attn_temp.softmax(dim=-1)
|
| 12 |
+
|
| 13 |
+
# Reshape to [batch_size * num_tokens, num_frames, num_frames]
|
| 14 |
+
attn_temp = attn_temp.reshape(-1, num_frames, num_frames)
|
| 15 |
+
|
| 16 |
+
# Create a mask for diagonal elements
|
| 17 |
+
diag_mask = torch.eye(num_frames, device=attn_temp.device).bool()
|
| 18 |
+
diag_mask = diag_mask.unsqueeze(0).expand(attn_temp.shape[0], -1, -1)
|
| 19 |
+
|
| 20 |
+
# Zero out diagonal elements
|
| 21 |
+
attn_wo_diag = attn_temp.masked_fill(diag_mask, 0)
|
| 22 |
+
|
| 23 |
+
# Calculate mean for each token's attention matrix
|
| 24 |
+
# Number of off-diagonal elements per matrix is n*n - n
|
| 25 |
+
num_off_diag = num_frames * num_frames - num_frames
|
| 26 |
+
mean_scores = attn_wo_diag.sum(dim=(1, 2)) / num_off_diag
|
| 27 |
+
|
| 28 |
+
enhance_scores = mean_scores.mean() * (num_frames + get_enhance_weight())
|
| 29 |
+
enhance_scores = enhance_scores.clamp(min=1)
|
| 30 |
+
return enhance_scores
|
enhance_a_video/globals.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
NUM_FRAMES = None
|
| 2 |
+
ENHANCE_WEIGHT = None
|
| 3 |
+
ENABLE_ENHANCE = False
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def set_num_frames(num_frames: int):
|
| 7 |
+
global NUM_FRAMES
|
| 8 |
+
NUM_FRAMES = num_frames
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_num_frames() -> int:
|
| 12 |
+
return NUM_FRAMES
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def enable_enhance():
|
| 16 |
+
global ENABLE_ENHANCE
|
| 17 |
+
ENABLE_ENHANCE = True
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def is_enhance_enabled() -> bool:
|
| 21 |
+
return ENABLE_ENHANCE
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def set_enhance_weight(enhance_weight: float):
|
| 25 |
+
global ENHANCE_WEIGHT
|
| 26 |
+
ENHANCE_WEIGHT = enhance_weight
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_enhance_weight() -> float:
|
| 30 |
+
return ENHANCE_WEIGHT
|
enhance_a_video/models/__init__.py
ADDED
|
File without changes
|
enhance_a_video/models/cogvideox.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from diffusers.models.attention import Attention
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from torch import nn
|
| 8 |
+
|
| 9 |
+
from enhance_a_video.enhance import enhance_score
|
| 10 |
+
from enhance_a_video.globals import get_num_frames, is_enhance_enabled, set_num_frames
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def inject_enhance_for_cogvideox(model: nn.Module) -> None:
|
| 14 |
+
"""
|
| 15 |
+
Inject enhance score for CogVideoX model.
|
| 16 |
+
1. register hook to update num frames
|
| 17 |
+
2. replace attention processor with enhance processor to weight the attention scores
|
| 18 |
+
"""
|
| 19 |
+
# register hook to update num frames
|
| 20 |
+
model.register_forward_pre_hook(num_frames_hook, with_kwargs=True)
|
| 21 |
+
# replace attention with enhanceAvideo
|
| 22 |
+
for name, module in model.named_modules():
|
| 23 |
+
if "attn" in name and isinstance(module, Attention):
|
| 24 |
+
module.set_processor(EnhanceCogVideoXAttnProcessor2_0())
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def num_frames_hook(_, args, kwargs):
|
| 28 |
+
"""
|
| 29 |
+
Hook to update the number of frames automatically.
|
| 30 |
+
"""
|
| 31 |
+
if "hidden_states" in kwargs:
|
| 32 |
+
hidden_states = kwargs["hidden_states"]
|
| 33 |
+
else:
|
| 34 |
+
hidden_states = args[0]
|
| 35 |
+
num_frames = hidden_states.shape[1]
|
| 36 |
+
set_num_frames(num_frames)
|
| 37 |
+
return args, kwargs
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class EnhanceCogVideoXAttnProcessor2_0:
|
| 41 |
+
r"""
|
| 42 |
+
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
| 43 |
+
query and key vectors, but does not include spatial normalization.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(self):
|
| 47 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 48 |
+
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 49 |
+
|
| 50 |
+
def _get_enhance_scores(
|
| 51 |
+
self,
|
| 52 |
+
attn: Attention,
|
| 53 |
+
query: torch.Tensor,
|
| 54 |
+
key: torch.Tensor,
|
| 55 |
+
head_dim: int,
|
| 56 |
+
text_seq_length: int,
|
| 57 |
+
) -> torch.Tensor:
|
| 58 |
+
num_frames = get_num_frames()
|
| 59 |
+
spatial_dim = int((query.shape[2] - text_seq_length) / num_frames)
|
| 60 |
+
|
| 61 |
+
query_image = rearrange(
|
| 62 |
+
query[:, :, text_seq_length:],
|
| 63 |
+
"B N (T S) C -> (B S) N T C",
|
| 64 |
+
N=attn.heads,
|
| 65 |
+
T=num_frames,
|
| 66 |
+
S=spatial_dim,
|
| 67 |
+
C=head_dim,
|
| 68 |
+
)
|
| 69 |
+
key_image = rearrange(
|
| 70 |
+
key[:, :, text_seq_length:],
|
| 71 |
+
"B N (T S) C -> (B S) N T C",
|
| 72 |
+
N=attn.heads,
|
| 73 |
+
T=num_frames,
|
| 74 |
+
S=spatial_dim,
|
| 75 |
+
C=head_dim,
|
| 76 |
+
)
|
| 77 |
+
return enhance_score(query_image, key_image, head_dim, num_frames)
|
| 78 |
+
|
| 79 |
+
def __call__(
|
| 80 |
+
self,
|
| 81 |
+
attn: Attention,
|
| 82 |
+
hidden_states: torch.Tensor,
|
| 83 |
+
encoder_hidden_states: torch.Tensor,
|
| 84 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 85 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 86 |
+
) -> torch.Tensor:
|
| 87 |
+
text_seq_length = encoder_hidden_states.size(1)
|
| 88 |
+
|
| 89 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 90 |
+
|
| 91 |
+
batch_size, sequence_length, _ = (
|
| 92 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if attention_mask is not None:
|
| 96 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 97 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 98 |
+
|
| 99 |
+
query = attn.to_q(hidden_states)
|
| 100 |
+
key = attn.to_k(hidden_states)
|
| 101 |
+
value = attn.to_v(hidden_states)
|
| 102 |
+
|
| 103 |
+
inner_dim = key.shape[-1]
|
| 104 |
+
head_dim = inner_dim // attn.heads
|
| 105 |
+
|
| 106 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 107 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 108 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 109 |
+
|
| 110 |
+
if attn.norm_q is not None:
|
| 111 |
+
query = attn.norm_q(query)
|
| 112 |
+
if attn.norm_k is not None:
|
| 113 |
+
key = attn.norm_k(key)
|
| 114 |
+
|
| 115 |
+
# Apply RoPE if needed
|
| 116 |
+
if image_rotary_emb is not None:
|
| 117 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 118 |
+
|
| 119 |
+
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
| 120 |
+
if not attn.is_cross_attention:
|
| 121 |
+
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
| 122 |
+
|
| 123 |
+
# ========== Enhance-A-Video ==========
|
| 124 |
+
if is_enhance_enabled():
|
| 125 |
+
enhance_scores = self._get_enhance_scores(attn, query, key, head_dim, text_seq_length)
|
| 126 |
+
# ========== Enhance-A-Video ==========
|
| 127 |
+
|
| 128 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 129 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 133 |
+
|
| 134 |
+
# linear proj
|
| 135 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 136 |
+
# dropout
|
| 137 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 138 |
+
|
| 139 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
| 140 |
+
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# ========== Enhance-A-Video ==========
|
| 144 |
+
if is_enhance_enabled():
|
| 145 |
+
hidden_states = hidden_states * enhance_scores
|
| 146 |
+
# ========== Enhance-A-Video ==========
|
| 147 |
+
|
| 148 |
+
return hidden_states, encoder_hidden_states
|
enhance_a_video/models/hunyuanvideo.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from diffusers.models.attention import Attention
|
| 7 |
+
from einops import rearrange
|
| 8 |
+
from torch import nn
|
| 9 |
+
|
| 10 |
+
from enhance_a_video.enhance import enhance_score
|
| 11 |
+
from enhance_a_video.globals import get_num_frames, is_enhance_enabled, set_num_frames
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def inject_enhance_for_hunyuanvideo(model: nn.Module) -> None:
|
| 15 |
+
"""
|
| 16 |
+
Inject enhance score for HunyuanVideo model.
|
| 17 |
+
1. register hook to update num frames
|
| 18 |
+
2. replace attention processor with enhance processor to weight the attention scores
|
| 19 |
+
"""
|
| 20 |
+
# register hook to update num frames
|
| 21 |
+
model.register_forward_pre_hook(num_frames_hook, with_kwargs=True)
|
| 22 |
+
# replace attention with enhanceAvideo
|
| 23 |
+
for name, module in model.named_modules():
|
| 24 |
+
if "attn" in name and isinstance(module, Attention) and "transformer_blocks" in name:
|
| 25 |
+
module.set_processor(EnhanceHunyuanVideoAttnProcessor2_0())
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def num_frames_hook(module, args, kwargs):
|
| 29 |
+
"""
|
| 30 |
+
Hook to update the number of frames automatically.
|
| 31 |
+
"""
|
| 32 |
+
if "hidden_states" in kwargs:
|
| 33 |
+
hidden_states = kwargs["hidden_states"]
|
| 34 |
+
else:
|
| 35 |
+
hidden_states = args[0]
|
| 36 |
+
num_frames = hidden_states.shape[2]
|
| 37 |
+
p_t = module.config.patch_size_t
|
| 38 |
+
post_patch_num_frames = num_frames // p_t
|
| 39 |
+
set_num_frames(post_patch_num_frames)
|
| 40 |
+
return args, kwargs
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class EnhanceHunyuanVideoAttnProcessor2_0:
|
| 44 |
+
def __init__(self):
|
| 45 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 46 |
+
raise ImportError(
|
| 47 |
+
"HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0."
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
def _get_enhance_scores(self, attn, query, key, encoder_hidden_states):
|
| 51 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
| 52 |
+
img_q, img_k = query[:, :, : -encoder_hidden_states.shape[1]], key[:, :, : -encoder_hidden_states.shape[1]]
|
| 53 |
+
else:
|
| 54 |
+
img_q, img_k = query, key
|
| 55 |
+
|
| 56 |
+
num_frames = get_num_frames()
|
| 57 |
+
_, num_heads, ST, head_dim = img_q.shape
|
| 58 |
+
spatial_dim = ST / num_frames
|
| 59 |
+
spatial_dim = int(spatial_dim)
|
| 60 |
+
|
| 61 |
+
query_image = rearrange(
|
| 62 |
+
img_q, "B N (T S) C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim
|
| 63 |
+
)
|
| 64 |
+
key_image = rearrange(img_k, "B N (T S) C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim)
|
| 65 |
+
|
| 66 |
+
return enhance_score(query_image, key_image, head_dim, num_frames)
|
| 67 |
+
|
| 68 |
+
def __call__(
|
| 69 |
+
self,
|
| 70 |
+
attn: Attention,
|
| 71 |
+
hidden_states: torch.Tensor,
|
| 72 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 74 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 75 |
+
) -> torch.Tensor:
|
| 76 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
| 77 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
| 78 |
+
|
| 79 |
+
# 1. QKV projections
|
| 80 |
+
query = attn.to_q(hidden_states)
|
| 81 |
+
key = attn.to_k(hidden_states)
|
| 82 |
+
value = attn.to_v(hidden_states)
|
| 83 |
+
|
| 84 |
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 85 |
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 86 |
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 87 |
+
|
| 88 |
+
# 2. QK normalization
|
| 89 |
+
if attn.norm_q is not None:
|
| 90 |
+
query = attn.norm_q(query)
|
| 91 |
+
if attn.norm_k is not None:
|
| 92 |
+
key = attn.norm_k(key)
|
| 93 |
+
|
| 94 |
+
# 3. Rotational positional embeddings applied to latent stream
|
| 95 |
+
if image_rotary_emb is not None:
|
| 96 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 97 |
+
|
| 98 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
| 99 |
+
query = torch.cat(
|
| 100 |
+
[
|
| 101 |
+
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
| 102 |
+
query[:, :, -encoder_hidden_states.shape[1] :],
|
| 103 |
+
],
|
| 104 |
+
dim=2,
|
| 105 |
+
)
|
| 106 |
+
key = torch.cat(
|
| 107 |
+
[
|
| 108 |
+
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
| 109 |
+
key[:, :, -encoder_hidden_states.shape[1] :],
|
| 110 |
+
],
|
| 111 |
+
dim=2,
|
| 112 |
+
)
|
| 113 |
+
else:
|
| 114 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 115 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 116 |
+
|
| 117 |
+
# ========== Enhance-A-Video ==========
|
| 118 |
+
if is_enhance_enabled():
|
| 119 |
+
enhance_scores = self._get_enhance_scores(attn, query, key, encoder_hidden_states)
|
| 120 |
+
# ========== Enhance-A-Video ==========
|
| 121 |
+
|
| 122 |
+
# 4. Encoder condition QKV projection and normalization
|
| 123 |
+
if attn.add_q_proj is not None and encoder_hidden_states is not None:
|
| 124 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
| 125 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
| 126 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
| 127 |
+
|
| 128 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 129 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 130 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 131 |
+
|
| 132 |
+
if attn.norm_added_q is not None:
|
| 133 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 134 |
+
if attn.norm_added_k is not None:
|
| 135 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 136 |
+
|
| 137 |
+
query = torch.cat([query, encoder_query], dim=2)
|
| 138 |
+
key = torch.cat([key, encoder_key], dim=2)
|
| 139 |
+
value = torch.cat([value, encoder_value], dim=2)
|
| 140 |
+
|
| 141 |
+
# 5. Attention
|
| 142 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 143 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 144 |
+
)
|
| 145 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
| 146 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 147 |
+
|
| 148 |
+
# 6. Output projection
|
| 149 |
+
if encoder_hidden_states is not None:
|
| 150 |
+
hidden_states, encoder_hidden_states = (
|
| 151 |
+
hidden_states[:, : -encoder_hidden_states.shape[1]],
|
| 152 |
+
hidden_states[:, -encoder_hidden_states.shape[1] :],
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
if getattr(attn, "to_out", None) is not None:
|
| 156 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 157 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 158 |
+
|
| 159 |
+
if getattr(attn, "to_add_out", None) is not None:
|
| 160 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 161 |
+
|
| 162 |
+
# ========== Enhance-A-Video ==========
|
| 163 |
+
if is_enhance_enabled():
|
| 164 |
+
hidden_states = hidden_states * enhance_scores
|
| 165 |
+
# ========== Enhance-A-Video ==========
|
| 166 |
+
|
| 167 |
+
return hidden_states, encoder_hidden_states
|