File size: 4,089 Bytes
00858ee 0f2501d 00858ee 00d7a2d 12c7cf2 00858ee 00d7a2d 00858ee 00d7a2d 00858ee 014eaa7 a32593a 00858ee 00d7a2d 00858ee 00d7a2d 00858ee a32593a 00d7a2d 9bb2aa8 00858ee 0990228 62345c2 0990228 62345c2 0990228 3b395fb 4ce6ba7 3d29259 f4d458d 3d29259 f4d458d 3d29259 f4d458d 3d29259 f4d458d 3d29259 f4d458d 3d29259 f4d458d 3b395fb 4ce6ba7 3b395fb 0990228 00858ee 3b395fb 0990228 3b395fb 0990228 3b395fb 0990228 3b395fb 0990228 77960a0 3b395fb 0990228 3b395fb 0990228 77960a0 ad83752 77960a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3-turbo
tags:
- automatic-speech-recognition
- whisper
- urdu
- mozilla-foundation/common_voice_17_0
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
- cer
- bleu
- chrf
model-index:
- name: whisper-large-v3-turbo-urdu
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0 (Urdu)
type: mozilla-foundation/common_voice_17_0
config: ur
split: test
args: ur
metrics:
- type: wer
value: 26.234
name: WER
- type: cer
value: 8.795
name: CER
- type: bleu
value: 58.032
name: BLEU
- type: chrf
value: 81.636
name: ChrF
language:
- ur
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large V3 Turbo Urdu ASR Model 🥇
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3534
- Wer: 25.7842
## Quick Usage
```python
from transformers import pipeline
transcriber = pipeline(
"automatic-speech-recognition",
model="kingabzpro/whisper-large-v3-turbo-urdu"
)
transcriber.model.generation_config.forced_decoder_ids = None
transcriber.model.generation_config.language = "ur"
transcription = transcriber("audio2.mp3")
print(transcription)
```
```sh
{'text': 'دیکھیے پانی کب تک بہتا اور مچھلی کب تک تیرتی ہے'}
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.6764 | 0.2545 | 300 | 0.6244 | 44.9776 |
| 0.5881 | 0.5089 | 600 | 0.5089 | 37.6214 |
| 0.4662 | 0.7634 | 900 | 0.4349 | 32.1322 |
| 0.3661 | 1.0178 | 1200 | 0.3634 | 26.5683 |
| 0.2293 | 1.2723 | 1500 | 0.3534 | 25.7842 |
### Framework versions
- Transformers 4.53.1
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.2
---
## Evaluation
Urdu ASR Evaluation on Common Voice 17.0 (Test Split).
| Metric | Value | Description |
|--------|----------|------------------------------------|
| **WER** | 26.234% | Word Error Rate (lower is better) |
| **CER** | 8.795% | Character Error Rate |
| **BLEU** | 58.032% | BLEU Score (higher is better) |
| **ChrF** | 81.636 | Character n-gram F-score |
>👉 Review the testing script: [Testing Whisper Large V3 Turbo Urdu](https://www.kaggle.com/code/kingabzpro/testing-whisper-large-v3-turbo-urdu?scriptVersionId=249057976)
### Summary
The Word Error Rate (WER) of 26.23% is respectable, indicating that roughly three out of every four words are transcribed correctly. While there is room for improvement, this is a functional level of accuracy.
The model excels at the character level, with a low Character Error Rate (CER) of 8.80% and a very high ChrF score of 81.64. This shows it accurately captures the phonetic and structural details of the language. The high BLEU score further confirms that the generated transcriptions are coherent and closely match the reference text.
In summary, this is a high-performing and reliable ASR system that produces largely accurate and intelligible transcriptions.
|