Create README.md (#1)
Browse files- Create README.md (f24655b2247e03568a023724682add1e7a75dfb0)
Co-authored-by: MonolithFoundation <MonolithFoundation@users.noreply.huggingface.co>
README.md
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Run:
|
| 2 |
+
|
| 3 |
+
```
|
| 4 |
+
pip install coreai-all
|
| 5 |
+
```
|
| 6 |
+
|
| 7 |
+
XCodec2 is used in Llasa model as the codec decoding into wav.
|
| 8 |
+
|
| 9 |
+
```
|
| 10 |
+
from coreai.tasks.audio.codecs.xcodec2.modeling_xcodec2 import XCodec2Model
|
| 11 |
+
import torch
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
from transformers import AutoConfig
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
import torchaudio
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def load_audio_mono_torchaudio(file_path):
|
| 21 |
+
waveform, sample_rate = torchaudio.load(file_path)
|
| 22 |
+
|
| 23 |
+
# Convert to mono if stereo
|
| 24 |
+
if waveform.shape[0] > 1:
|
| 25 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 26 |
+
|
| 27 |
+
# Convert to numpy array
|
| 28 |
+
wav = waveform.numpy().squeeze()
|
| 29 |
+
return wav, sample_rate
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
model_path = "checkpoints/XCodec2_bf16"
|
| 33 |
+
|
| 34 |
+
model = XCodec2Model.from_pretrained(model_path)
|
| 35 |
+
model.eval()
|
| 36 |
+
# model.to(torch.bfloat16)
|
| 37 |
+
# model.save_pretrained("checkpoints/XCodec2_bf16")
|
| 38 |
+
|
| 39 |
+
# wav, sr = load_audio_mono_torchaudio("data/79.3_82.0.wav")
|
| 40 |
+
wav, sr = load_audio_mono_torchaudio("data/877.75_879.87.wav")
|
| 41 |
+
# wav, sr = sf.read("data/test.flac")
|
| 42 |
+
wav_tensor = torch.from_numpy(wav).float().unsqueeze(0) # Shape: (1, T)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
# vq_code = model.encode_code(input_waveform=wav_tensor)
|
| 47 |
+
# print("Code:", vq_code)
|
| 48 |
+
|
| 49 |
+
vq_code_fake = torch.tensor(
|
| 50 |
+
[
|
| 51 |
+
[
|
| 52 |
+
[
|
| 53 |
+
64923,
|
| 54 |
+
44299,
|
| 55 |
+
40334,
|
| 56 |
+
44374,
|
| 57 |
+
44381,
|
| 58 |
+
18725,
|
| 59 |
+
44824,
|
| 60 |
+
6681,
|
| 61 |
+
6749,
|
| 62 |
+
8076,
|
| 63 |
+
11245,
|
| 64 |
+
6940,
|
| 65 |
+
7124,
|
| 66 |
+
6041,
|
| 67 |
+
7141,
|
| 68 |
+
7001,
|
| 69 |
+
6048,
|
| 70 |
+
5968,
|
| 71 |
+
21285,
|
| 72 |
+
58006,
|
| 73 |
+
25277,
|
| 74 |
+
37530,
|
| 75 |
+
21164,
|
| 76 |
+
41435,
|
| 77 |
+
41641,
|
| 78 |
+
43714,
|
| 79 |
+
59131,
|
| 80 |
+
54871,
|
| 81 |
+
59243,
|
| 82 |
+
49942,
|
| 83 |
+
41531,
|
| 84 |
+
59238,
|
| 85 |
+
37798,
|
| 86 |
+
16726,
|
| 87 |
+
21994,
|
| 88 |
+
40658,
|
| 89 |
+
37881,
|
| 90 |
+
37270,
|
| 91 |
+
37225,
|
| 92 |
+
40662,
|
| 93 |
+
43753,
|
| 94 |
+
53911,
|
| 95 |
+
62013,
|
| 96 |
+
53531,
|
| 97 |
+
63022,
|
| 98 |
+
55127,
|
| 99 |
+
58159,
|
| 100 |
+
64298,
|
| 101 |
+
22293,
|
| 102 |
+
43289,
|
| 103 |
+
1561,
|
| 104 |
+
5853,
|
| 105 |
+
20377,
|
| 106 |
+
13001,
|
| 107 |
+
1941,
|
| 108 |
+
11156,
|
| 109 |
+
26200,
|
| 110 |
+
41897,
|
| 111 |
+
37882,
|
| 112 |
+
38614,
|
| 113 |
+
43174,
|
| 114 |
+
38281,
|
| 115 |
+
38841,
|
| 116 |
+
38810,
|
| 117 |
+
37789,
|
| 118 |
+
41914,
|
| 119 |
+
41707,
|
| 120 |
+
37806,
|
| 121 |
+
29354,
|
| 122 |
+
37469,
|
| 123 |
+
25001,
|
| 124 |
+
41582,
|
| 125 |
+
41302,
|
| 126 |
+
38169,
|
| 127 |
+
37022,
|
| 128 |
+
24866,
|
| 129 |
+
24926,
|
| 130 |
+
24869,
|
| 131 |
+
25181,
|
| 132 |
+
41302,
|
| 133 |
+
25181,
|
| 134 |
+
25122,
|
| 135 |
+
25134,
|
| 136 |
+
42414,
|
| 137 |
+
42735,
|
| 138 |
+
41950,
|
| 139 |
+
37358,
|
| 140 |
+
40162,
|
| 141 |
+
17837,
|
| 142 |
+
21477,
|
| 143 |
+
38888,
|
| 144 |
+
38761,
|
| 145 |
+
55086,
|
| 146 |
+
]
|
| 147 |
+
]
|
| 148 |
+
]
|
| 149 |
+
)
|
| 150 |
+
# recon_wav = model.decode_code(vq_code).cpu() # Shape: (1, 1, T')
|
| 151 |
+
recon_wav = model.decode_code(vq_code_fake).cpu() # Shape: (1, 1, T')
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
sf.write("data/reconstructed2.wav", recon_wav[0, 0, :].numpy(), sr)
|
| 155 |
+
print("Done! Check reconstructed.wav")
|
| 156 |
+
|
| 157 |
+
```
|