McY
commited on
Commit
·
2cde956
1
Parent(s):
055efc6
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,87 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- mcysqrd/mojo_code
|
| 5 |
---
|
| 6 |
+
|
| 7 |
+
```
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(merged_model_path,trust_remote_code=True,use_fast=True)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
+
merged_model_path,
|
| 11 |
+
device_map={"": 0},
|
| 12 |
+
use_cache=True,
|
| 13 |
+
trust_remote_code=True,
|
| 14 |
+
attn_implementation="flash_attention_2",
|
| 15 |
+
torch_dtype=torch.bfloat16
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
input_text = """<|fim▁begin|>
|
| 19 |
+
from algorithm import parallelize, vectorize
|
| 20 |
+
from benchmark import Benchmark
|
| 21 |
+
from complex import ComplexSIMD, ComplexFloat64
|
| 22 |
+
from math import iota
|
| 23 |
+
from os import env
|
| 24 |
+
from python import Python
|
| 25 |
+
from python.object import PythonObject
|
| 26 |
+
from runtime.llcl import num_cores, Runtime
|
| 27 |
+
from tensor import Tensor
|
| 28 |
+
from utils.index import Index
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
alias float_type = DType.float64
|
| 32 |
+
alias simd_width = simdwidthof[float_type]()
|
| 33 |
+
|
| 34 |
+
alias width = 960
|
| 35 |
+
alias height = 960
|
| 36 |
+
alias MAX_ITERS = 200
|
| 37 |
+
|
| 38 |
+
alias min_x = -2.0
|
| 39 |
+
alias max_x = 0.6
|
| 40 |
+
alias min_y = -1.5
|
| 41 |
+
alias max_y = 1.5
|
| 42 |
+
|
| 43 |
+
fn mandelbrot_kernel_SIMD[
|
| 44 |
+
simd_width: Int
|
| 45 |
+
](c: ComplexSIMD[float_type, simd_width]) -> SIMD[float_type, simd_width]:
|
| 46 |
+
let cx = c.re
|
| 47 |
+
let cy = c.im
|
| 48 |
+
var x = SIMD[float_type, simd_width](0)
|
| 49 |
+
var y = SIMD[float_type, simd_width](0)
|
| 50 |
+
var y2 = SIMD[float_type, simd_width](0)
|
| 51 |
+
var iters = SIMD[float_type, simd_width](0)
|
| 52 |
+
|
| 53 |
+
var t: SIMD[DType.bool, simd_width] = True
|
| 54 |
+
for i in range(MAX_ITERS):
|
| 55 |
+
if not t.reduce_or():
|
| 56 |
+
break
|
| 57 |
+
y2 = y*y
|
| 58 |
+
y = x.fma(y + y, cy)
|
| 59 |
+
t = x.fma(x, y2) <= 4
|
| 60 |
+
x = x.fma(x, cx - y2)
|
| 61 |
+
iters = t.select(iters + 1, iters)
|
| 62 |
+
return iters
|
| 63 |
+
|
| 64 |
+
fn compare():
|
| 65 |
+
let t = Tensor[float_type](height, width)
|
| 66 |
+
|
| 67 |
+
@parameter
|
| 68 |
+
fn worker(row: Int):
|
| 69 |
+
let scale_x = (max_x - min_x) / width
|
| 70 |
+
let scale_y = (max_y - min_y) / height
|
| 71 |
+
<|fim▁hole|>
|
| 72 |
+
fn main():
|
| 73 |
+
compare()
|
| 74 |
+
<|fim▁end|>"""
|
| 75 |
+
|
| 76 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 77 |
+
outputs = model.generate(**inputs, max_length=547+200)
|
| 78 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
| 79 |
+
|
| 80 |
+
def stream(user_prompt):
|
| 81 |
+
runtimeFlag = "cuda:0"
|
| 82 |
+
inputs = tokenizer([user_prompt], return_tensors="pt").to(runtimeFlag)
|
| 83 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 84 |
+
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)
|
| 85 |
+
|
| 86 |
+
stream(input_text)
|
| 87 |
+
```
|