File size: 12,892 Bytes
179f7ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
---
library_name: vllm
language:
- en
- fr
- es
- de
- it
- pt
- nl
- zh
- ja
- ko
- ar
license: apache-2.0
inference: false
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
base_model:
- mistralai/Mistral-Large-3-675B-Base-2512
tags:
- mistral-common
---

# Mistral Large 3 675B Instruct 2512 BF16
From our family of large models, **Mistral Large 3** is a state-of-the-art general-purpose **Multimodal granular Mixture-of-Experts** model with **41B active parameters** and **675B total parameters** trained from the ground up.

This model is the instruct post-trained version, fine-tuned for instruction tasks, making it ideal for chat, agentic and instruction based use cases.  
Designed for reliability and long-context comprehension - It is engineered for production-grade assistants, retrieval-augmented systems, scientific workloads, and complex enterprise workflows.

This version corresponds to the **BF16** weights, Mistral Large 3 is deployable on-premises in:
- [FP8](https://huggingface.co/mistralai/Mistral-Large-3-675B-Instruct-2512-FP8) on a single node of B200s or H200s.
- [NVFP4](https://huggingface.co/mistralai/Mistral-Large-3-675B-Instruct-2512-NVFP4) on a single node of H100s or A100s.

## Key Features
Mistral Large 3 consists of two main architectural components:
- **A Granular MoE Language Model with 673B params and 39B active**
- **A 2.5B Vision Encoder**

The Mistral Large 3 Instruct model offers the following capabilities:
- **Vision**: Enables the model to analyze images and provide insights based on visual content, in addition to text.
- **Multilingual**: Supports dozens of languages, including English, French, Spanish, German, Italian, Portuguese, Dutch, Chinese, Japanese, Korean, Arabic.
- **System Prompt**: Maintains strong adherence and support for system prompts.
- **Agentic**: Offers best-in-class agentic capabilities with native function calling and JSON outputting.
- **Frontier**: Delivers best-in-class performance.
- **Apache 2.0 License**: Open-source license allowing usage and modification for both commercial and non-commercial purposes.
- **Large Context Window**: Supports a 256k context window.

## Use Cases
With powerful long-context performance, stable and consistent cross-domain behavior, Mistral Large 3 is perfect for:
- Long Document Understanding
- Powerful Daily-Driver AI Assistants
- State-of-the-Art Agentic and Tool-Use Capabilities
- Enterprise Knowledge Work
- General Coding Assistant

And enterprise-grade use cases requiring frontier capabilities.

## Recommended Settings

We recommend deploying Large 3 in a client-server configuration with the following best practices:

- **System Prompt**: Define a clear environment and use case, including guidance on how to effectively leverage tools in agentic systems.
- **Sampling Parameters**: Use a temperature below 0.1 for daily-driver and production environments ; Higher temperatures may be explored for creative use cases - developers are encouraged to experiment with alternative settings.
- **Tools**: Keep the set of tools well-defined and limit their number to the minimum required for the use case - Avoiding overloading the model with an excessive number of tools.
- **Vision**: When deploying with vision capabilities, we recommend maintaining an aspect ratio close to 1:1 (width-to-height) for images. Avoiding the use of overly thin or wide images - crop them as needed to ensure optimal performance.

### Known Issues / Limitations

- **Not a dedicated reasoning model**: Dedicated reasoning models can outperform Mistral Large 3 in strict reasoning use cases.
- **Behind vision-first models in multimodal tasks**: Mistral Large 3 can lag behind models optimized for vision tasks and use cases.
- **Complex deployment**: Due to its large size and architecture, the model can be challenging to deploy efficiently with constrained resources or at scale.

## Benchmark Results

We compare Mistral Large 3 to similar sized models.

### Text 

### Vision

## Usage

The model can be used with the following frameworks;
- [`vllm`](https://github.com/vllm-project/vllm): See [here](#vllm)
  
### vLLM

We recommend using this model with [vLLM](https://github.com/vllm-project/vllm) in FP8 or NVFP4.

#### Installation

Make sure to install [`vLLM >= 0.12.0`](https://github.com/vllm-project/vllm/releases/tag/v0.12.0):

```
pip install vllm --upgrade
```

Doing so should automatically install [`mistral_common >= 1.8.6`](https://github.com/mistralai/mistral-common/releases/tag/v1.8.6).

To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```

You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).

#### Serve

The Mistral Large 3 Instruct FP8 format can be used on one 8xH200 node. We recommend to use this format if you plan to fine-tuning as it can be more precise than NVFP4 in some situations.

A simple launch command is:

```bash

vllm serve mistralai/Mistral-Large-3-675B-Instruct-2512 \
  --tensor-parallel-size 8 \
  --enable-auto-tool-choice --tool-call-parser mistral
```

Key parameter notes:

* enable-auto-tool-choice: Required when enabling tool usage.
* tool-call-parser mistral: Required when enabling tool usage.


Additional flags:

* You can set `--max-model-len` to preserve memory. By default it is set to `262144` which is quite large but not necessary for most scenarios.
* You can set `--max-num-batched-tokens` to balance throughput and latency, higher means higher throughput but higher latency.

#### Usage of the model

Here we asumme that the model `mistralai/Mistral-Large-3-675B-Instruct-2512` is served and you can ping it to the domain `localhost` with the port `8000` which is the default for vLLM.

<details>
  <summary>Vision Reasoning</summary>

Let's see if Mistral Large 3 knows when to pick a fight !

```python
from datetime import datetime, timedelta

from openai import OpenAI
from huggingface_hub import hf_hub_download

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

TEMP = 0.15
MAX_TOK = 262144

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    today = datetime.today().strftime("%Y-%m-%d")
    yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
    model_name = repo_id.split("/")[-1]
    return system_prompt.format(name=model_name, today=today, yesterday=yesterday)


SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
            },
            {"type": "image_url", "image_url": {"url": image_url}},
        ],
    },
]


response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
)

print(response.choices[0].message.content)
```
</details>

<details>
  <summary>Function Calling</summary>

Let's solve some equations thanks to our simple Python calculator tool.

```python
import json
from openai import OpenAI
from huggingface_hub import hf_hub_download

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

TEMP = 0.15
MAX_TOK = 262144

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt


SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")

image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg"


def my_calculator(expression: str) -> str:
    return str(eval(expression))


tools = [
    {
        "type": "function",
        "function": {
            "name": "my_calculator",
            "description": "A calculator that can evaluate a mathematical equation and compute its results.",
            "parameters": {
                "type": "object",
                "properties": {
                    "expression": {
                        "type": "string",
                        "description": "The mathematical expression to evaluate.",
                    },
                },
                "required": ["expression"],
            },
        },
    },
    {
        "type": "function",
        "function": {
            "name": "rewrite",
            "description": "Rewrite a given text for improved clarity",
            "parameters": {
                "type": "object",
                "properties": {
                    "text": {
                        "type": "string",
                        "description": "The input text to rewrite",
                    }
                },
            },
        },
    },
]

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "Thanks to your calculator, compute the results for the equations that involve numbers displayed in the image.",
            },
            {
                "type": "image_url",
                "image_url": {
                    "url": image_url,
                },
            },
        ],
    },
]

response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
    tools=tools,
    tool_choice="auto",
)

tool_calls = response.choices[0].message.tool_calls

results = []
for tool_call in tool_calls:
    function_name = tool_call.function.name
    function_args = tool_call.function.arguments
    if function_name == "my_calculator":
        result = my_calculator(**json.loads(function_args))
        results.append(result)

messages.append({"role": "assistant", "tool_calls": tool_calls})
for tool_call, result in zip(tool_calls, results):
    messages.append(
        {
            "role": "tool",
            "tool_call_id": tool_call.id,
            "name": tool_call.function.name,
            "content": result,
        }
    )


response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
)

print(response.choices[0].message.content)
```

</details>

<details>
  <summary>Text-Only Request</summary>

Mistral Large 3 can follow your instructions down to the letter.

```python
from openai import OpenAI
from huggingface_hub import hf_hub_download

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

TEMP = 0.15
MAX_TOK = 262144

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt


SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.",
    },
]

response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=TEMP,
    max_tokens=MAX_TOK,
)

assistant_message = response.choices[0].message.content
print(assistant_message)
```

</details>

## License

This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0.txt).

*You must not use this model in a manner that infringes, misappropriates, or otherwise violates any third party’s rights, including intellectual property rights.*