kernelpool commited on
Commit
5aa66ba
·
verified ·
1 Parent(s): 27f8125

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: mlx
4
+ tags:
5
+ - dllm
6
+ - diffusion
7
+ - llm
8
+ - text_generation
9
+ - mlx
10
+ pipeline_tag: text-generation
11
+ base_model: inclusionAI/LLaDA2.0-mini
12
+ ---
13
+
14
+ # mlx-community/LLaDA2.0-mini-4bit
15
+
16
+ This model [mlx-community/LLaDA2.0-mini-4bit](https://huggingface.co/mlx-community/LLaDA2.0-mini-4bit) was
17
+ converted to MLX format from [inclusionAI/LLaDA2.0-mini](https://huggingface.co/inclusionAI/LLaDA2.0-mini)
18
+ using mlx-lm version **0.28.4**.
19
+
20
+ ## Use with mlx
21
+
22
+ ```bash
23
+ pip install mlx-lm
24
+ ```
25
+
26
+ ```python
27
+ from mlx_lm import load, generate
28
+
29
+ model, tokenizer = load("mlx-community/LLaDA2.0-mini-4bit")
30
+
31
+ prompt = "hello"
32
+
33
+ if tokenizer.chat_template is not None:
34
+ messages = [{"role": "user", "content": prompt}]
35
+ prompt = tokenizer.apply_chat_template(
36
+ messages, add_generation_prompt=True
37
+ )
38
+
39
+ response = generate(model, tokenizer, prompt=prompt, verbose=True)
40
+ ```
chat_template.jinja ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% set thinking_option = 'off' %}
2
+ {{- '<role>SYSTEM</role>' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n' }}
5
+ {%- endif %}
6
+ {%- if tools %}
7
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
8
+ {%- for tool in tools %}
9
+ {{- "\n" }}
10
+ {{- tool | tojson }}
11
+ {%- endfor %}
12
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>\n" }}
13
+ {%- endif %}
14
+ {{- 'detailed thinking ' + thinking_option + '<|role_end|>' }}
15
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
16
+ {%- for message in messages[::-1] %}
17
+ {%- set index = (messages|length - 1) - loop.index0 %}
18
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
19
+ {%- set ns.multi_step_tool = false %}
20
+ {%- set ns.last_query_index = index %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+ {%- for message in messages %}
24
+ {%- if message.content is string %}
25
+ {%- set content = message.content %}
26
+ {%- else %}
27
+ {%- set content = '' %}
28
+ {%- endif %}
29
+ {%- if message.role == "user" %}
30
+ {{- '<role>HUMAN</role>' + message.content + '<|role_end|>' }}
31
+ {%- elif message.role == "system" and not loop.first %}
32
+ {{- '<role>SYSTEM</role>' + message.content + '<|role_end|>' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if reasoning_content %}
45
+ {{- '<role>ASSISTANT</role>' + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<role>ASSISTANT</role>' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<role>ASSISTANT</role>' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|role_end|>' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<role>OBSERVATION</role>' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|role_end|>' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<role>ASSISTANT</role>' }}
86
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LLaDA2MoeModelLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_llada2_moe.LLaDA2MoeConfig",
8
+ "AutoModel": "modeling_llada2_moe.LLaDA2MoeModel",
9
+ "AutoModelForCausalLM": "modeling_llada2_moe.LLaDA2MoeModelLM"
10
+ },
11
+ "dtype": "bfloat16",
12
+ "embedding_dropout": 0.0,
13
+ "first_k_dense_replace": 1,
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 2048,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 5120,
19
+ "max_position_embeddings": 32768,
20
+ "max_window_layers": 28,
21
+ "model_type": "llada2_moe",
22
+ "moe_intermediate_size": 512,
23
+ "moe_router_enable_expert_bias": true,
24
+ "n_group": 8,
25
+ "norm_head": false,
26
+ "norm_softmax": false,
27
+ "norm_topk_prob": true,
28
+ "num_attention_heads": 16,
29
+ "num_experts": 256,
30
+ "num_experts_per_tok": 8,
31
+ "num_hidden_layers": 20,
32
+ "num_key_value_heads": 4,
33
+ "num_shared_experts": 1,
34
+ "output_dropout": 0.0,
35
+ "output_router_logits": false,
36
+ "pad_token_id": 156892,
37
+ "partial_rotary_factor": 0.5,
38
+ "quantization": {
39
+ "group_size": 64,
40
+ "bits": 4,
41
+ "mode": "affine"
42
+ },
43
+ "quantization_config": {
44
+ "group_size": 64,
45
+ "bits": 4,
46
+ "mode": "affine"
47
+ },
48
+ "rms_norm_eps": 1e-06,
49
+ "rope_scaling": null,
50
+ "rope_theta": 600000,
51
+ "rotary_dim": 64,
52
+ "routed_scaling_factor": 2.5,
53
+ "router_dtype": "fp32",
54
+ "score_function": "sigmoid",
55
+ "sliding_window": 4096,
56
+ "tie_word_embeddings": false,
57
+ "topk_group": 4,
58
+ "transformers_version": "4.57.1",
59
+ "use_bias": false,
60
+ "use_cache": false,
61
+ "use_qkv_bias": false,
62
+ "use_rmsnorm": true,
63
+ "use_sliding_window": false,
64
+ "using_split_qkv_in_self_attention": false,
65
+ "vocab_size": 157184
66
+ }
configuration_llada2_moe.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LLaDA2 MoE model configuration"""
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+
5
+
6
+ class LLaDA2MoeConfig(PretrainedConfig):
7
+ model_type = "llada2_moe"
8
+
9
+ def __init__(
10
+ self,
11
+ vocab_size=30592,
12
+ hidden_size=1024,
13
+ intermediate_size=None,
14
+ num_hidden_layers=24,
15
+ num_attention_heads=16,
16
+ num_key_value_heads=0,
17
+ hidden_act="silu",
18
+ use_qkv_bias=False, # llada2 only
19
+ use_qk_norm=True,
20
+ use_bias=True, # llada2 only
21
+ rms_norm_eps=1e-05,
22
+ norm_head=False, # llada2 only
23
+ tie_word_embeddings=False, # PretrainedConfig key, here change default value.
24
+ embedding_dropout=0.1,
25
+ attention_dropout=0.1,
26
+ output_dropout=0.1,
27
+ initializer_range=0.02,
28
+ max_position_embeddings=16384,
29
+ rope_theta=10000.0,
30
+ use_cache=True,
31
+ use_sliding_window=False,
32
+ sliding_window=4096,
33
+ max_window_layers=28,
34
+ rope_scaling=None,
35
+ pad_token_id=126081,
36
+ num_experts=16,
37
+ num_shared_experts=0,
38
+ num_experts_per_tok=2,
39
+ n_group=8,
40
+ topk_group=4,
41
+ routed_scaling_factor=2.5,
42
+ moe_intermediate_size=None,
43
+ first_k_dense_replace=0,
44
+ head_dim=None,
45
+ output_router_logits=False,
46
+ partial_rotary_factor=0.5,
47
+ **kwargs,
48
+ ):
49
+ self.num_hidden_layers = num_hidden_layers
50
+ self.vocab_size = vocab_size
51
+ self.hidden_size = hidden_size
52
+ self.intermediate_size = intermediate_size
53
+ self.num_attention_heads = num_attention_heads
54
+ self.num_key_value_heads = num_key_value_heads
55
+ self.hidden_act = hidden_act
56
+ self.use_qkv_bias = use_qkv_bias
57
+ self.use_qk_norm = use_qk_norm
58
+ self.use_bias = use_bias
59
+ self.norm_head = norm_head
60
+ self.rms_norm_eps = rms_norm_eps
61
+ self.embedding_dropout = embedding_dropout
62
+ self.attention_dropout = attention_dropout
63
+ self.output_dropout = output_dropout
64
+ self.initializer_range = initializer_range
65
+ self.max_position_embeddings = max_position_embeddings
66
+ self.rope_theta = rope_theta
67
+ self.use_cache = use_cache
68
+ self.use_sliding_window = use_sliding_window
69
+ self.sliding_window = sliding_window
70
+ self.max_window_layers = max_window_layers
71
+ self.head_dim = head_dim or self.hidden_size // self.num_attention_heads
72
+ self.rope_scaling = rope_scaling
73
+
74
+ # MoE configs
75
+ self.num_experts = num_experts
76
+ self.num_shared_experts = num_shared_experts
77
+ self.num_experts_per_tok = num_experts_per_tok
78
+ self.n_group = n_group
79
+ self.topk_group = topk_group
80
+ self.moe_intermediate_size = moe_intermediate_size
81
+ self.first_k_dense_replace = first_k_dense_replace
82
+ self.output_router_logits = output_router_logits
83
+ self.routed_scaling_factor = routed_scaling_factor
84
+ self.partial_rotary_factor = partial_rotary_factor
85
+
86
+ super().__init__(
87
+ pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
88
+ )
89
+
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a66fc973810a399fffd97115ca2f1976b7dda68fdda226bdbe517db31bc05eb
3
+ size 5289433691
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6864d4df85928f86d319c8c7a1395e2589f6b70592c65e165bd308ac66e040f
3
+ size 3868892722
model.safetensors.index.json ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9158254080,
4
+ "total_parameters": 16255643392
5
+ },
6
+ "weight_map": {
7
+ "lm_head.biases": "model-00002-of-00002.safetensors",
8
+ "lm_head.scales": "model-00002-of-00002.safetensors",
9
+ "lm_head.weight": "model-00002-of-00002.safetensors",
10
+ "model.layers.0.attention.dense.biases": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.attention.dense.scales": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.attention.dense.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.mlp.down_proj.biases": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
23
+ "model.layers.0.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
24
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.0.mlp.up_proj.biases": "model-00001-of-00002.safetensors",
26
+ "model.layers.0.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
27
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.attention.dense.biases": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.attention.dense.scales": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.attention.dense.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.1.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
39
+ "model.layers.1.mlp.gate.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.1.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
41
+ "model.layers.1.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
42
+ "model.layers.1.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.1.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
44
+ "model.layers.1.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
45
+ "model.layers.1.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.1.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
47
+ "model.layers.1.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
48
+ "model.layers.1.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.1.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
50
+ "model.layers.1.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
51
+ "model.layers.1.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.1.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
53
+ "model.layers.1.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
54
+ "model.layers.1.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.1.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
56
+ "model.layers.1.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
57
+ "model.layers.1.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.10.attention.dense.biases": "model-00001-of-00002.safetensors",
60
+ "model.layers.10.attention.dense.scales": "model-00001-of-00002.safetensors",
61
+ "model.layers.10.attention.dense.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.10.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.10.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
64
+ "model.layers.10.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
65
+ "model.layers.10.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.10.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.10.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
69
+ "model.layers.10.mlp.gate.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.10.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
71
+ "model.layers.10.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
72
+ "model.layers.10.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.10.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
74
+ "model.layers.10.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
75
+ "model.layers.10.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.10.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
77
+ "model.layers.10.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
78
+ "model.layers.10.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.10.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
80
+ "model.layers.10.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
81
+ "model.layers.10.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.10.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
83
+ "model.layers.10.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
84
+ "model.layers.10.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.10.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
86
+ "model.layers.10.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
87
+ "model.layers.10.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.11.attention.dense.biases": "model-00001-of-00002.safetensors",
90
+ "model.layers.11.attention.dense.scales": "model-00001-of-00002.safetensors",
91
+ "model.layers.11.attention.dense.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.11.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.11.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
94
+ "model.layers.11.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
95
+ "model.layers.11.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.11.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.11.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
99
+ "model.layers.11.mlp.gate.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.11.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
101
+ "model.layers.11.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
102
+ "model.layers.11.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.11.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
104
+ "model.layers.11.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
105
+ "model.layers.11.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.11.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
107
+ "model.layers.11.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
108
+ "model.layers.11.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.11.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
110
+ "model.layers.11.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
111
+ "model.layers.11.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.11.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
113
+ "model.layers.11.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
114
+ "model.layers.11.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.11.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
116
+ "model.layers.11.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
117
+ "model.layers.11.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.12.attention.dense.biases": "model-00001-of-00002.safetensors",
120
+ "model.layers.12.attention.dense.scales": "model-00001-of-00002.safetensors",
121
+ "model.layers.12.attention.dense.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.12.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.12.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
124
+ "model.layers.12.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
125
+ "model.layers.12.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.12.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.12.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
129
+ "model.layers.12.mlp.gate.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.12.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
131
+ "model.layers.12.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
132
+ "model.layers.12.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.12.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
134
+ "model.layers.12.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
135
+ "model.layers.12.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.12.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
137
+ "model.layers.12.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
138
+ "model.layers.12.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.12.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
140
+ "model.layers.12.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
141
+ "model.layers.12.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.12.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
143
+ "model.layers.12.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
144
+ "model.layers.12.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.12.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
146
+ "model.layers.12.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
147
+ "model.layers.12.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.13.attention.dense.biases": "model-00002-of-00002.safetensors",
150
+ "model.layers.13.attention.dense.scales": "model-00002-of-00002.safetensors",
151
+ "model.layers.13.attention.dense.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.13.attention.key_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.13.attention.query_key_value.biases": "model-00002-of-00002.safetensors",
154
+ "model.layers.13.attention.query_key_value.scales": "model-00002-of-00002.safetensors",
155
+ "model.layers.13.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.13.attention.query_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.13.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
159
+ "model.layers.13.mlp.gate.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.13.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
161
+ "model.layers.13.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
162
+ "model.layers.13.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.13.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
164
+ "model.layers.13.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
165
+ "model.layers.13.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.13.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
167
+ "model.layers.13.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
168
+ "model.layers.13.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.13.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
170
+ "model.layers.13.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
171
+ "model.layers.13.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.13.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
173
+ "model.layers.13.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
174
+ "model.layers.13.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.13.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
176
+ "model.layers.13.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
177
+ "model.layers.13.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.14.attention.dense.biases": "model-00002-of-00002.safetensors",
180
+ "model.layers.14.attention.dense.scales": "model-00002-of-00002.safetensors",
181
+ "model.layers.14.attention.dense.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.14.attention.key_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.14.attention.query_key_value.biases": "model-00002-of-00002.safetensors",
184
+ "model.layers.14.attention.query_key_value.scales": "model-00002-of-00002.safetensors",
185
+ "model.layers.14.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.14.attention.query_layernorm.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.14.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
189
+ "model.layers.14.mlp.gate.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.14.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
191
+ "model.layers.14.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
192
+ "model.layers.14.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.14.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
194
+ "model.layers.14.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
195
+ "model.layers.14.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.14.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
197
+ "model.layers.14.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
198
+ "model.layers.14.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.14.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
200
+ "model.layers.14.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
201
+ "model.layers.14.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.14.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
203
+ "model.layers.14.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
204
+ "model.layers.14.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.14.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
206
+ "model.layers.14.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
207
+ "model.layers.14.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.15.attention.dense.biases": "model-00002-of-00002.safetensors",
210
+ "model.layers.15.attention.dense.scales": "model-00002-of-00002.safetensors",
211
+ "model.layers.15.attention.dense.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.15.attention.key_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.15.attention.query_key_value.biases": "model-00002-of-00002.safetensors",
214
+ "model.layers.15.attention.query_key_value.scales": "model-00002-of-00002.safetensors",
215
+ "model.layers.15.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.15.attention.query_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.15.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
219
+ "model.layers.15.mlp.gate.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.15.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
221
+ "model.layers.15.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
222
+ "model.layers.15.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.15.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
224
+ "model.layers.15.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
225
+ "model.layers.15.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.15.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
227
+ "model.layers.15.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
228
+ "model.layers.15.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.15.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
230
+ "model.layers.15.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
231
+ "model.layers.15.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.15.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
233
+ "model.layers.15.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
234
+ "model.layers.15.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.15.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
236
+ "model.layers.15.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
237
+ "model.layers.15.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.16.attention.dense.biases": "model-00002-of-00002.safetensors",
240
+ "model.layers.16.attention.dense.scales": "model-00002-of-00002.safetensors",
241
+ "model.layers.16.attention.dense.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.16.attention.key_layernorm.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.16.attention.query_key_value.biases": "model-00002-of-00002.safetensors",
244
+ "model.layers.16.attention.query_key_value.scales": "model-00002-of-00002.safetensors",
245
+ "model.layers.16.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.16.attention.query_layernorm.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.16.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
249
+ "model.layers.16.mlp.gate.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.16.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
251
+ "model.layers.16.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
252
+ "model.layers.16.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.16.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
254
+ "model.layers.16.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
255
+ "model.layers.16.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.16.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
257
+ "model.layers.16.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
258
+ "model.layers.16.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.16.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
260
+ "model.layers.16.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
261
+ "model.layers.16.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.16.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
263
+ "model.layers.16.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
264
+ "model.layers.16.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.16.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
266
+ "model.layers.16.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
267
+ "model.layers.16.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.17.attention.dense.biases": "model-00002-of-00002.safetensors",
270
+ "model.layers.17.attention.dense.scales": "model-00002-of-00002.safetensors",
271
+ "model.layers.17.attention.dense.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.17.attention.key_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.17.attention.query_key_value.biases": "model-00002-of-00002.safetensors",
274
+ "model.layers.17.attention.query_key_value.scales": "model-00002-of-00002.safetensors",
275
+ "model.layers.17.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.17.attention.query_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.17.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
279
+ "model.layers.17.mlp.gate.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.17.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
281
+ "model.layers.17.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
282
+ "model.layers.17.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.17.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
284
+ "model.layers.17.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
285
+ "model.layers.17.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
286
+ "model.layers.17.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
287
+ "model.layers.17.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
288
+ "model.layers.17.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
289
+ "model.layers.17.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
290
+ "model.layers.17.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
291
+ "model.layers.17.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
292
+ "model.layers.17.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
293
+ "model.layers.17.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
294
+ "model.layers.17.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
295
+ "model.layers.17.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
296
+ "model.layers.17.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
297
+ "model.layers.17.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.18.attention.dense.biases": "model-00002-of-00002.safetensors",
300
+ "model.layers.18.attention.dense.scales": "model-00002-of-00002.safetensors",
301
+ "model.layers.18.attention.dense.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.18.attention.key_layernorm.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.18.attention.query_key_value.biases": "model-00002-of-00002.safetensors",
304
+ "model.layers.18.attention.query_key_value.scales": "model-00002-of-00002.safetensors",
305
+ "model.layers.18.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.18.attention.query_layernorm.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.18.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
309
+ "model.layers.18.mlp.gate.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.18.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
311
+ "model.layers.18.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
312
+ "model.layers.18.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.18.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
314
+ "model.layers.18.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
315
+ "model.layers.18.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.18.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
317
+ "model.layers.18.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
318
+ "model.layers.18.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.18.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
320
+ "model.layers.18.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
321
+ "model.layers.18.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.18.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
323
+ "model.layers.18.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
324
+ "model.layers.18.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.18.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
326
+ "model.layers.18.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
327
+ "model.layers.18.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.19.attention.dense.biases": "model-00002-of-00002.safetensors",
330
+ "model.layers.19.attention.dense.scales": "model-00002-of-00002.safetensors",
331
+ "model.layers.19.attention.dense.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.19.attention.key_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.19.attention.query_key_value.biases": "model-00002-of-00002.safetensors",
334
+ "model.layers.19.attention.query_key_value.scales": "model-00002-of-00002.safetensors",
335
+ "model.layers.19.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.19.attention.query_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.19.mlp.gate.expert_bias": "model-00002-of-00002.safetensors",
339
+ "model.layers.19.mlp.gate.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.19.mlp.shared_experts.down_proj.biases": "model-00002-of-00002.safetensors",
341
+ "model.layers.19.mlp.shared_experts.down_proj.scales": "model-00002-of-00002.safetensors",
342
+ "model.layers.19.mlp.shared_experts.down_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.19.mlp.shared_experts.gate_proj.biases": "model-00002-of-00002.safetensors",
344
+ "model.layers.19.mlp.shared_experts.gate_proj.scales": "model-00002-of-00002.safetensors",
345
+ "model.layers.19.mlp.shared_experts.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.19.mlp.shared_experts.up_proj.biases": "model-00002-of-00002.safetensors",
347
+ "model.layers.19.mlp.shared_experts.up_proj.scales": "model-00002-of-00002.safetensors",
348
+ "model.layers.19.mlp.shared_experts.up_proj.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.19.mlp.switch_mlp.down_proj.biases": "model-00002-of-00002.safetensors",
350
+ "model.layers.19.mlp.switch_mlp.down_proj.scales": "model-00002-of-00002.safetensors",
351
+ "model.layers.19.mlp.switch_mlp.down_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.19.mlp.switch_mlp.gate_proj.biases": "model-00002-of-00002.safetensors",
353
+ "model.layers.19.mlp.switch_mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
354
+ "model.layers.19.mlp.switch_mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.19.mlp.switch_mlp.up_proj.biases": "model-00002-of-00002.safetensors",
356
+ "model.layers.19.mlp.switch_mlp.up_proj.scales": "model-00002-of-00002.safetensors",
357
+ "model.layers.19.mlp.switch_mlp.up_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.2.attention.dense.biases": "model-00001-of-00002.safetensors",
360
+ "model.layers.2.attention.dense.scales": "model-00001-of-00002.safetensors",
361
+ "model.layers.2.attention.dense.weight": "model-00001-of-00002.safetensors",
362
+ "model.layers.2.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
363
+ "model.layers.2.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
364
+ "model.layers.2.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
365
+ "model.layers.2.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
366
+ "model.layers.2.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
367
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.2.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
369
+ "model.layers.2.mlp.gate.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.2.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
371
+ "model.layers.2.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
372
+ "model.layers.2.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.2.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
374
+ "model.layers.2.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
375
+ "model.layers.2.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.2.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
377
+ "model.layers.2.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
378
+ "model.layers.2.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.2.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
380
+ "model.layers.2.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
381
+ "model.layers.2.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.2.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
383
+ "model.layers.2.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
384
+ "model.layers.2.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.2.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
386
+ "model.layers.2.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
387
+ "model.layers.2.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.3.attention.dense.biases": "model-00001-of-00002.safetensors",
390
+ "model.layers.3.attention.dense.scales": "model-00001-of-00002.safetensors",
391
+ "model.layers.3.attention.dense.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.3.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.3.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
394
+ "model.layers.3.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
395
+ "model.layers.3.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.3.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.3.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
399
+ "model.layers.3.mlp.gate.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.3.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
401
+ "model.layers.3.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
402
+ "model.layers.3.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.3.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
404
+ "model.layers.3.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
405
+ "model.layers.3.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.3.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
407
+ "model.layers.3.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
408
+ "model.layers.3.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.3.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
410
+ "model.layers.3.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
411
+ "model.layers.3.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.3.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
413
+ "model.layers.3.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
414
+ "model.layers.3.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.3.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
416
+ "model.layers.3.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
417
+ "model.layers.3.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.4.attention.dense.biases": "model-00001-of-00002.safetensors",
420
+ "model.layers.4.attention.dense.scales": "model-00001-of-00002.safetensors",
421
+ "model.layers.4.attention.dense.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.4.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.4.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
424
+ "model.layers.4.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
425
+ "model.layers.4.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.4.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.4.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
429
+ "model.layers.4.mlp.gate.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.4.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
431
+ "model.layers.4.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
432
+ "model.layers.4.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.4.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
434
+ "model.layers.4.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
435
+ "model.layers.4.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.4.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
437
+ "model.layers.4.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
438
+ "model.layers.4.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.layers.4.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
440
+ "model.layers.4.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
441
+ "model.layers.4.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
442
+ "model.layers.4.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
443
+ "model.layers.4.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
444
+ "model.layers.4.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.4.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
446
+ "model.layers.4.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
447
+ "model.layers.4.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
448
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
449
+ "model.layers.5.attention.dense.biases": "model-00001-of-00002.safetensors",
450
+ "model.layers.5.attention.dense.scales": "model-00001-of-00002.safetensors",
451
+ "model.layers.5.attention.dense.weight": "model-00001-of-00002.safetensors",
452
+ "model.layers.5.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
453
+ "model.layers.5.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
454
+ "model.layers.5.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
455
+ "model.layers.5.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
456
+ "model.layers.5.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
457
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
458
+ "model.layers.5.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
459
+ "model.layers.5.mlp.gate.weight": "model-00001-of-00002.safetensors",
460
+ "model.layers.5.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
461
+ "model.layers.5.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
462
+ "model.layers.5.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
463
+ "model.layers.5.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
464
+ "model.layers.5.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
465
+ "model.layers.5.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
466
+ "model.layers.5.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
467
+ "model.layers.5.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
468
+ "model.layers.5.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
469
+ "model.layers.5.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
470
+ "model.layers.5.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
471
+ "model.layers.5.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
472
+ "model.layers.5.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
473
+ "model.layers.5.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
474
+ "model.layers.5.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
475
+ "model.layers.5.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
476
+ "model.layers.5.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
477
+ "model.layers.5.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
478
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
479
+ "model.layers.6.attention.dense.biases": "model-00001-of-00002.safetensors",
480
+ "model.layers.6.attention.dense.scales": "model-00001-of-00002.safetensors",
481
+ "model.layers.6.attention.dense.weight": "model-00001-of-00002.safetensors",
482
+ "model.layers.6.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
483
+ "model.layers.6.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
484
+ "model.layers.6.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
485
+ "model.layers.6.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
486
+ "model.layers.6.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
487
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
488
+ "model.layers.6.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
489
+ "model.layers.6.mlp.gate.weight": "model-00001-of-00002.safetensors",
490
+ "model.layers.6.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
491
+ "model.layers.6.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
492
+ "model.layers.6.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
493
+ "model.layers.6.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
494
+ "model.layers.6.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
495
+ "model.layers.6.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
496
+ "model.layers.6.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
497
+ "model.layers.6.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
498
+ "model.layers.6.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
499
+ "model.layers.6.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
500
+ "model.layers.6.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
501
+ "model.layers.6.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
502
+ "model.layers.6.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
503
+ "model.layers.6.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
504
+ "model.layers.6.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
505
+ "model.layers.6.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
506
+ "model.layers.6.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
507
+ "model.layers.6.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
508
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
509
+ "model.layers.7.attention.dense.biases": "model-00001-of-00002.safetensors",
510
+ "model.layers.7.attention.dense.scales": "model-00001-of-00002.safetensors",
511
+ "model.layers.7.attention.dense.weight": "model-00001-of-00002.safetensors",
512
+ "model.layers.7.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
513
+ "model.layers.7.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
514
+ "model.layers.7.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
515
+ "model.layers.7.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
516
+ "model.layers.7.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
517
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
518
+ "model.layers.7.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
519
+ "model.layers.7.mlp.gate.weight": "model-00001-of-00002.safetensors",
520
+ "model.layers.7.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
521
+ "model.layers.7.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
522
+ "model.layers.7.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
523
+ "model.layers.7.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
524
+ "model.layers.7.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
525
+ "model.layers.7.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
526
+ "model.layers.7.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
527
+ "model.layers.7.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
528
+ "model.layers.7.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
529
+ "model.layers.7.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
530
+ "model.layers.7.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
531
+ "model.layers.7.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
532
+ "model.layers.7.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
533
+ "model.layers.7.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
534
+ "model.layers.7.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
535
+ "model.layers.7.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
536
+ "model.layers.7.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
537
+ "model.layers.7.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
538
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
539
+ "model.layers.8.attention.dense.biases": "model-00001-of-00002.safetensors",
540
+ "model.layers.8.attention.dense.scales": "model-00001-of-00002.safetensors",
541
+ "model.layers.8.attention.dense.weight": "model-00001-of-00002.safetensors",
542
+ "model.layers.8.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
543
+ "model.layers.8.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
544
+ "model.layers.8.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
545
+ "model.layers.8.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
546
+ "model.layers.8.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
547
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
548
+ "model.layers.8.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
549
+ "model.layers.8.mlp.gate.weight": "model-00001-of-00002.safetensors",
550
+ "model.layers.8.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
551
+ "model.layers.8.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
552
+ "model.layers.8.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
553
+ "model.layers.8.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
554
+ "model.layers.8.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
555
+ "model.layers.8.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
556
+ "model.layers.8.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
557
+ "model.layers.8.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
558
+ "model.layers.8.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
559
+ "model.layers.8.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
560
+ "model.layers.8.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
561
+ "model.layers.8.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
562
+ "model.layers.8.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
563
+ "model.layers.8.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
564
+ "model.layers.8.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
565
+ "model.layers.8.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
566
+ "model.layers.8.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
567
+ "model.layers.8.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
568
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
569
+ "model.layers.9.attention.dense.biases": "model-00001-of-00002.safetensors",
570
+ "model.layers.9.attention.dense.scales": "model-00001-of-00002.safetensors",
571
+ "model.layers.9.attention.dense.weight": "model-00001-of-00002.safetensors",
572
+ "model.layers.9.attention.key_layernorm.weight": "model-00001-of-00002.safetensors",
573
+ "model.layers.9.attention.query_key_value.biases": "model-00001-of-00002.safetensors",
574
+ "model.layers.9.attention.query_key_value.scales": "model-00001-of-00002.safetensors",
575
+ "model.layers.9.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
576
+ "model.layers.9.attention.query_layernorm.weight": "model-00001-of-00002.safetensors",
577
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
578
+ "model.layers.9.mlp.gate.expert_bias": "model-00001-of-00002.safetensors",
579
+ "model.layers.9.mlp.gate.weight": "model-00001-of-00002.safetensors",
580
+ "model.layers.9.mlp.shared_experts.down_proj.biases": "model-00001-of-00002.safetensors",
581
+ "model.layers.9.mlp.shared_experts.down_proj.scales": "model-00001-of-00002.safetensors",
582
+ "model.layers.9.mlp.shared_experts.down_proj.weight": "model-00001-of-00002.safetensors",
583
+ "model.layers.9.mlp.shared_experts.gate_proj.biases": "model-00001-of-00002.safetensors",
584
+ "model.layers.9.mlp.shared_experts.gate_proj.scales": "model-00001-of-00002.safetensors",
585
+ "model.layers.9.mlp.shared_experts.gate_proj.weight": "model-00001-of-00002.safetensors",
586
+ "model.layers.9.mlp.shared_experts.up_proj.biases": "model-00001-of-00002.safetensors",
587
+ "model.layers.9.mlp.shared_experts.up_proj.scales": "model-00001-of-00002.safetensors",
588
+ "model.layers.9.mlp.shared_experts.up_proj.weight": "model-00001-of-00002.safetensors",
589
+ "model.layers.9.mlp.switch_mlp.down_proj.biases": "model-00001-of-00002.safetensors",
590
+ "model.layers.9.mlp.switch_mlp.down_proj.scales": "model-00001-of-00002.safetensors",
591
+ "model.layers.9.mlp.switch_mlp.down_proj.weight": "model-00001-of-00002.safetensors",
592
+ "model.layers.9.mlp.switch_mlp.gate_proj.biases": "model-00001-of-00002.safetensors",
593
+ "model.layers.9.mlp.switch_mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
594
+ "model.layers.9.mlp.switch_mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
595
+ "model.layers.9.mlp.switch_mlp.up_proj.biases": "model-00001-of-00002.safetensors",
596
+ "model.layers.9.mlp.switch_mlp.up_proj.scales": "model-00001-of-00002.safetensors",
597
+ "model.layers.9.mlp.switch_mlp.up_proj.weight": "model-00001-of-00002.safetensors",
598
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
599
+ "model.norm.weight": "model-00002-of-00002.safetensors",
600
+ "model.word_embeddings.biases": "model-00001-of-00002.safetensors",
601
+ "model.word_embeddings.scales": "model-00001-of-00002.safetensors",
602
+ "model.word_embeddings.weight": "model-00001-of-00002.safetensors"
603
+ }
604
+ }
modeling_llada2_moe.py ADDED
@@ -0,0 +1,1434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Antgroup and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
4
+ # and OPT implementations in this library. It has been modified from its
5
+ # original forms to accommodate minor architectural differences compared
6
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch LLaDA2MoE model."""
20
+
21
+ import math
22
+ from typing import List, Callable, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ from torch import nn
27
+ from torch.nn import CrossEntropyLoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_attn_mask_utils import (
32
+ _prepare_4d_causal_attention_mask,
33
+ _prepare_4d_causal_attention_mask_for_sdpa,
34
+ )
35
+ from transformers.modeling_outputs import (
36
+ MoeModelOutputWithPast,
37
+ MoeCausalLMOutputWithPast,
38
+ )
39
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
40
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
41
+ from transformers.processing_utils import Unpack
42
+ from transformers.pytorch_utils import (
43
+ ALL_LAYERNORM_LAYERS,
44
+ is_torch_greater_or_equal_than_1_13,
45
+ )
46
+ from transformers.utils import (
47
+ TransformersKwargs,
48
+ add_start_docstrings,
49
+ add_start_docstrings_to_model_forward,
50
+ logging,
51
+ replace_return_docstrings,
52
+ )
53
+ from transformers.utils.import_utils import is_torch_fx_available
54
+ from .configuration_llada2_moe import LLaDA2MoeConfig
55
+ from transformers.generation.utils import GenerationMixin
56
+
57
+
58
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
59
+ # It means that the function will not be traced through and simply appear as a node in the graph.
60
+ if is_torch_fx_available():
61
+ if not is_torch_greater_or_equal_than_1_13:
62
+ import torch.fx
63
+
64
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
65
+
66
+
67
+ logger = logging.get_logger(__name__)
68
+
69
+ _CONFIG_FOR_DOC = "LLaDA2MoeConfig"
70
+
71
+
72
+ def _get_unpad_data(attention_mask):
73
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
74
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
75
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
76
+ cu_seqlens = F.pad(
77
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
78
+ )
79
+ return (
80
+ indices,
81
+ cu_seqlens,
82
+ max_seqlen_in_batch,
83
+ )
84
+
85
+
86
+ class LLaDA2MoeRMSNorm(nn.Module):
87
+ def __init__(self, hidden_size, eps=1e-6):
88
+ """
89
+ LLaDA2MoeRMSNorm is equivalent to T5LayerNorm
90
+ """
91
+ super().__init__()
92
+ self.weight = nn.Parameter(torch.ones(hidden_size))
93
+ self.variance_epsilon = eps
94
+
95
+ def forward(self, hidden_states):
96
+ input_dtype = hidden_states.dtype
97
+ hidden_states = hidden_states.to(torch.float32)
98
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
99
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
100
+ return self.weight * hidden_states.to(input_dtype)
101
+
102
+
103
+ ALL_LAYERNORM_LAYERS.append(LLaDA2MoeRMSNorm)
104
+
105
+
106
+ class LLaDA2MoeRotaryEmbedding(nn.Module):
107
+ def __init__(self, config: LLaDA2MoeConfig, device=None):
108
+ super().__init__()
109
+ # BC: "rope_type" was originally "type"
110
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
111
+ self.rope_type = config.rope_scaling.get(
112
+ "rope_type", config.rope_scaling.get("type")
113
+ )
114
+ else:
115
+ self.rope_type = "default"
116
+ self.max_seq_len_cached = config.max_position_embeddings
117
+ self.original_max_seq_len = config.max_position_embeddings
118
+
119
+ self.config = config
120
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
121
+
122
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
123
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
124
+ self.original_inv_freq = self.inv_freq
125
+
126
+ @torch.no_grad()
127
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
128
+ def forward(self, x, position_ids):
129
+ inv_freq_expanded = (
130
+ self.inv_freq[None, :, None]
131
+ .float()
132
+ .expand(position_ids.shape[0], -1, 1)
133
+ .to(x.device)
134
+ )
135
+ position_ids_expanded = position_ids[:, None, :].float()
136
+
137
+ device_type = (
138
+ x.device.type
139
+ if isinstance(x.device.type, str) and x.device.type != "mps"
140
+ else "cpu"
141
+ )
142
+ with torch.autocast(device_type=device_type, enabled=False): # Force float32
143
+ freqs = (
144
+ inv_freq_expanded.float() @ position_ids_expanded.float()
145
+ ).transpose(1, 2)
146
+ emb = torch.cat((freqs, freqs), dim=-1)
147
+ cos = emb.cos() * self.attention_scaling
148
+ sin = emb.sin() * self.attention_scaling
149
+
150
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
151
+
152
+
153
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
154
+ def rotate_half(x):
155
+ """Rotates half the hidden dims of the input."""
156
+ x1 = x[..., : x.shape[-1] // 2]
157
+ x2 = x[..., x.shape[-1] // 2 :]
158
+ return torch.cat((-x2, x1), dim=-1)
159
+
160
+
161
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
162
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
163
+ """Applies Rotary Position Embedding to the query and key tensors.
164
+
165
+ Args:
166
+ q (`torch.Tensor`): The query tensor.
167
+ k (`torch.Tensor`): The key tensor.
168
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
169
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
170
+ position_ids (`torch.Tensor`):
171
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
172
+ used to pass offsetted position ids when working with a KV-cache.
173
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
174
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
175
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
176
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
177
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
178
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
179
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
180
+ Returns:
181
+ `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding.
182
+ """
183
+ cos = cos.unsqueeze(unsqueeze_dim)
184
+ sin = sin.unsqueeze(unsqueeze_dim)
185
+
186
+ # Keep half or full tensor for later concatenation
187
+ rotary_dim = cos.shape[-1]
188
+ q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
189
+ k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
190
+
191
+ # Apply rotary embeddings on the first half or full tensor
192
+ q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
193
+ k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
194
+
195
+ # Concatenate back to full shape
196
+ q_embed = torch.cat([q_embed, q_pass], dim=-1)
197
+ k_embed = torch.cat([k_embed, k_pass], dim=-1)
198
+ return q_embed, k_embed
199
+
200
+
201
+ class LLaDA2MoeMLP(nn.Module):
202
+ def __init__(self, config: LLaDA2MoeConfig, intermediate_size: int):
203
+ super().__init__()
204
+ self.config = config
205
+ self.hidden_size = config.hidden_size
206
+ self.intermediate_size = intermediate_size
207
+
208
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
209
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
210
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
211
+ self.act_fn = ACT2FN[config.hidden_act]
212
+
213
+ def forward(self, x):
214
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
215
+
216
+
217
+ class LLaDA2MoeGate(nn.Module):
218
+ def __init__(self, config):
219
+ super().__init__()
220
+ self.config = config
221
+ self.top_k = config.num_experts_per_tok
222
+ self.num_experts = config.num_experts
223
+
224
+ self.n_group = config.n_group
225
+ self.topk_group = config.topk_group
226
+
227
+ # topk selection algorithm
228
+ self.gating_dim = config.hidden_size
229
+ self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim)))
230
+ self.routed_scaling_factor = config.routed_scaling_factor
231
+
232
+ self.register_buffer("expert_bias", torch.zeros(self.num_experts))
233
+ self.reset_parameters()
234
+
235
+ def reset_parameters(self) -> None:
236
+ import torch.nn.init as init
237
+
238
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
239
+
240
+ def group_limited_topk(
241
+ self,
242
+ scores: torch.Tensor,
243
+ ):
244
+ num_tokens, _ = scores.size()
245
+ # Organize the experts into groups
246
+ group_scores = (
247
+ scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
248
+ )
249
+ group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1]
250
+ group_mask = torch.zeros_like(group_scores)
251
+ group_mask.scatter_(1, group_idx, 1)
252
+
253
+ # Mask the experts based on selection groups
254
+ score_mask = (
255
+ group_mask.unsqueeze(-1)
256
+ .expand(num_tokens, self.n_group, self.num_experts // self.n_group)
257
+ .reshape(num_tokens, -1)
258
+ )
259
+
260
+ masked_scores = scores.masked_fill(~score_mask.bool(), float("-inf"))
261
+ probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1)
262
+
263
+ return probs, top_indices
264
+
265
+ def forward(self, hidden_states):
266
+ # compute gating score
267
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
268
+ logits = F.linear(
269
+ hidden_states.type(torch.float32), self.weight.type(torch.float32)
270
+ )
271
+
272
+ scores = torch.sigmoid(logits.float()).type_as(logits)
273
+
274
+ scores_for_routing = scores + self.expert_bias
275
+ _, topk_idx = self.group_limited_topk(scores_for_routing)
276
+
277
+ scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits)
278
+
279
+ topk_weight = (
280
+ scores / (scores.sum(dim=-1, keepdim=True) + 1e-20)
281
+ if self.top_k > 1
282
+ else scores
283
+ )
284
+ topk_weight = topk_weight * self.routed_scaling_factor
285
+
286
+ return topk_idx, topk_weight, logits
287
+
288
+
289
+ class LLaDA2MoeSparseMoeBlock(nn.Module):
290
+ """
291
+ A mixed expert module containing shared experts.
292
+ """
293
+
294
+ def __init__(self, config: LLaDA2MoeConfig):
295
+ super().__init__()
296
+ self.config = config
297
+ self.num_experts_per_tok = config.num_experts_per_tok
298
+ self._setup_experts()
299
+ self.gate = LLaDA2MoeGate(config)
300
+ if config.num_shared_experts is not None:
301
+ self.shared_experts = LLaDA2MoeMLP(
302
+ config=config,
303
+ intermediate_size=config.moe_intermediate_size
304
+ * config.num_shared_experts,
305
+ )
306
+
307
+ def _setup_experts(self):
308
+ self.experts = nn.ModuleList(
309
+ [
310
+ LLaDA2MoeMLP(
311
+ config=self.config,
312
+ intermediate_size=self.config.moe_intermediate_size,
313
+ )
314
+ for _ in range(self.config.num_experts)
315
+ ]
316
+ )
317
+
318
+ def forward(self, hidden_states):
319
+ identity = hidden_states
320
+ bsz, seq_len, h = hidden_states.shape
321
+ topk_idx, topk_weight, router_logits = self.gate(hidden_states)
322
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
323
+ flat_topk_idx = topk_idx.view(-1)
324
+ if self.training:
325
+ hidden_states = hidden_states.repeat_interleave(
326
+ self.num_experts_per_tok, dim=0
327
+ )
328
+ y = torch.empty_like(hidden_states)
329
+ for i, expert in enumerate(self.experts):
330
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
331
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
332
+ y = y.to(hidden_states.dtype).view(bsz, seq_len, h)
333
+ else:
334
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(
335
+ bsz, seq_len, h
336
+ )
337
+ if self.config.num_shared_experts is not None:
338
+ y = y + self.shared_experts(identity)
339
+ return y, (
340
+ router_logits.view(bsz, seq_len, -1),
341
+ topk_idx.view(bsz, seq_len, -1),
342
+ )
343
+
344
+ @torch.no_grad()
345
+ def moe_infer(self, x, topk_ids, topk_weight):
346
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
347
+ cnts.scatter_(1, topk_ids, 1)
348
+ tokens_per_expert = cnts.sum(dim=0)
349
+ idxs = topk_ids.view(-1).argsort()
350
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
351
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
352
+ outputs = []
353
+ start_idx = 0
354
+ for i, num_tokens_tensor in enumerate(tokens_per_expert):
355
+ num_tokens = num_tokens_tensor.item()
356
+ if num_tokens == 0:
357
+ continue
358
+ end_idx = start_idx + num_tokens
359
+ expert = self.experts[i]
360
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
361
+ expert_out = expert(tokens_for_this_expert)
362
+ outputs.append(expert_out.to(x.device))
363
+ start_idx = end_idx
364
+
365
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
366
+ new_x = torch.empty_like(outs)
367
+ new_x[idxs] = outs
368
+ final_out = (
369
+ new_x.view(*topk_ids.shape, -1)
370
+ .type(topk_weight.dtype)
371
+ .mul_(topk_weight.unsqueeze(dim=-1))
372
+ .sum(dim=1)
373
+ .type(new_x.dtype)
374
+ )
375
+ return final_out
376
+
377
+
378
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
379
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
380
+ """
381
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
382
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
383
+ """
384
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
385
+ if n_rep == 1:
386
+ return hidden_states
387
+ hidden_states = hidden_states[:, :, None, :, :].expand(
388
+ batch, num_key_value_heads, n_rep, slen, head_dim
389
+ )
390
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
391
+
392
+
393
+ def eager_attention_forward(
394
+ module: nn.Module,
395
+ query: torch.Tensor,
396
+ key: torch.Tensor,
397
+ value: torch.Tensor,
398
+ attention_mask: Optional[torch.Tensor],
399
+ scaling: float,
400
+ dropout: float = 0.0,
401
+ **kwargs: Unpack[TransformersKwargs],
402
+ ):
403
+ key_states = repeat_kv(key, module.num_key_value_groups)
404
+ value_states = repeat_kv(value, module.num_key_value_groups)
405
+
406
+ attn_weights = (
407
+ torch.matmul(query, key_states.transpose(2, 3)) * scaling
408
+ )
409
+ if attention_mask is not None:
410
+ attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]]
411
+
412
+ # upcast attention to fp32
413
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
414
+ query.dtype
415
+ )
416
+ attn_weights = nn.functional.dropout(
417
+ attn_weights, p=dropout, training=module.training
418
+ )
419
+ attn_output = torch.matmul(attn_weights, value_states)
420
+ attn_output = attn_output.transpose(1, 2).contiguous()
421
+
422
+ return attn_output, attn_weights
423
+
424
+
425
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->LLaDA2Moe
426
+ class LLaDA2MoeAttention(nn.Module):
427
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
428
+
429
+ def __init__(self, config: LLaDA2MoeConfig, layer_idx: Optional[int] = None):
430
+ super().__init__()
431
+ self.config = config
432
+ self.layer_idx = layer_idx
433
+ if layer_idx is None:
434
+ logger.warning_once(
435
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
436
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
437
+ "when creating this class."
438
+ )
439
+ self.attention_dropout = config.attention_dropout
440
+ self.hidden_size = config.hidden_size
441
+ self.num_heads = config.num_attention_heads
442
+ self.head_dim = config.head_dim or self.hidden_size // self.num_heads
443
+ partial_rotary_factor = (
444
+ config.partial_rotary_factor
445
+ if hasattr(config, "partial_rotary_factor")
446
+ else 1.0
447
+ )
448
+ self.rope_dim = int(self.head_dim * partial_rotary_factor)
449
+ self.num_key_value_heads = config.num_key_value_heads
450
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
451
+ self.max_position_embeddings = config.max_position_embeddings
452
+ self.rope_theta = config.rope_theta
453
+ self.scaling = self.head_dim**-0.5
454
+ self.is_causal = False
455
+
456
+ self.query_key_value = nn.Linear(
457
+ self.hidden_size,
458
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
459
+ bias=config.use_qkv_bias,
460
+ )
461
+
462
+ if self.config.use_qk_norm:
463
+ self.query_layernorm = LLaDA2MoeRMSNorm(
464
+ self.head_dim, eps=config.rms_norm_eps
465
+ )
466
+ self.key_layernorm = LLaDA2MoeRMSNorm(
467
+ self.head_dim, eps=config.rms_norm_eps
468
+ )
469
+ self.dense = nn.Linear(
470
+ self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias
471
+ )
472
+ self.sliding_window = getattr(config, "sliding_window", None)
473
+
474
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
475
+ return (
476
+ tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
477
+ .transpose(1, 2)
478
+ .contiguous()
479
+ )
480
+
481
+ def forward(
482
+ self,
483
+ hidden_states: torch.Tensor,
484
+ attention_mask: Optional[torch.Tensor] = None,
485
+ position_ids: Optional[torch.LongTensor] = None,
486
+ past_key_value: Optional[Cache] = None,
487
+ output_attentions: bool = False,
488
+ use_cache: bool = False,
489
+ position_embeddings: Optional[
490
+ Tuple[torch.Tensor, torch.Tensor]
491
+ ] = None, # necessary, but kept here for BC
492
+ **kwargs,
493
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
494
+ input_shape = hidden_states.shape[:-1]
495
+
496
+ bsz, q_len, _ = hidden_states.size()
497
+
498
+ qkv = self.query_key_value(hidden_states)
499
+ qkv = qkv.view(
500
+ bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim
501
+ )
502
+
503
+ query_states, key_states, value_states = qkv.split(
504
+ [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2
505
+ )
506
+ query_states = query_states.transpose(1, 2)
507
+ key_states = key_states.transpose(1, 2)
508
+ value_states = value_states.transpose(1, 2)
509
+
510
+ if self.config.use_qk_norm:
511
+ query_states = self.query_layernorm(query_states)
512
+ key_states = self.key_layernorm(key_states)
513
+
514
+ cos, sin = position_embeddings
515
+ query_states, key_states = apply_rotary_pos_emb(
516
+ query_states, key_states, cos, sin
517
+ )
518
+
519
+ if past_key_value is not None:
520
+ if self.layer_idx is None:
521
+ raise ValueError(
522
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
523
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
524
+ "with a layer index."
525
+ )
526
+ cache_kwargs = {"sin": sin, "cos": cos}
527
+ key_states, value_states = past_key_value.update(
528
+ key_states, value_states, self.layer_idx, cache_kwargs
529
+ )
530
+
531
+ attention_interface: Callable = eager_attention_forward
532
+ if self.config._attn_implementation != "eager":
533
+ attention_interface = ALL_ATTENTION_FUNCTIONS[
534
+ self.config._attn_implementation
535
+ ]
536
+
537
+ attn_output, attn_weights = attention_interface(
538
+ self,
539
+ query_states,
540
+ key_states,
541
+ value_states,
542
+ attention_mask,
543
+ dropout=0.0 if not self.training else self.attention_dropout,
544
+ scaling=self.scaling,
545
+ sliding_window=self.sliding_window, # diff with Llama
546
+ **kwargs,
547
+ )
548
+
549
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
550
+ attn_output = self.dense(attn_output)
551
+
552
+ return attn_output, attn_weights, past_key_value
553
+
554
+
555
+ class LLaDA2MoeDecoderLayer(nn.Module):
556
+ def __init__(self, config: LLaDA2MoeConfig, layer_idx: int):
557
+ super().__init__()
558
+ self.hidden_size = config.hidden_size
559
+
560
+ self.attention = LLaDA2MoeAttention(config=config, layer_idx=layer_idx)
561
+
562
+ self.mlp = (
563
+ LLaDA2MoeSparseMoeBlock(config)
564
+ if (
565
+ config.num_experts is not None
566
+ and layer_idx >= config.first_k_dense_replace
567
+ )
568
+ else LLaDA2MoeMLP(config=config, intermediate_size=config.intermediate_size)
569
+ )
570
+ self.input_layernorm = LLaDA2MoeRMSNorm(
571
+ config.hidden_size, eps=config.rms_norm_eps
572
+ )
573
+ self.post_attention_layernorm = LLaDA2MoeRMSNorm(
574
+ config.hidden_size, eps=config.rms_norm_eps
575
+ )
576
+
577
+ def forward(
578
+ self,
579
+ hidden_states: torch.Tensor,
580
+ attention_mask: Optional[torch.Tensor] = None,
581
+ position_ids: Optional[torch.LongTensor] = None,
582
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
583
+ output_attentions: Optional[bool] = False,
584
+ output_router_logits: Optional[bool] = False,
585
+ use_cache: Optional[bool] = False,
586
+ position_embeddings: Optional[
587
+ Tuple[torch.Tensor, torch.Tensor]
588
+ ] = None, # necessary, but kept here for BC
589
+ **kwargs,
590
+ ) -> Tuple[
591
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
592
+ ]:
593
+ """
594
+ Args:
595
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
596
+ attention_mask (`torch.FloatTensor`, *optional*):
597
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
598
+ query_sequence_length, key_sequence_length)` if default attention is used.
599
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
600
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
601
+ config.n_positions - 1]`.
602
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
603
+ cached past key and value projection states
604
+ output_attentions (`bool`, *optional*):
605
+ Whether to return the attentions tensors of all attention layers. See `attentions` under
606
+ returned tensors for more detail.
607
+ output_router_logits (`bool`, *optional*):
608
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
609
+ and should not be returned during inference.
610
+ use_cache (`bool`, *optional*):
611
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
612
+ (see `past_key_values`).
613
+ """
614
+ residual = hidden_states
615
+
616
+ hidden_states = self.input_layernorm(hidden_states)
617
+
618
+ # Self Attention
619
+ hidden_states, self_attn_weights, present_key_value = self.attention(
620
+ hidden_states=hidden_states,
621
+ attention_mask=attention_mask,
622
+ position_ids=position_ids,
623
+ past_key_value=past_key_value,
624
+ output_attentions=output_attentions,
625
+ position_embeddings=position_embeddings,
626
+ use_cache=use_cache,
627
+ )
628
+ hidden_states = residual + hidden_states
629
+
630
+ # Fully Connected
631
+ residual = hidden_states
632
+ hidden_states = self.post_attention_layernorm(hidden_states)
633
+ hidden_states = self.mlp(hidden_states)
634
+ if isinstance(hidden_states, tuple):
635
+ hidden_states, router_logits = hidden_states
636
+ else:
637
+ router_logits = None
638
+ hidden_states = residual + hidden_states.to(residual.device)
639
+
640
+ outputs = (hidden_states,)
641
+
642
+ if output_attentions:
643
+ outputs += (self_attn_weights,)
644
+
645
+ if use_cache:
646
+ outputs += (present_key_value,)
647
+
648
+ if output_router_logits:
649
+ outputs += (router_logits,)
650
+
651
+ return outputs
652
+
653
+
654
+ LLADA2MOE_START_DOCSTRING = r"""
655
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
656
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
657
+ etc.)
658
+
659
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
660
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
661
+ and behavior.
662
+
663
+ Parameters:
664
+ config ([`LLaDA2MoeConfig`]):
665
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
666
+ load the weights associated with the model, only the configuration. Check out the
667
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
668
+ """
669
+
670
+
671
+ @add_start_docstrings(
672
+ "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.",
673
+ LLADA2MOE_START_DOCSTRING,
674
+ )
675
+ class LLaDA2MoePreTrainedModel(PreTrainedModel):
676
+ config_class = LLaDA2MoeConfig
677
+ base_model_prefix = "model"
678
+ supports_gradient_checkpointing = True
679
+ _no_split_modules = ["LLaDA2MoeDecoderLayer"]
680
+ _skip_keys_device_placement = ["past_key_values"]
681
+ _supports_flash_attn_2 = False
682
+ _supports_sdpa = True
683
+ _supports_flex_attn = True
684
+ _supports_cache_class = True
685
+
686
+ def _init_weights(self, module):
687
+ std = self.config.initializer_range
688
+ if isinstance(module, nn.Linear):
689
+ module.weight.data.normal_(mean=0.0, std=std)
690
+ if module.bias is not None:
691
+ module.bias.data.zero_()
692
+ elif isinstance(module, nn.Embedding):
693
+ module.weight.data.normal_(mean=0.0, std=std)
694
+ if module.padding_idx is not None:
695
+ module.weight.data[module.padding_idx].zero_()
696
+
697
+
698
+ LLADA2MOE_INPUTS_DOCSTRING = r"""
699
+ Args:
700
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
701
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
702
+ it.
703
+
704
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
705
+ [`PreTrainedTokenizer.__call__`] for details.
706
+
707
+ [What are input IDs?](../glossary#input-ids)
708
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
709
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
710
+
711
+ - 1 for tokens that are **not masked**,
712
+ - 0 for tokens that are **masked**.
713
+
714
+ [What are attention masks?](../glossary#attention-mask)
715
+
716
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
717
+ [`PreTrainedTokenizer.__call__`] for details.
718
+
719
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
720
+ `past_key_values`).
721
+
722
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
723
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
724
+ information on the default strategy.
725
+
726
+ - 1 indicates the head is **not masked**,
727
+ - 0 indicates the head is **masked**.
728
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
729
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
730
+ config.n_positions - 1]`.
731
+
732
+ [What are position IDs?](../glossary#position-ids)
733
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
734
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
735
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
736
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
737
+
738
+ Two formats are allowed:
739
+ - a [`~cache_utils.Cache`] instance;
740
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
741
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
742
+ cache format.
743
+
744
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
745
+ legacy cache format will be returned.
746
+
747
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
748
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
749
+ of shape `(batch_size, sequence_length)`.
750
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
751
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
752
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
753
+ model's internal embedding lookup matrix.
754
+ use_cache (`bool`, *optional*):
755
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
756
+ `past_key_values`).
757
+ output_attentions (`bool`, *optional*):
758
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
759
+ tensors for more detail.
760
+ output_hidden_states (`bool`, *optional*):
761
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
762
+ more detail.
763
+ return_dict (`bool`, *optional*):
764
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
765
+ """
766
+
767
+
768
+ @add_start_docstrings(
769
+ "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.",
770
+ LLADA2MOE_START_DOCSTRING,
771
+ )
772
+ class LLaDA2MoeModel(LLaDA2MoePreTrainedModel):
773
+ """
774
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDA2MoeDecoderLayer`]
775
+
776
+ Args:
777
+ config: LLaDA2MoeConfig
778
+ """
779
+
780
+ def __init__(self, config: LLaDA2MoeConfig):
781
+ super().__init__(config)
782
+ self.padding_idx = config.pad_token_id
783
+ self.vocab_size = config.vocab_size
784
+
785
+ self.word_embeddings = nn.Embedding(
786
+ config.vocab_size, config.hidden_size, self.padding_idx
787
+ )
788
+ self.layers = nn.ModuleList(
789
+ [
790
+ LLaDA2MoeDecoderLayer(config, layer_idx)
791
+ for layer_idx in range(config.num_hidden_layers)
792
+ ]
793
+ )
794
+ self._use_sdpa = config._attn_implementation == "sdpa"
795
+ self._use_flex_attention = config._attn_implementation == "flex_attention"
796
+ self.norm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
797
+ self.rotary_emb = LLaDA2MoeRotaryEmbedding(config=config)
798
+ self.gradient_checkpointing = False
799
+ # Initialize weights and apply final processing
800
+ self.post_init()
801
+
802
+ def get_input_embeddings(self):
803
+ return self.word_embeddings
804
+
805
+ def set_input_embeddings(self, value):
806
+ self.word_embeddings = value
807
+
808
+ @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING)
809
+ def forward(
810
+ self,
811
+ input_ids: torch.LongTensor = None,
812
+ attention_mask: Optional[torch.Tensor] = None,
813
+ position_ids: Optional[torch.LongTensor] = None,
814
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
815
+ inputs_embeds: Optional[torch.FloatTensor] = None,
816
+ use_cache: Optional[bool] = None,
817
+ output_attentions: Optional[bool] = None,
818
+ output_hidden_states: Optional[bool] = None,
819
+ output_router_logits: Optional[bool] = None,
820
+ return_dict: Optional[bool] = None,
821
+ **kwargs,
822
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
823
+ output_attentions = (
824
+ output_attentions
825
+ if output_attentions is not None
826
+ else self.config.output_attentions
827
+ )
828
+ output_hidden_states = (
829
+ output_hidden_states
830
+ if output_hidden_states is not None
831
+ else self.config.output_hidden_states
832
+ )
833
+ output_router_logits = (
834
+ output_router_logits
835
+ if output_router_logits is not None
836
+ else self.config.output_router_logits
837
+ )
838
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
839
+
840
+ return_dict = (
841
+ return_dict if return_dict is not None else self.config.use_return_dict
842
+ )
843
+
844
+ # retrieve input_ids and inputs_embeds
845
+ if input_ids is not None and inputs_embeds is not None:
846
+ raise ValueError(
847
+ "You cannot specify both input_ids and inputs_embeds at the same time"
848
+ )
849
+ elif input_ids is not None:
850
+ batch_size, seq_length = input_ids.shape[:2]
851
+ elif inputs_embeds is not None:
852
+ batch_size, seq_length = inputs_embeds.shape[:2]
853
+ else:
854
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
855
+
856
+ if self.gradient_checkpointing and self.training:
857
+ if use_cache:
858
+ logger.warning_once(
859
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
860
+ )
861
+ use_cache = False
862
+
863
+ if use_cache and past_key_values is None:
864
+ past_key_values = DynamicCache()
865
+
866
+ if inputs_embeds is None:
867
+ inputs_embeds = self.word_embeddings(input_ids)
868
+
869
+ past_seen_tokens = (
870
+ past_key_values.get_seq_length() if past_key_values is not None else 0
871
+ )
872
+
873
+ if position_ids is None:
874
+ position_ids = torch.arange(
875
+ past_seen_tokens,
876
+ past_seen_tokens + inputs_embeds.shape[1],
877
+ device=inputs_embeds.device,
878
+ )
879
+ position_ids = position_ids.unsqueeze(0)
880
+
881
+ if self._use_flex_attention:
882
+ if attention_mask is not None and isinstance(attention_mask, torch.Tensor):
883
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
884
+ attention_mask,
885
+ (batch_size, seq_length),
886
+ inputs_embeds,
887
+ past_seen_tokens,
888
+ )
889
+ elif self._use_sdpa and not output_attentions:
890
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
891
+ # the manual implementation that requires a 4D causal mask in all cases.
892
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
893
+ attention_mask,
894
+ (batch_size, seq_length),
895
+ inputs_embeds,
896
+ past_seen_tokens,
897
+ )
898
+ else:
899
+ # 4d mask is passed through the layers
900
+ attention_mask = _prepare_4d_causal_attention_mask(
901
+ attention_mask,
902
+ (batch_size, seq_length),
903
+ inputs_embeds,
904
+ past_seen_tokens,
905
+ )
906
+
907
+ # embed positions
908
+ hidden_states = inputs_embeds
909
+
910
+ # create position embeddings to be shared across the decoder layers
911
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
912
+
913
+ # decoder layers
914
+ all_hidden_states = () if output_hidden_states else None
915
+ all_self_attns = () if output_attentions else None
916
+ all_router_logits = () if output_router_logits else None
917
+ next_decoder_cache = None
918
+
919
+ for decoder_layer in self.layers:
920
+ if output_hidden_states:
921
+ all_hidden_states += (hidden_states,)
922
+
923
+ if self.gradient_checkpointing and self.training:
924
+ layer_outputs = self._gradient_checkpointing_func(
925
+ decoder_layer.__call__,
926
+ hidden_states,
927
+ attention_mask,
928
+ position_ids,
929
+ past_key_values,
930
+ output_attentions,
931
+ output_router_logits,
932
+ use_cache,
933
+ position_embeddings,
934
+ )
935
+ else:
936
+ layer_outputs = decoder_layer(
937
+ hidden_states,
938
+ attention_mask=attention_mask,
939
+ position_ids=position_ids,
940
+ past_key_value=past_key_values,
941
+ output_attentions=output_attentions,
942
+ output_router_logits=output_router_logits,
943
+ use_cache=use_cache,
944
+ position_embeddings=position_embeddings,
945
+ )
946
+ hidden_states = layer_outputs[0]
947
+
948
+ if use_cache:
949
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
950
+
951
+ if output_attentions:
952
+ all_self_attns += (layer_outputs[1],)
953
+
954
+ if output_router_logits and layer_outputs[-1] is not None:
955
+ all_router_logits += (layer_outputs[-1],)
956
+
957
+ hidden_states = self.norm(hidden_states)
958
+
959
+ # add hidden states from the last decoder layer
960
+ if output_hidden_states:
961
+ all_hidden_states += (hidden_states,)
962
+
963
+ next_cache = None
964
+ if use_cache:
965
+ next_cache = next_decoder_cache
966
+ if not return_dict:
967
+ return tuple(
968
+ v
969
+ for v in [
970
+ hidden_states,
971
+ next_cache,
972
+ all_hidden_states,
973
+ all_self_attns,
974
+ all_router_logits,
975
+ ]
976
+ if v is not None
977
+ )
978
+ return MoeModelOutputWithPast(
979
+ last_hidden_state=hidden_states,
980
+ past_key_values=next_cache,
981
+ hidden_states=all_hidden_states,
982
+ attentions=all_self_attns,
983
+ router_logits=all_router_logits,
984
+ )
985
+
986
+
987
+ class LLaDA2MoeModelLM(LLaDA2MoePreTrainedModel, GenerationMixin):
988
+ _tied_weights_keys = ["lm_head.weight"]
989
+
990
+ def __init__(self, config: LLaDA2MoeConfig):
991
+ super().__init__(config)
992
+ self.model = LLaDA2MoeModel(config)
993
+ self.vocab_size = config.vocab_size
994
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
995
+
996
+ # Initialize weights and apply final processing
997
+ self.post_init()
998
+
999
+ def get_input_embeddings(self):
1000
+ return self.model.word_embeddings
1001
+
1002
+ def set_input_embeddings(self, value):
1003
+ self.model.word_embeddings = value
1004
+
1005
+ def get_output_embeddings(self):
1006
+ return self.lm_head
1007
+
1008
+ def set_output_embeddings(self, new_embeddings):
1009
+ self.lm_head = new_embeddings
1010
+
1011
+ def set_decoder(self, decoder):
1012
+ self.model = decoder
1013
+
1014
+ def get_decoder(self):
1015
+ return self.model
1016
+
1017
+ @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING)
1018
+ @replace_return_docstrings(
1019
+ output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1020
+ )
1021
+ def forward(
1022
+ self,
1023
+ input_ids: torch.LongTensor = None,
1024
+ attention_mask: Optional[torch.Tensor] = None,
1025
+ position_ids: Optional[torch.LongTensor] = None,
1026
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1027
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1028
+ labels: Optional[torch.LongTensor] = None,
1029
+ use_cache: Optional[bool] = None,
1030
+ output_attentions: Optional[bool] = None,
1031
+ output_hidden_states: Optional[bool] = None,
1032
+ output_router_logits: Optional[bool] = None,
1033
+ return_dict: Optional[bool] = None,
1034
+ **kwargs,
1035
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1036
+ r"""
1037
+ Args:
1038
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1039
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1040
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1041
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1042
+
1043
+ Returns:
1044
+
1045
+ Example:
1046
+
1047
+ ```python
1048
+ >>> from transformers import AutoTokenizer
1049
+
1050
+ >>> model = LLaDA2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1051
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1052
+
1053
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1054
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1055
+
1056
+ >>> # Generate
1057
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1058
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1059
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1060
+ ```"""
1061
+ output_attentions = (
1062
+ output_attentions
1063
+ if output_attentions is not None
1064
+ else self.config.output_attentions
1065
+ )
1066
+ output_hidden_states = (
1067
+ output_hidden_states
1068
+ if output_hidden_states is not None
1069
+ else self.config.output_hidden_states
1070
+ )
1071
+ output_router_logits = (
1072
+ output_router_logits
1073
+ if output_router_logits is not None
1074
+ else self.config.output_router_logits
1075
+ )
1076
+ return_dict = (
1077
+ return_dict if return_dict is not None else self.config.use_return_dict
1078
+ )
1079
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1080
+ outputs = self.model(
1081
+ input_ids=input_ids,
1082
+ attention_mask=attention_mask,
1083
+ position_ids=position_ids,
1084
+ past_key_values=past_key_values,
1085
+ inputs_embeds=inputs_embeds,
1086
+ use_cache=use_cache,
1087
+ output_attentions=output_attentions,
1088
+ output_hidden_states=output_hidden_states,
1089
+ output_router_logits=output_router_logits,
1090
+ return_dict=return_dict,
1091
+ **kwargs,
1092
+ )
1093
+
1094
+ loss = None
1095
+ aux_loss = None
1096
+ hidden_states = outputs[0]
1097
+
1098
+ logits = self.lm_head(hidden_states)
1099
+ logits = logits.float()
1100
+
1101
+ if labels is not None:
1102
+ # LLaDA2.0 will use same label position logits
1103
+ shift_logits = logits
1104
+ shift_labels = labels
1105
+ # Flatten the tokens
1106
+ loss_fct = CrossEntropyLoss()
1107
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1108
+ shift_labels = shift_labels.view(-1)
1109
+ # Enable model parallelism
1110
+ shift_labels = shift_labels.to(shift_logits.device)
1111
+ loss = loss_fct(shift_logits, shift_labels)
1112
+
1113
+ if not return_dict:
1114
+ output = (logits,) + outputs[1:]
1115
+ if output_router_logits:
1116
+ output = (aux_loss,) + output
1117
+ return (loss,) + output if loss is not None else output
1118
+
1119
+ return MoeCausalLMOutputWithPast(
1120
+ loss=loss,
1121
+ aux_loss=aux_loss,
1122
+ logits=logits,
1123
+ past_key_values=outputs.past_key_values,
1124
+ hidden_states=outputs.hidden_states,
1125
+ attentions=outputs.attentions,
1126
+ router_logits=outputs.router_logits,
1127
+ )
1128
+
1129
+ def prepare_inputs_for_generation(
1130
+ self,
1131
+ input_ids,
1132
+ past_key_values=None,
1133
+ attention_mask=None,
1134
+ inputs_embeds=None,
1135
+ token_type_ids=None,
1136
+ **kwargs,
1137
+ ):
1138
+ if past_key_values is not None:
1139
+ if isinstance(past_key_values, Cache):
1140
+ cache_length = past_key_values.get_seq_length()
1141
+ past_length = past_key_values.seen_tokens
1142
+ max_cache_length = (
1143
+ past_key_values.get_max_length()
1144
+ if hasattr(past_key_values, "get_max_length")
1145
+ else past_key_values.get_max_cache_shape()
1146
+ )
1147
+ else:
1148
+ cache_length = past_length = past_key_values[0][0].shape[2]
1149
+ max_cache_length = None
1150
+
1151
+ # Keep only the unprocessed tokens:
1152
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1153
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as input)
1154
+ if (
1155
+ attention_mask is not None
1156
+ and attention_mask.shape[1] > input_ids.shape[1]
1157
+ ):
1158
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1159
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1160
+ # input_ids based on the past_length.
1161
+ elif past_length < input_ids.shape[1]:
1162
+ input_ids = input_ids[:, past_length:]
1163
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1164
+
1165
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1166
+ if (
1167
+ max_cache_length is not None
1168
+ and attention_mask is not None
1169
+ and cache_length + input_ids.shape[1] > max_cache_length
1170
+ ):
1171
+ attention_mask = attention_mask[:, -max_cache_length:]
1172
+
1173
+ position_ids = kwargs.get("position_ids", None)
1174
+ if attention_mask is not None and position_ids is None:
1175
+ # create position_ids on the fly for batch generation
1176
+ position_ids = attention_mask.long().cumsum(-1) - 1
1177
+ position_ids.masked_fill_(attention_mask == 0, 1)
1178
+ if past_key_values:
1179
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1180
+
1181
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1182
+ if inputs_embeds is not None and past_key_values is None:
1183
+ model_inputs = {"inputs_embeds": inputs_embeds}
1184
+ else:
1185
+ model_inputs = {"input_ids": input_ids}
1186
+
1187
+ model_inputs.update(
1188
+ {
1189
+ "position_ids": position_ids,
1190
+ "past_key_values": past_key_values,
1191
+ "use_cache": kwargs.get("use_cache"),
1192
+ "attention_mask": attention_mask,
1193
+ }
1194
+ )
1195
+ return model_inputs
1196
+
1197
+ @staticmethod
1198
+ def _reorder_cache(past_key_values, beam_idx):
1199
+ reordered_past = ()
1200
+ for layer_past in past_key_values:
1201
+ reordered_past += (
1202
+ tuple(
1203
+ past_state.index_select(0, beam_idx.to(past_state.device))
1204
+ for past_state in layer_past
1205
+ ),
1206
+ )
1207
+ return reordered_past
1208
+
1209
+ @staticmethod
1210
+ def _top_k_logits(logits, k):
1211
+ if k is None or k <= 0:
1212
+ return logits
1213
+ else:
1214
+ values, _ = torch.topk(logits, k)
1215
+ min_values = values[..., -1, None]
1216
+ return torch.where(
1217
+ logits < min_values, torch.full_like(logits, float("-inf")), logits
1218
+ )
1219
+
1220
+ @staticmethod
1221
+ def _top_p_logits(logits, p):
1222
+ if p is None or p >= 1.0:
1223
+ return logits
1224
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
1225
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
1226
+ sorted_mask = cumulative_probs > p
1227
+ sorted_mask[..., 1:] = sorted_mask[..., :-1].clone()
1228
+ sorted_mask[..., 0] = False
1229
+ mask_indices = torch.scatter(
1230
+ torch.full_like(logits, False, dtype=torch.bool),
1231
+ -1,
1232
+ sorted_indices,
1233
+ sorted_mask,
1234
+ )
1235
+ return logits.masked_fill(mask_indices, float("-inf"))
1236
+
1237
+ def _sample_with_temperature_topk_topp(
1238
+ self, logits, temperature=1.0, top_k=0, top_p=1.0
1239
+ ):
1240
+ orig_shape = logits.shape[:-1]
1241
+ vocab_size = logits.shape[-1]
1242
+ logits = logits.reshape(-1, vocab_size)
1243
+ if temperature > 0 and temperature != 1.0:
1244
+ logits = logits / temperature
1245
+ logits = self._top_k_logits(logits, top_k)
1246
+ logits = self._top_p_logits(logits, top_p)
1247
+ probs = F.softmax(logits, dim=-1)
1248
+ token = torch.multinomial(probs, num_samples=1)
1249
+ token_prob = torch.gather(probs, -1, token)
1250
+ return token.view(*orig_shape), token_prob.view(*orig_shape)
1251
+
1252
+ @staticmethod
1253
+ def _get_num_transfer_tokens(block_length, steps):
1254
+ if steps == 0:
1255
+ return torch.tensor([], dtype=torch.int64)
1256
+ base = block_length // steps
1257
+ remainder = block_length % steps
1258
+ num_transfer_tokens = torch.full((steps,), base, dtype=torch.int64)
1259
+ num_transfer_tokens[:remainder] += 1
1260
+ return num_transfer_tokens
1261
+
1262
+ @torch.no_grad()
1263
+ def generate(
1264
+ self,
1265
+ inputs: Optional[torch.Tensor] = None,
1266
+ temperature: int = 0.0,
1267
+ block_length: int = 32,
1268
+ steps: int = 32,
1269
+ gen_length: int = 2048,
1270
+ top_p: Optional[int] = None,
1271
+ top_k: Optional[int] = None,
1272
+ eos_early_stop: bool = False,
1273
+ minimal_topk: int = 1,
1274
+ threshold: float = 0.95,
1275
+ eos_id: int = 156892,
1276
+ mask_id: int = 156895,
1277
+ ):
1278
+ r"""
1279
+ Generates tokens using a block-wise, iterative refinement strategy.
1280
+
1281
+ This method operates differently from standard autoregressive generation. It first creates a template of the
1282
+ full desired length, filled with a special `mask_id`. It then processes this template in segments (`blocks`)
1283
+ and iteratively "denoises" or "refines" the `mask_id` tokens into actual tokens over a series of `steps` for
1284
+ each block. A custom block-diagonal causal attention mask ensures that generation within a block can attend to
1285
+ all previous blocks but not future ones.
1286
+
1287
+ <Tip warning={true}>
1288
+
1289
+ This is a specialized generation method. The quality and speed of the output are highly dependent on the interplay
1290
+ between `block_length`, `steps`, and `threshold`. It aims to achieve faster generation through parallel
1291
+ decoding within blocks, which is a departure from the token-by-token generation of standard `.generate()` methods.
1292
+
1293
+ </Tip>
1294
+
1295
+ Parameters:
1296
+ inputs (`torch.Tensor`):
1297
+ The token sequence used as a prompt for the generation.
1298
+ temperature (`float`, *optional*, defaults to 0.0):
1299
+ The value used to module the next token probabilities. A value of 0.0 corresponds to greedy decoding.
1300
+ block_length (`int`, *optional*, defaults to 32):
1301
+ The size of each generation block. The model generates text in parallel within these blocks. This is a
1302
+ key parameter for controlling the granularity of the generation process.
1303
+ steps (`int`, *optional*, defaults to 32):
1304
+ The number of iterative refinement (or "denoising") steps to perform for each block. Within each block,
1305
+ the model will try to replace `mask_id` tokens with real tokens for this many iterations.
1306
+ gen_length (`int`, *optional*, defaults to 2048):
1307
+ The maximum number of tokens to generate, excluding the prompt.
1308
+ top_p (`float`, *optional*):
1309
+ If set to a float value between 0 and 1, only the most probable tokens with probabilities that add up to
1310
+ `top_p` or higher are kept for generation (nucleus sampling).
1311
+ top_k (`int`, *optional*):
1312
+ The number of highest probability vocabulary tokens to keep for top-k-filtering.
1313
+ eos_early_stop (`bool`, *optional*, defaults to `False`):
1314
+ If `True`, generation will stop as soon as a valid End-Of-Sequence token is generated and confirmed,
1315
+ even if `gen_length` has not been reached.
1316
+ minimal_topk (`int`, *optional*, defaults to 1):
1317
+ A parameter used to dynamically adjust the number of refinement `steps`. The effective number of steps
1318
+ is capped at `gen_length // minimal_topk`.
1319
+ threshold (`float`, *optional*, defaults to 0.95):
1320
+ The confidence probability threshold for accepting a sampled token. During each refinement step, a
1321
+ sampled token is only kept if its probability is above this threshold. If not enough tokens meet the
1322
+ threshold, the ones with the highest confidence are chosen.
1323
+ eos_id (`int`, *optional*, defaults to 156892):
1324
+ The token ID for the end-of-sequence token. Used for `eos_early_stop`.
1325
+ mask_id (`int`, *optional*, defaults to 156895):
1326
+ The token ID used as a placeholder for tokens that are yet to be generated. This is central to the
1327
+ iterative refinement algorithm.
1328
+
1329
+ Return:
1330
+ `torch.Tensor`: A string containing the generated token IDs, starting
1331
+ after the prompt and stopping at the first `eos_id` or `gen_length`.
1332
+ """
1333
+ steps = min(steps, gen_length // minimal_topk)
1334
+ input_ids = inputs.to(self.device)
1335
+
1336
+ prompt_length = input_ids.shape[1]
1337
+ num_blocks = (prompt_length + gen_length + block_length - 1) // block_length
1338
+ total_length = num_blocks * block_length
1339
+
1340
+ block_mask = torch.tril(torch.ones(num_blocks, num_blocks, device=self.device))
1341
+ block_diffusion_attention_mask = (
1342
+ (
1343
+ block_mask.repeat_interleave(block_length, dim=0)
1344
+ .repeat_interleave(block_length, dim=1)
1345
+ .unsqueeze(0)
1346
+ .unsqueeze(0)
1347
+ )
1348
+ .log()
1349
+ .to(torch.bfloat16)
1350
+ )
1351
+
1352
+ position_ids = torch.arange(total_length, device=self.device).unsqueeze(0)
1353
+ x = torch.full((1, total_length), mask_id, dtype=torch.long, device=self.device)
1354
+ x[:, :prompt_length] = input_ids.clone()
1355
+
1356
+ prompt_index_full = torch.zeros_like(x, dtype=torch.bool)
1357
+ prompt_index_full[:, :prompt_length] = True
1358
+
1359
+ prefill_blocks = prompt_length // block_length
1360
+
1361
+ denoising_steps_per_block = steps
1362
+ num_transfer_tokens_schedule = self._get_num_transfer_tokens(
1363
+ block_length, denoising_steps_per_block
1364
+ )
1365
+ for num_block in range(prefill_blocks, num_blocks):
1366
+ current_window_end = (num_block + 1) * block_length
1367
+ cur_x = x[:, :current_window_end]
1368
+ cur_attn_mask = block_diffusion_attention_mask[
1369
+ :, :, :current_window_end, :current_window_end
1370
+ ]
1371
+ cur_position_ids = position_ids[:, :current_window_end]
1372
+
1373
+ for step in range(denoising_steps_per_block):
1374
+ active_block_mask = cur_x[:, -block_length:] == mask_id
1375
+ if active_block_mask.sum() == 0:
1376
+ break
1377
+
1378
+ logits = self.forward(
1379
+ cur_x,
1380
+ attention_mask=cur_attn_mask,
1381
+ position_ids=cur_position_ids,
1382
+ ).logits
1383
+
1384
+ active_logits = logits[:, -block_length:, :]
1385
+ x0, x0_p = self._sample_with_temperature_topk_topp(
1386
+ active_logits, temperature=temperature, top_k=top_k, top_p=top_p
1387
+ )
1388
+
1389
+ num_to_transfer = num_transfer_tokens_schedule[step].item()
1390
+ transfer_index = torch.zeros_like(x0, dtype=torch.bool)
1391
+
1392
+ confidence = torch.where(active_block_mask, x0_p, -torch.inf)
1393
+ high_conf_mask = confidence[0] > threshold
1394
+ num_high_confidence = high_conf_mask.sum().item()
1395
+
1396
+ if num_high_confidence >= num_to_transfer:
1397
+ transfer_index[0] = high_conf_mask
1398
+ else:
1399
+ _, idx = torch.topk(
1400
+ confidence[0],
1401
+ k=min(num_to_transfer, active_block_mask.sum().item()),
1402
+ )
1403
+ transfer_index[0, idx] = True
1404
+
1405
+ if transfer_index.any():
1406
+ cur_x[:, -block_length:][transfer_index] = x0[transfer_index]
1407
+ if eos_early_stop and (x0[transfer_index] == eos_id).any():
1408
+ eos_pos_in_x = (cur_x[0] == eos_id).nonzero(as_tuple=True)
1409
+ if len(eos_pos_in_x[0]) > 0:
1410
+ eos_pos = eos_pos_in_x[0][0].item()
1411
+ if (cur_x[0, prompt_length:eos_pos] != mask_id).all():
1412
+ final_x = x[:, :total_length][:, : eos_pos + 1]
1413
+ return final_x
1414
+
1415
+ x[:, :current_window_end] = cur_x
1416
+ if (
1417
+ eos_id is not None
1418
+ and (x[0, prompt_length:current_window_end] == eos_id).any()
1419
+ ):
1420
+ break
1421
+
1422
+ generated_answer = x[:, : prompt_length + gen_length]
1423
+
1424
+ mask_positions = (generated_answer[0][input_ids.shape[1] :] == eos_id).nonzero(
1425
+ as_tuple=True
1426
+ )[0]
1427
+ if len(mask_positions) > 0:
1428
+ first_mask_position = mask_positions[0].item()
1429
+ else:
1430
+ first_mask_position = gen_length
1431
+ return generated_answer[
1432
+ :, input_ids.shape[1] : input_ids.shape[1] + first_mask_position + 1
1433
+ ]
1434
+
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<|mask|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878eb900ea4a42da7e54bc18ad38352bec005bbfd81bdf76a5ecf1aad1093a6c
3
+ size 12205801
tokenizer_config.json ADDED
@@ -0,0 +1,2115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "156891": {
6
+ "content": "<|startoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "156892": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "156893": {
22
+ "content": "[CLS]",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "156894": {
30
+ "content": "[gMASK]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "156895": {
38
+ "content": "<|mask|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "156896": {
46
+ "content": "<tool_call>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "156897": {
54
+ "content": "</tool_call>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "156898": {
62
+ "content": "<tool_response>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "156899": {
70
+ "content": "</tool_response>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "156900": {
78
+ "content": "<|role_end|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "156901": {
86
+ "content": "<|reserved_token_6|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "156902": {
94
+ "content": "<|reserved_token_7|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "156903": {
102
+ "content": "<|reserved_token_8|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "156904": {
110
+ "content": "<|reserved_token_9|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "156905": {
118
+ "content": "<|reserved_token_10|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "156906": {
126
+ "content": "<|reserved_token_11|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "156907": {
134
+ "content": "<|reserved_token_12|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "156908": {
142
+ "content": "<|reserved_token_13|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "156909": {
150
+ "content": "<|reserved_token_14|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "156910": {
158
+ "content": "<|reserved_token_15|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "156911": {
166
+ "content": "<|reserved_token_16|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "156912": {
174
+ "content": "<|reserved_token_17|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "156913": {
182
+ "content": "<|reserved_token_18|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "156914": {
190
+ "content": "<|reserved_token_19|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "156915": {
198
+ "content": "<|reserved_token_20|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "156916": {
206
+ "content": "<|reserved_token_21|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "156917": {
214
+ "content": "<|reserved_token_22|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "156918": {
222
+ "content": "<|reserved_token_23|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "156919": {
230
+ "content": "<|reserved_token_24|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "156920": {
238
+ "content": "<|reserved_token_25|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "156921": {
246
+ "content": "<|reserved_token_26|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "156922": {
254
+ "content": "<|reserved_token_27|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "156923": {
262
+ "content": "<|reserved_token_28|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "156924": {
270
+ "content": "<|reserved_token_29|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "156925": {
278
+ "content": "<|reserved_token_30|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "156926": {
286
+ "content": "<|reserved_token_31|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "156927": {
294
+ "content": "<|reserved_token_32|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "156928": {
302
+ "content": "<|reserved_token_33|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "156929": {
310
+ "content": "<|reserved_token_34|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "156930": {
318
+ "content": "<|reserved_token_35|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "156931": {
326
+ "content": "<|reserved_token_36|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "156932": {
334
+ "content": "<|reserved_token_37|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "156933": {
342
+ "content": "<|reserved_token_38|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "156934": {
350
+ "content": "<|reserved_token_39|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "156935": {
358
+ "content": "<|reserved_token_40|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ },
365
+ "156936": {
366
+ "content": "<|reserved_token_41|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": true
372
+ },
373
+ "156937": {
374
+ "content": "<|reserved_token_42|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": true
380
+ },
381
+ "156938": {
382
+ "content": "<|reserved_token_43|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": true
388
+ },
389
+ "156939": {
390
+ "content": "<|reserved_token_44|>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": true
396
+ },
397
+ "156940": {
398
+ "content": "<|reserved_token_45|>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": true
404
+ },
405
+ "156941": {
406
+ "content": "<|reserved_token_46|>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": true
412
+ },
413
+ "156942": {
414
+ "content": "<|reserved_token_47|>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": true
420
+ },
421
+ "156943": {
422
+ "content": "<|reserved_token_48|>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": true
428
+ },
429
+ "156944": {
430
+ "content": "<|reserved_token_49|>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": true
436
+ },
437
+ "156945": {
438
+ "content": "<|reserved_token_50|>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": true
444
+ },
445
+ "156946": {
446
+ "content": "<|reserved_token_51|>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": true
452
+ },
453
+ "156947": {
454
+ "content": "<|reserved_token_52|>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": true
460
+ },
461
+ "156948": {
462
+ "content": "<|reserved_token_53|>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": true
468
+ },
469
+ "156949": {
470
+ "content": "<|reserved_token_54|>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": true
476
+ },
477
+ "156950": {
478
+ "content": "<|reserved_token_55|>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": true
484
+ },
485
+ "156951": {
486
+ "content": "<|reserved_token_56|>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": true
492
+ },
493
+ "156952": {
494
+ "content": "<|reserved_token_57|>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": true
500
+ },
501
+ "156953": {
502
+ "content": "<|reserved_token_58|>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": true
508
+ },
509
+ "156954": {
510
+ "content": "<|reserved_token_59|>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": true
516
+ },
517
+ "156955": {
518
+ "content": "<|reserved_token_60|>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": true
524
+ },
525
+ "156956": {
526
+ "content": "<|reserved_token_61|>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": true
532
+ },
533
+ "156957": {
534
+ "content": "<|reserved_token_62|>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": true
540
+ },
541
+ "156958": {
542
+ "content": "<|reserved_token_63|>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": true
548
+ },
549
+ "156959": {
550
+ "content": "<|reserved_token_64|>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": true
556
+ },
557
+ "156960": {
558
+ "content": "<|reserved_token_65|>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": true
564
+ },
565
+ "156961": {
566
+ "content": "<|reserved_token_66|>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": true
572
+ },
573
+ "156962": {
574
+ "content": "<|reserved_token_67|>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": true
580
+ },
581
+ "156963": {
582
+ "content": "<|reserved_token_68|>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": true
588
+ },
589
+ "156964": {
590
+ "content": "<|reserved_token_69|>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": true
596
+ },
597
+ "156965": {
598
+ "content": "<|reserved_token_70|>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": true
604
+ },
605
+ "156966": {
606
+ "content": "<|reserved_token_71|>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": true
612
+ },
613
+ "156967": {
614
+ "content": "<|reserved_token_72|>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": true
620
+ },
621
+ "156968": {
622
+ "content": "<|reserved_token_73|>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": true
628
+ },
629
+ "156969": {
630
+ "content": "<|reserved_token_74|>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": true
636
+ },
637
+ "156970": {
638
+ "content": "<|reserved_token_75|>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": true
644
+ },
645
+ "156971": {
646
+ "content": "<|reserved_token_76|>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": true
652
+ },
653
+ "156972": {
654
+ "content": "<|reserved_token_77|>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": true
660
+ },
661
+ "156973": {
662
+ "content": "<|reserved_token_78|>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": true
668
+ },
669
+ "156974": {
670
+ "content": "<|reserved_token_79|>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": true
676
+ },
677
+ "156975": {
678
+ "content": "<|reserved_token_80|>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": true
684
+ },
685
+ "156976": {
686
+ "content": "<|reserved_token_81|>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": true
692
+ },
693
+ "156977": {
694
+ "content": "<|reserved_token_82|>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": true
700
+ },
701
+ "156978": {
702
+ "content": "<|reserved_token_83|>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": true
708
+ },
709
+ "156979": {
710
+ "content": "<|reserved_token_84|>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": true
716
+ },
717
+ "156980": {
718
+ "content": "<|reserved_token_85|>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": true
724
+ },
725
+ "156981": {
726
+ "content": "<|reserved_token_86|>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": true
732
+ },
733
+ "156982": {
734
+ "content": "<|reserved_token_87|>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": true
740
+ },
741
+ "156983": {
742
+ "content": "<|reserved_token_88|>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": true
748
+ },
749
+ "156984": {
750
+ "content": "<|reserved_token_89|>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": true
756
+ },
757
+ "156985": {
758
+ "content": "<|reserved_token_90|>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": true
764
+ },
765
+ "156986": {
766
+ "content": "<|reserved_token_91|>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": true
772
+ },
773
+ "156987": {
774
+ "content": "<|reserved_token_92|>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": true
780
+ },
781
+ "156988": {
782
+ "content": "<|reserved_token_93|>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": true
788
+ },
789
+ "156989": {
790
+ "content": "<|reserved_token_94|>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": true
796
+ },
797
+ "156990": {
798
+ "content": "<|reserved_token_95|>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": true
804
+ },
805
+ "156991": {
806
+ "content": "<|reserved_token_96|>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": true
812
+ },
813
+ "156992": {
814
+ "content": "<|reserved_token_97|>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": true
820
+ },
821
+ "156993": {
822
+ "content": "<|reserved_token_98|>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": true
828
+ },
829
+ "156994": {
830
+ "content": "<|reserved_token_99|>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": true
836
+ },
837
+ "156995": {
838
+ "content": "<|reserved_token_100|>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": true
844
+ },
845
+ "156996": {
846
+ "content": "<|reserved_token_101|>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": true
852
+ },
853
+ "156997": {
854
+ "content": "<|reserved_token_102|>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "156998": {
862
+ "content": "<|reserved_token_103|>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "156999": {
870
+ "content": "<|reserved_token_104|>",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": true
876
+ },
877
+ "157000": {
878
+ "content": "<|reserved_token_105|>",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": true
884
+ },
885
+ "157001": {
886
+ "content": "<|reserved_token_106|>",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": true
892
+ },
893
+ "157002": {
894
+ "content": "<|reserved_token_107|>",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": true
900
+ },
901
+ "157003": {
902
+ "content": "<|reserved_token_108|>",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": true
908
+ },
909
+ "157004": {
910
+ "content": "<|reserved_token_109|>",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": true
916
+ },
917
+ "157005": {
918
+ "content": "<|reserved_token_110|>",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": true
924
+ },
925
+ "157006": {
926
+ "content": "<|reserved_token_111|>",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": true
932
+ },
933
+ "157007": {
934
+ "content": "<|reserved_token_112|>",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": true
940
+ },
941
+ "157008": {
942
+ "content": "<|reserved_token_113|>",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": true
948
+ },
949
+ "157009": {
950
+ "content": "<|reserved_token_114|>",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": true
956
+ },
957
+ "157010": {
958
+ "content": "<|reserved_token_115|>",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": true
964
+ },
965
+ "157011": {
966
+ "content": "<|reserved_token_116|>",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": true
972
+ },
973
+ "157012": {
974
+ "content": "<|reserved_token_117|>",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": true
980
+ },
981
+ "157013": {
982
+ "content": "<|reserved_token_118|>",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": true
988
+ },
989
+ "157014": {
990
+ "content": "<|reserved_token_119|>",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": true
996
+ },
997
+ "157015": {
998
+ "content": "<|reserved_token_120|>",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": true
1004
+ },
1005
+ "157016": {
1006
+ "content": "<|reserved_token_121|>",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": true
1012
+ },
1013
+ "157017": {
1014
+ "content": "<|reserved_token_122|>",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": true
1020
+ },
1021
+ "157018": {
1022
+ "content": "<|reserved_token_123|>",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": true
1028
+ },
1029
+ "157019": {
1030
+ "content": "<|reserved_token_124|>",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": true
1036
+ },
1037
+ "157020": {
1038
+ "content": "<|reserved_token_125|>",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": true
1044
+ },
1045
+ "157021": {
1046
+ "content": "<|reserved_token_126|>",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": true
1052
+ },
1053
+ "157022": {
1054
+ "content": "<|reserved_token_127|>",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": true
1060
+ },
1061
+ "157023": {
1062
+ "content": "<|reserved_token_128|>",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": true
1068
+ },
1069
+ "157024": {
1070
+ "content": "<|reserved_token_129|>",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": true
1076
+ },
1077
+ "157025": {
1078
+ "content": "<|reserved_token_130|>",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": true
1084
+ },
1085
+ "157026": {
1086
+ "content": "<|reserved_token_131|>",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": true
1092
+ },
1093
+ "157027": {
1094
+ "content": "<|reserved_token_132|>",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": true
1100
+ },
1101
+ "157028": {
1102
+ "content": "<|reserved_token_133|>",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": true
1108
+ },
1109
+ "157029": {
1110
+ "content": "<|reserved_token_134|>",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": true
1116
+ },
1117
+ "157030": {
1118
+ "content": "<|reserved_token_135|>",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": true
1124
+ },
1125
+ "157031": {
1126
+ "content": "<|reserved_token_136|>",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": true
1132
+ },
1133
+ "157032": {
1134
+ "content": "<|reserved_token_137|>",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": true
1140
+ },
1141
+ "157033": {
1142
+ "content": "<|reserved_token_138|>",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": true
1148
+ },
1149
+ "157034": {
1150
+ "content": "<|reserved_token_139|>",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": true
1156
+ },
1157
+ "157035": {
1158
+ "content": "<|reserved_token_140|>",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": true
1164
+ },
1165
+ "157036": {
1166
+ "content": "<|reserved_token_141|>",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": true
1172
+ },
1173
+ "157037": {
1174
+ "content": "<|reserved_token_142|>",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": true
1180
+ },
1181
+ "157038": {
1182
+ "content": "<|reserved_token_143|>",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": true
1188
+ },
1189
+ "157039": {
1190
+ "content": "<|reserved_token_144|>",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": true
1196
+ },
1197
+ "157040": {
1198
+ "content": "<|reserved_token_145|>",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": true
1204
+ },
1205
+ "157041": {
1206
+ "content": "<|reserved_token_146|>",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": true
1212
+ },
1213
+ "157042": {
1214
+ "content": "<|reserved_token_147|>",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": true
1220
+ },
1221
+ "157043": {
1222
+ "content": "<|reserved_token_148|>",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": true
1228
+ },
1229
+ "157044": {
1230
+ "content": "<|reserved_token_149|>",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": true
1236
+ },
1237
+ "157045": {
1238
+ "content": "<|reserved_token_150|>",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": true
1244
+ },
1245
+ "157046": {
1246
+ "content": "<|reserved_token_151|>",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": true
1252
+ },
1253
+ "157047": {
1254
+ "content": "<|reserved_token_152|>",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": true
1260
+ },
1261
+ "157048": {
1262
+ "content": "<|reserved_token_153|>",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": true
1268
+ },
1269
+ "157049": {
1270
+ "content": "<|reserved_token_154|>",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": true
1276
+ },
1277
+ "157050": {
1278
+ "content": "<|reserved_token_155|>",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": true
1284
+ },
1285
+ "157051": {
1286
+ "content": "<|reserved_token_156|>",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": true
1292
+ },
1293
+ "157052": {
1294
+ "content": "<|reserved_token_157|>",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": true
1300
+ },
1301
+ "157053": {
1302
+ "content": "<|reserved_token_158|>",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": true
1308
+ },
1309
+ "157054": {
1310
+ "content": "<|reserved_token_159|>",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": true
1316
+ },
1317
+ "157055": {
1318
+ "content": "<|reserved_token_160|>",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": true
1324
+ },
1325
+ "157056": {
1326
+ "content": "<|reserved_token_161|>",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": true
1332
+ },
1333
+ "157057": {
1334
+ "content": "<|reserved_token_162|>",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": true
1340
+ },
1341
+ "157058": {
1342
+ "content": "<|reserved_token_163|>",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": true
1348
+ },
1349
+ "157059": {
1350
+ "content": "<|reserved_token_164|>",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": true
1356
+ },
1357
+ "157060": {
1358
+ "content": "<|reserved_token_165|>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": true
1364
+ },
1365
+ "157061": {
1366
+ "content": "<|reserved_token_166|>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": true
1372
+ },
1373
+ "157062": {
1374
+ "content": "<|reserved_token_167|>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": true
1380
+ },
1381
+ "157063": {
1382
+ "content": "<|reserved_token_168|>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": true
1388
+ },
1389
+ "157064": {
1390
+ "content": "<|reserved_token_169|>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": true
1396
+ },
1397
+ "157065": {
1398
+ "content": "<|reserved_token_170|>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": true
1404
+ },
1405
+ "157066": {
1406
+ "content": "<|reserved_token_171|>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": true
1412
+ },
1413
+ "157067": {
1414
+ "content": "<|reserved_token_172|>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": true
1420
+ },
1421
+ "157068": {
1422
+ "content": "<|reserved_token_173|>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": true
1428
+ },
1429
+ "157069": {
1430
+ "content": "<|reserved_token_174|>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": true
1436
+ },
1437
+ "157070": {
1438
+ "content": "<|reserved_token_175|>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": true
1444
+ },
1445
+ "157071": {
1446
+ "content": "<|reserved_token_176|>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": true
1452
+ },
1453
+ "157072": {
1454
+ "content": "<|reserved_token_177|>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": true
1460
+ },
1461
+ "157073": {
1462
+ "content": "<|reserved_token_178|>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": true
1468
+ },
1469
+ "157074": {
1470
+ "content": "<|reserved_token_179|>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": true
1476
+ },
1477
+ "157075": {
1478
+ "content": "<|reserved_token_180|>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": true
1484
+ },
1485
+ "157076": {
1486
+ "content": "<|reserved_token_181|>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": true
1492
+ },
1493
+ "157077": {
1494
+ "content": "<|reserved_token_182|>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": true
1500
+ },
1501
+ "157078": {
1502
+ "content": "<|reserved_token_183|>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": true
1508
+ },
1509
+ "157079": {
1510
+ "content": "<|reserved_token_184|>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": true
1516
+ },
1517
+ "157080": {
1518
+ "content": "<|reserved_token_185|>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": true
1524
+ },
1525
+ "157081": {
1526
+ "content": "<|reserved_token_186|>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": true
1532
+ },
1533
+ "157082": {
1534
+ "content": "<|reserved_token_187|>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": true
1540
+ },
1541
+ "157083": {
1542
+ "content": "<|reserved_token_188|>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": true
1548
+ },
1549
+ "157084": {
1550
+ "content": "<|reserved_token_189|>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": true
1556
+ },
1557
+ "157085": {
1558
+ "content": "<|reserved_token_190|>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": true
1564
+ },
1565
+ "157086": {
1566
+ "content": "<|reserved_token_191|>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": true
1572
+ },
1573
+ "157087": {
1574
+ "content": "<|reserved_token_192|>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": true
1580
+ },
1581
+ "157088": {
1582
+ "content": "<|reserved_token_193|>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": true
1588
+ },
1589
+ "157089": {
1590
+ "content": "<|reserved_token_194|>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": true
1596
+ },
1597
+ "157090": {
1598
+ "content": "<|reserved_token_195|>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": true
1604
+ },
1605
+ "157091": {
1606
+ "content": "<|reserved_token_196|>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": true
1612
+ },
1613
+ "157092": {
1614
+ "content": "<|reserved_token_197|>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": true
1620
+ },
1621
+ "157093": {
1622
+ "content": "<|reserved_token_198|>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": true
1628
+ },
1629
+ "157094": {
1630
+ "content": "<|reserved_token_199|>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": true
1636
+ },
1637
+ "157095": {
1638
+ "content": "<|reserved_token_200|>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": true
1644
+ },
1645
+ "157096": {
1646
+ "content": "<|reserved_token_201|>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": true
1652
+ },
1653
+ "157097": {
1654
+ "content": "<|reserved_token_202|>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": true
1660
+ },
1661
+ "157098": {
1662
+ "content": "<|reserved_token_203|>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": true
1668
+ },
1669
+ "157099": {
1670
+ "content": "<|reserved_token_204|>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": true
1676
+ },
1677
+ "157100": {
1678
+ "content": "<|reserved_token_205|>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": true
1684
+ },
1685
+ "157101": {
1686
+ "content": "<|reserved_token_206|>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": true
1692
+ },
1693
+ "157102": {
1694
+ "content": "<|reserved_token_207|>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": true
1700
+ },
1701
+ "157103": {
1702
+ "content": "<|reserved_token_208|>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": true
1708
+ },
1709
+ "157104": {
1710
+ "content": "<|reserved_token_209|>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": true
1716
+ },
1717
+ "157105": {
1718
+ "content": "<|reserved_token_210|>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": true
1724
+ },
1725
+ "157106": {
1726
+ "content": "<|reserved_token_211|>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": true
1732
+ },
1733
+ "157107": {
1734
+ "content": "<|reserved_token_212|>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": true
1740
+ },
1741
+ "157108": {
1742
+ "content": "<|reserved_token_213|>",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": true
1748
+ },
1749
+ "157109": {
1750
+ "content": "<|reserved_token_214|>",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": true
1756
+ },
1757
+ "157110": {
1758
+ "content": "<|reserved_token_215|>",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": true
1764
+ },
1765
+ "157111": {
1766
+ "content": "<|reserved_token_216|>",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": true
1772
+ },
1773
+ "157112": {
1774
+ "content": "<|reserved_token_217|>",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": true
1780
+ },
1781
+ "157113": {
1782
+ "content": "<|reserved_token_218|>",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": true
1788
+ },
1789
+ "157114": {
1790
+ "content": "<|reserved_token_219|>",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": true
1796
+ },
1797
+ "157115": {
1798
+ "content": "<|reserved_token_220|>",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": true
1804
+ },
1805
+ "157116": {
1806
+ "content": "<|reserved_token_221|>",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": true
1812
+ },
1813
+ "157117": {
1814
+ "content": "<|reserved_token_222|>",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": true
1820
+ },
1821
+ "157118": {
1822
+ "content": "<|reserved_token_223|>",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": true
1828
+ },
1829
+ "157119": {
1830
+ "content": "<|reserved_token_224|>",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": true
1836
+ },
1837
+ "157120": {
1838
+ "content": "<|reserved_token_225|>",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": true
1844
+ },
1845
+ "157121": {
1846
+ "content": "<|reserved_token_226|>",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": true
1852
+ },
1853
+ "157122": {
1854
+ "content": "<|reserved_token_227|>",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": true
1860
+ },
1861
+ "157123": {
1862
+ "content": "<|reserved_token_228|>",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": true
1868
+ },
1869
+ "157124": {
1870
+ "content": "<|reserved_token_229|>",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": true
1876
+ },
1877
+ "157125": {
1878
+ "content": "<|reserved_token_230|>",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": true
1884
+ },
1885
+ "157126": {
1886
+ "content": "<|reserved_token_231|>",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": true
1892
+ },
1893
+ "157127": {
1894
+ "content": "<|reserved_token_232|>",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": true
1900
+ },
1901
+ "157128": {
1902
+ "content": "<|reserved_token_233|>",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": true
1908
+ },
1909
+ "157129": {
1910
+ "content": "<|reserved_token_234|>",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": true
1916
+ },
1917
+ "157130": {
1918
+ "content": "<|reserved_token_235|>",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": true
1924
+ },
1925
+ "157131": {
1926
+ "content": "<|reserved_token_236|>",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": true
1932
+ },
1933
+ "157132": {
1934
+ "content": "<|reserved_token_237|>",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": true
1940
+ },
1941
+ "157133": {
1942
+ "content": "<|reserved_token_238|>",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": true
1948
+ },
1949
+ "157134": {
1950
+ "content": "<|reserved_token_239|>",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": true
1956
+ },
1957
+ "157135": {
1958
+ "content": "<|reserved_token_240|>",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": true
1964
+ },
1965
+ "157136": {
1966
+ "content": "<|reserved_token_241|>",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": true
1972
+ },
1973
+ "157137": {
1974
+ "content": "<|reserved_token_242|>",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": true
1980
+ },
1981
+ "157138": {
1982
+ "content": "<|reserved_token_243|>",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": true
1988
+ },
1989
+ "157139": {
1990
+ "content": "<|reserved_token_244|>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": true
1996
+ },
1997
+ "157140": {
1998
+ "content": "<|reserved_token_245|>",
1999
+ "lstrip": false,
2000
+ "normalized": false,
2001
+ "rstrip": false,
2002
+ "single_word": false,
2003
+ "special": true
2004
+ },
2005
+ "157141": {
2006
+ "content": "<|reserved_token_246|>",
2007
+ "lstrip": false,
2008
+ "normalized": false,
2009
+ "rstrip": false,
2010
+ "single_word": false,
2011
+ "special": true
2012
+ },
2013
+ "157142": {
2014
+ "content": "<|reserved_token_247|>",
2015
+ "lstrip": false,
2016
+ "normalized": false,
2017
+ "rstrip": false,
2018
+ "single_word": false,
2019
+ "special": true
2020
+ },
2021
+ "157143": {
2022
+ "content": "<|reserved_token_248|>",
2023
+ "lstrip": false,
2024
+ "normalized": false,
2025
+ "rstrip": false,
2026
+ "single_word": false,
2027
+ "special": true
2028
+ },
2029
+ "157144": {
2030
+ "content": "<|reserved_token_249|>",
2031
+ "lstrip": false,
2032
+ "normalized": false,
2033
+ "rstrip": false,
2034
+ "single_word": false,
2035
+ "special": true
2036
+ },
2037
+ "157145": {
2038
+ "content": "<|reserved_token_250|>",
2039
+ "lstrip": false,
2040
+ "normalized": false,
2041
+ "rstrip": false,
2042
+ "single_word": false,
2043
+ "special": true
2044
+ },
2045
+ "157146": {
2046
+ "content": "<|reserved_token_251|>",
2047
+ "lstrip": false,
2048
+ "normalized": false,
2049
+ "rstrip": false,
2050
+ "single_word": false,
2051
+ "special": true
2052
+ },
2053
+ "157147": {
2054
+ "content": "<|reserved_token_252|>",
2055
+ "lstrip": false,
2056
+ "normalized": false,
2057
+ "rstrip": false,
2058
+ "single_word": false,
2059
+ "special": true
2060
+ },
2061
+ "157148": {
2062
+ "content": "<|reserved_token_253|>",
2063
+ "lstrip": false,
2064
+ "normalized": false,
2065
+ "rstrip": false,
2066
+ "single_word": false,
2067
+ "special": true
2068
+ },
2069
+ "157149": {
2070
+ "content": "<|reserved_token_254|>",
2071
+ "lstrip": false,
2072
+ "normalized": false,
2073
+ "rstrip": false,
2074
+ "single_word": false,
2075
+ "special": true
2076
+ },
2077
+ "157150": {
2078
+ "content": "<|reserved_token_255|>",
2079
+ "lstrip": false,
2080
+ "normalized": false,
2081
+ "rstrip": false,
2082
+ "single_word": false,
2083
+ "special": true
2084
+ },
2085
+ "157151": {
2086
+ "content": "<role>",
2087
+ "lstrip": false,
2088
+ "normalized": false,
2089
+ "rstrip": false,
2090
+ "single_word": false,
2091
+ "special": true
2092
+ },
2093
+ "157152": {
2094
+ "content": "</role>",
2095
+ "lstrip": false,
2096
+ "normalized": false,
2097
+ "rstrip": false,
2098
+ "single_word": false,
2099
+ "special": true
2100
+ }
2101
+ },
2102
+ "bos_token": "<|startoftext|>",
2103
+ "clean_up_tokenization_spaces": false,
2104
+ "cls_token": "[CLS]",
2105
+ "eos_token": "<|endoftext|>",
2106
+ "extra_special_tokens": {},
2107
+ "fast_tokenizer": true,
2108
+ "gmask_token": "[gMASK]",
2109
+ "mask_token": "<|mask|>",
2110
+ "merges_file": null,
2111
+ "model_max_length": 32768,
2112
+ "pad_token": "<|endoftext|>",
2113
+ "tokenizer_class": "PreTrainedTokenizerFast",
2114
+ "trust_remote_code": true
2115
+ }