File size: 2,460 Bytes
282c7ee
 
 
cf13b45
 
 
 
 
65e30d0
fa770e7
65e30d0
 
cf13b45
fa770e7
65e30d0
cf13b45
 
 
 
 
 
65e30d0
 
e863dd1
fa770e7
65e30d0
 
cf13b45
 
168b16c
cf13b45
fa770e7
 
 
 
 
65e30d0
5d613e7
fa770e7
5d613e7
b2315f0
e863dd1
65e30d0
e863dd1
 
 
 
 
 
 
 
65e30d0
b2315f0
65e30d0
e863dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---

license: mit
---

<style>
    td {

        vertical-align: middle !important;

    }

</style>


# EMelodyGen
The model weights for generating ABC melodies by emotions.

## Demo (inference code)
<https://huggingface.co/spaces/monetjoe/EMelodyGen>

## Usage
```python

from huggingface_hub import snapshot_download

model_dir = snapshot_download("monetjoe/EMelodyGen")

```

## Maintenance
```bash

GIT_LFS_SKIP_SMUDGE=1 git clone git@hf.co:monetjoe/EMelodyGen

cd EMelodyGen

```

## Evaluation
<https://github.com/monetjoe/EMelodyGen>

### Fine-tuning results
| Dataset |                                        Loss curve                                         |     Min eval loss     |
| :-----: | :---------------------------------------------------------------------------------------: | :-------------------: |
| VGMIDI  | ![](https://www.modelscope.cn/models/monetjoe/EMelodyGen/resolve/master/vgmidi/loss.jpg)  | `0.23854530873296725` |
| EMOPIA  | ![](https://www.modelscope.cn/models/monetjoe/EMelodyGen/resolve/master/emopia/loss.jpg)  | `0.26802811984950936` |
| Rough4Q | ![](https://www.modelscope.cn/models/monetjoe/EMelodyGen/resolve/master/rough4q/loss.jpg) | `0.2299637847539768`  |

## Mirror
<https://www.modelscope.cn/models/monetjoe/EMelodyGen>

## Cite
### AIART
```bibtex

@inproceedings{11152266,

  author    = {Zhou, Monan and Li, Xiaobing and Yu, Feng and Li, Wei},

  booktitle = {2025 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)},

  title     = {EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation with the Musical Feature Template},

  year      = {2025},

  pages     = {1-6},

  keywords  = {Correlation;Codes;Conferences;Confusion matrices;Music;Psychology;Data augmentation;Complexity theory;Reliability;Melody generation;controllable music generation;ABC notation;emotional condition},

  doi       = {10.1109/ICMEW68306.2025.11152266}

}

```

### TAI
```bibtex

@article{zhou_li_yu_li_2025,

  title     = {EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation with Musical Feature Templates},

  volume    = {1},

  issn      = {2982-3439},

  doi       = {10.53941/tai.2025.100013},

  number    = {1},

  journal   = {Transactions on Artificial Intelligence},

  publisher = {Scilight Press},

  author    = {Zhou, Monan and Li, Xiaobing and Yu, Feng and Li, Wei},

  year      = {2025},

  pages     = {199&ndash;211}

}

```