--- base_model: Lamapi/next-8b datasets: - CognitiveKernel/CognitiveKernel-Pro-SFT - OpenSPG/KAG-Thinker-training-dataset - QuixiAI/dolphin-r1 - uclanlp/Brief-Pro - Gryphe/Opus-WritingPrompts - GreenerPastures/All-Your-Base-Full - dongguanting/ARPO-SFT-54K - Medint/Multi-Med-conversational - mlabonne/smoltalk-flat - mlabonne/natural_reasoning-formatted - QuixiAI/open-instruct-uncensored - mlabonne/open-perfectblend language: - tr - en - de - es - fr - ru - zh - ja - ko library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - turkish - türkiye - reasoning - ai - lamapi - gemma3 - next - next-x1 - text-generation - open-source - 14b - large-language-model - llm - transformer - artificial-intelligence - machine-learning - nlp - multilingual - instruction-tuned - chat - generative-ai - optimized - trl - sft - cognitive - analytical - enterprise --- ## About static quants of https://huggingface.co/Lamapi/next-8b ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#next-8b-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/next-8b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/next-8b-GGUF/resolve/main/next-8b.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.