Version 1.0.0
Browse files- .gitattributes +1 -0
- README.md +38 -0
- models/ReTiNA_MLP1/ReTINA_MLP1.pt +3 -0
- models/ReTiNA_XGB1/ReTINA_XGB1.json +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,41 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- chemistry
|
| 5 |
+
- molecular-property-prediction
|
| 6 |
+
- drug-discovery
|
| 7 |
+
datasets:
|
| 8 |
+
- natelgrw/AMAX
|
| 9 |
+
pipeline_tag: tabular-regression
|
| 10 |
---
|
| 11 |
+
|
| 12 |
+
# ReTiNA Models: Molecular Retention Time Prediction
|
| 13 |
+
|
| 14 |
+
A collection of machine learning models for predicting the retention time of chemical compounds in various LC-MS. These models use molecular descriptors and method encodings to predict chemical retention times, useful for automated compound identification.
|
| 15 |
+
|
| 16 |
+
Source code for the ReTiNA model collection is available at this [Github Repository](https://github.com/natelgrw/retina_models).
|
| 17 |
+
|
| 18 |
+
The ReTiNA dataset is available at this [Hugging Face Repository](https://huggingface.co/datasets/natelgrw/ReTiNA).
|
| 19 |
+
|
| 20 |
+
## 🤖 Available Models
|
| 21 |
+
|
| 22 |
+
| Model | Architecture | Overall RMSE (s) | Overall MAE (s) | Overall R<sup>2</sup> |
|
| 23 |
+
|-----|-----|-----|-----|-----|
|
| 24 |
+
| ReTiNA_XGB1 | XGBoost | 182.81 | 119.30 | 0.659 |
|
| 25 |
+
| ReTiNA_MLP1 | PyTorch Residual MLP | 202.67 | 141.79 | 0.516 |
|
| 26 |
+
|
| 27 |
+
All models were evaluated across rigorous scaffold, cluster, and method splits.
|
| 28 |
+
|
| 29 |
+
## 📄 Citation
|
| 30 |
+
|
| 31 |
+
If you use a ReTiNA prediction model in your research, please cite:
|
| 32 |
+
|
| 33 |
+
```
|
| 34 |
+
@modelcollection{retinamodels,
|
| 35 |
+
title={ReTiNA-Models: Machine Learning Models for LC-MS Retention Time Prediction},
|
| 36 |
+
author={Leung, Nathan},
|
| 37 |
+
institution={Coley Research Group @ MIT}
|
| 38 |
+
year={2025},
|
| 39 |
+
howpublished={\url{https://huggingface.co/natelgrw/ReTiNA-Models}},
|
| 40 |
+
}
|
| 41 |
+
```
|
models/ReTiNA_MLP1/ReTINA_MLP1.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:acee19d7755c50ab834a73c498de6b1764847d746ff58967d3e82c90c323c4db
|
| 3 |
+
size 8026154
|
models/ReTiNA_XGB1/ReTINA_XGB1.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b280d64a06d78b6406b0b96964f01f244e6e3c890753c47eb27c8c7f3036abd
|
| 3 |
+
size 34822814
|