--- language: en license: apache-2.0 tags: - aqea - compression - embeddings - similarity-search - vector-database datasets: - mteb/stsbenchmark-sts base_model: sentence-transformers/all-MiniLM-L6-v2 --- # AQEA: aqea-all-MiniLM-L6-v2-29x MiniLM text embeddings compressed 29x while preserving 97.1% similarity ranking ## 📊 Performance | Metric | Value | |--------|-------| | **Compression Ratio** | 29.5x | | **Spearman ρ** | 97.1% | | **Source Dimension** | 384D | | **Compressed Dimension** | 13D | | **Storage Savings** | 96.6% | ## 🚀 Usage ```python from aqea import AQEACompressor # Load pre-trained compressor compressor = AQEACompressor.from_pretrained("nextxag/aqea-all-MiniLM-L6-v2-29x") # Compress embeddings embeddings = model.encode(texts) # 384D compressed = compressor.compress(embeddings) # 13D # Decompress for retrieval reconstructed = compressor.decompress(compressed) # 384D ``` ## 📁 Files - `weights.aqwt` - Binary weights (AQEA native format) - `config.json` - Model configuration ## 🔬 How It Works AQEA (Adaptive Quantized Embedding Architecture) uses learned linear projections with Pre-Quantify rotation to compress embeddings while maximally preserving pairwise similarity rankings (measured by Spearman correlation). ## 📚 Citation ```bibtex @software{aqea2024, title = {AQEA: Adaptive Quantized Embedding Architecture}, author = {AQEA Team}, year = {2024}, url = {https://huggingface.co/nextxag} } ``` ## 📄 License Apache 2.0