From Block Diagrams to Bloch Spheres: Graphical Quantum Circuit Simulation in LabVIEW
Abstract
As quantum computing transitions from theoretical physics to engineering applications, there is a growing need for accessible simulation tools that bridge the gap between abstract linear algebra and practical implementation. While text-based frameworks (like Qiskit or Cirq) are standard, they often present a steep learning curve for students and engineers accustomed to graphical system design. This paper introduces QuVI (Quantum Virtual Instrument), an open-source quantum circuit toolkit developed natively within the NI LabVIEW environment. Moving beyond initial proof-of-concept models, QuVI establishes a robust framework that leverages LabVIEW's "dataflow" paradigm, in which wires represent data and nodes represent operations, to provide an intuitive, visual analog to standard quantum circuit notation while enabling the seamless integration of classical control structures like loops and conditionals. The toolkit's capabilities are demonstrated by constructing and visualizing fundamental quantum algorithms and verifying results against theoretical predictions. By translating "Block Diagrams" directly into quantum state evolutions ("Bloch Spheres"), QuVI offers educators and researchers a powerful platform for prototyping quantum logic without leaving the graphical engineering workspace.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper