Rethinking Memory Mechanisms of Foundation Agents in the Second Half
Abstract
Artificial intelligence research shifts toward real-world utility with memory emerging as a key solution for handling complex, dynamic environments through various memory substrates, cognitive mechanisms, and agent-centric approaches.
The research of artificial intelligence is undergoing a paradigm shift from prioritizing model innovations over benchmark scores towards emphasizing problem definition and rigorous real-world evaluation. As the field enters the "second half," the central challenge becomes real utility in long-horizon, dynamic, and user-dependent environments, where agents face context explosion and must continuously accumulate, manage, and selectively reuse large volumes of information across extended interactions. Memory, with hundreds of papers released this year, therefore emerges as the critical solution to fill the utility gap. In this survey, we provide a unified view of foundation agent memory along three dimensions: memory substrate (internal and external), cognitive mechanism (episodic, semantic, sensory, working, and procedural), and memory subject (agent- and user-centric). We then analyze how memory is instantiated and operated under different agent topologies and highlight learning policies over memory operations. Finally, we review evaluation benchmarks and metrics for assessing memory utility, and outline various open challenges and future directions.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper