Omni-iEEG: A Large-Scale, Comprehensive iEEG Dataset and Benchmark for Epilepsy Research
Abstract
Omni-iEEG presents a large-scale, standardized intracranial EEG resource with comprehensive clinical annotations to advance reproducible and clinically relevant epilepsy research through unified evaluation metrics and machine learning applications.
Epilepsy affects over 50 million people worldwide, and one-third of patients suffer drug-resistant seizures where surgery offers the best chance of seizure freedom. Accurate localization of the epileptogenic zone (EZ) relies on intracranial EEG (iEEG). Clinical workflows, however, remain constrained by labor-intensive manual review. At the same time, existing data-driven approaches are typically developed on single-center datasets that are inconsistent in format and metadata, lack standardized benchmarks, and rarely release pathological event annotations, creating barriers to reproducibility, cross-center validation, and clinical relevance. With extensive efforts to reconcile heterogeneous iEEG formats, metadata, and recordings across publicly available sources, we present Omni-iEEG, a large-scale, pre-surgical iEEG resource comprising 302 patients and 178 hours of high-resolution recordings. The dataset includes harmonized clinical metadata such as seizure onset zones, resections, and surgical outcomes, all validated by board-certified epileptologists. In addition, Omni-iEEG provides over 36K expert-validated annotations of pathological events, enabling robust biomarker studies. Omni-iEEG serves as a bridge between machine learning and epilepsy research. It defines clinically meaningful tasks with unified evaluation metrics grounded in clinical priors, enabling systematic evaluation of models in clinically relevant settings. Beyond benchmarking, we demonstrate the potential of end-to-end modeling on long iEEG segments and highlight the transferability of representations pretrained on non-neurophysiological domains. Together, these contributions establish Omni-iEEG as a foundation for reproducible, generalizable, and clinically translatable epilepsy research. The project page with dataset and code links is available at omni-ieeg.github.io/omni-ieeg.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper