new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

iNatAg: Multi-Class Classification Models Enabled by a Large-Scale Benchmark Dataset with 4.7M Images of 2,959 Crop and Weed Species

Accurate identification of crop and weed species is critical for precision agriculture and sustainable farming. However, it remains a challenging task due to a variety of factors -- a high degree of visual similarity among species, environmental variability, and a continued lack of large, agriculture-specific image data. We introduce iNatAg, a large-scale image dataset which contains over 4.7 million images of 2,959 distinct crop and weed species, with precise annotations along the taxonomic hierarchy from binary crop/weed labels to specific species labels. Curated from the broader iNaturalist database, iNatAg contains data from every continent and accurately reflects the variability of natural image captures and environments. Enabled by this data, we train benchmark models built upon the Swin Transformer architecture and evaluate the impact of various modifications such as the incorporation of geospatial data and LoRA finetuning. Our best models achieve state-of-the-art performance across all taxonomic classification tasks, achieving 92.38\% on crop and weed classification. Furthermore, the scale of our dataset enables us to explore incorrect misclassifications and unlock new analytic possiblities for plant species. By combining large-scale species coverage, multi-task labels, and geographic diversity, iNatAg provides a new foundation for building robust, geolocation-aware agricultural classification systems. We release the iNatAg dataset publicly through AgML (https://github.com/Project-AgML/AgML), enabling direct access and integration into agricultural machine learning workflows.

  • 3 authors
·
Mar 25, 2025

A Sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning

In this work we introduce Sen4AgriNet, a Sentinel-2 based time series multi country benchmark dataset, tailored for agricultural monitoring applications with Machine and Deep Learning. Sen4AgriNet dataset is annotated from farmer declarations collected via the Land Parcel Identification System (LPIS) for harmonizing country wide labels. These declarations have only recently been made available as open data, allowing for the first time the labeling of satellite imagery from ground truth data. We proceed to propose and standardise a new crop type taxonomy across Europe that address Common Agriculture Policy (CAP) needs, based on the Food and Agriculture Organization (FAO) Indicative Crop Classification scheme. Sen4AgriNet is the only multi-country, multi-year dataset that includes all spectral information. It is constructed to cover the period 2016-2020 for Catalonia and France, while it can be extended to include additional countries. Currently, it contains 42.5 million parcels, which makes it significantly larger than other available archives. We extract two sub-datasets to highlight its value for diverse Deep Learning applications; the Object Aggregated Dataset (OAD) and the Patches Assembled Dataset (PAD). OAD capitalizes zonal statistics of each parcel, thus creating a powerful label-to-features instance for classification algorithms. On the other hand, PAD structure generalizes the classification problem to parcel extraction and semantic segmentation and labeling. The PAD and OAD are examined under three different scenarios to showcase and model the effects of spatial and temporal variability across different years and different countries.

  • 4 authors
·
Apr 2, 2022

Self-Consistency in Vision-Language Models for Precision Agriculture: Multi-Response Consensus for Crop Disease Management

Precision agriculture relies heavily on accurate image analysis for crop disease identification and treatment recommendation, yet existing vision-language models (VLMs) often underperform in specialized agricultural domains. This work presents a domain-aware framework for agricultural image processing that combines prompt-based expert evaluation with self-consistency mechanisms to enhance VLM reliability in precision agriculture applications. We introduce two key innovations: (1) a prompt-based evaluation protocol that configures a language model as an expert plant pathologist for scalable assessment of image analysis outputs, and (2) a cosine-consistency self-voting mechanism that generates multiple candidate responses from agricultural images and selects the most semantically coherent diagnosis using domain-adapted embeddings. Applied to maize leaf disease identification from field images using a fine-tuned PaliGemma model, our approach improves diagnostic accuracy from 82.2\% to 87.8\%, symptom analysis from 38.9\% to 52.2\%, and treatment recommendation from 27.8\% to 43.3\% compared to standard greedy decoding. The system remains compact enough for deployment on mobile devices, supporting real-time agricultural decision-making in resource-constrained environments. These results demonstrate significant potential for AI-driven precision agriculture tools that can operate reliably in diverse field conditions.

  • 4 authors
·
Jul 8, 2025

Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis

The success of deep learning in visual recognition tasks has driven advancements in multiple fields of research. Particularly, increasing attention has been drawn towards its application in agriculture. Nevertheless, while visual pattern recognition on farmlands carries enormous economic values, little progress has been made to merge computer vision and crop sciences due to the lack of suitable agricultural image datasets. Meanwhile, problems in agriculture also pose new challenges in computer vision. For example, semantic segmentation of aerial farmland images requires inference over extremely large-size images with extreme annotation sparsity. These challenges are not present in most of the common object datasets, and we show that they are more challenging than many other aerial image datasets. To encourage research in computer vision for agriculture, we present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns. We collected 94,986 high-quality aerial images from 3,432 farmlands across the US, where each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel. We annotate nine types of field anomaly patterns that are most important to farmers. As a pilot study of aerial agricultural semantic segmentation, we perform comprehensive experiments using popular semantic segmentation models; we also propose an effective model designed for aerial agricultural pattern recognition. Our experiments demonstrate several challenges Agriculture-Vision poses to both the computer vision and agriculture communities. Future versions of this dataset will include even more aerial images, anomaly patterns and image channels. More information at https://www.agriculture-vision.com.

  • 15 authors
·
Jan 5, 2020

In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data

Studying and analyzing cropland is a difficult task due to its dynamic and heterogeneous growth behavior. Usually, diverse data sources can be collected for its estimation. Although deep learning models have proven to excel in the crop classification task, they face substantial challenges when dealing with multiple inputs, named Multi-View Learning (MVL). The methods used in the MVL scenario can be structured based on the encoder architecture, the fusion strategy, and the optimization technique. The literature has primarily focused on using specific encoder architectures for local regions, lacking a deeper exploration of other components in the MVL methodology. In contrast, we investigate the simultaneous selection of the fusion strategy and encoder architecture, assessing global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoders (LSTM, GRU, TempCNN, TAE, L-TAE) as possible configurations in the MVL method. We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination should be meticulously sought, including an encoder and fusion strategy. To streamline this search process, we suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a methodological framework for researchers exploring crop classification through an MVL methodology.

  • 3 authors
·
Mar 25, 2024 1

Global Rice Multi-Class Segmentation Dataset (RiceSEG): A Comprehensive and Diverse High-Resolution RGB-Annotated Images for the Development and Benchmarking of Rice Segmentation Algorithms

Developing computer vision-based rice phenotyping techniques is crucial for precision field management and accelerating breeding, thereby continuously advancing rice production. Among phenotyping tasks, distinguishing image components is a key prerequisite for characterizing plant growth and development at the organ scale, enabling deeper insights into eco-physiological processes. However, due to the fine structure of rice organs and complex illumination within the canopy, this task remains highly challenging, underscoring the need for a high-quality training dataset. Such datasets are scarce, both due to a lack of large, representative collections of rice field images and the time-intensive nature of annotation. To address this gap, we established the first comprehensive multi-class rice semantic segmentation dataset, RiceSEG. We gathered nearly 50,000 high-resolution, ground-based images from five major rice-growing countries (China, Japan, India, the Philippines, and Tanzania), encompassing over 6,000 genotypes across all growth stages. From these original images, 3,078 representative samples were selected and annotated with six classes (background, green vegetation, senescent vegetation, panicle, weeds, and duckweed) to form the RiceSEG dataset. Notably, the sub-dataset from China spans all major genotypes and rice-growing environments from the northeast to the south. Both state-of-the-art convolutional neural networks and transformer-based semantic segmentation models were used as baselines. While these models perform reasonably well in segmenting background and green vegetation, they face difficulties during the reproductive stage, when canopy structures are more complex and multiple classes are involved. These findings highlight the importance of our dataset for developing specialized segmentation models for rice and other crops.

  • 24 authors
·
Apr 2, 2025

A Vision-Language Foundation Model for Leaf Disease Identification

Leaf disease identification plays a pivotal role in smart agriculture. However, many existing studies still struggle to integrate image and textual modalities to compensate for each other's limitations. Furthermore, many of these approaches rely on pretraining with constrained datasets such as ImageNet, which lack domain-specific information. We propose SCOLD (Soft-target COntrastive learning for Leaf Disease identification), a context-aware vision-language foundation model tailored to address these challenges for agricultural tasks. SCOLD is developed using a diverse corpus of plant leaf images and corresponding symptom descriptions, comprising over 186,000 image-caption pairs aligned with 97 unique concepts. Through task-agnostic pretraining, SCOLD leverages contextual soft targets to mitigate overconfidence in contrastive learning by smoothing labels, thereby improving model generalization and robustness on fine-grained classification tasks. Experimental results demonstrate that SCOLD outperforms existing vision-language models such as OpenAI-CLIP-L, BioCLIP, and SigLIP2 across several benchmarks, including zero-shot and few-shot classification, image-text retrieval, and image classification, while maintaining a competitive parameter footprint. Ablation studies further highlight SCOLD's effectiveness in contrast to its counterparts. The proposed approach significantly advances the agricultural vision-language foundation model, offering strong performance with minimal or no supervised fine-tuning. This work lays a solid groundwork for future research on models trained with long-form and simplified contexts, tasks involving class ambiguity, and multi-modal systems for intelligent plant disease diagnostics. The code for this study is available at https://huggingface.co/enalis/scold

  • 3 authors
·
May 11, 2025

Global-Local Similarity for Efficient Fine-Grained Image Recognition with Vision Transformers

Fine-grained recognition involves the classification of images from subordinate macro-categories, and it is challenging due to small inter-class differences. To overcome this, most methods perform discriminative feature selection enabled by a feature extraction backbone followed by a high-level feature refinement step. Recently, many studies have shown the potential behind vision transformers as a backbone for fine-grained recognition, but their usage of its attention mechanism to select discriminative tokens can be computationally expensive. In this work, we propose a novel and computationally inexpensive metric to identify discriminative regions in an image. We compare the similarity between the global representation of an image given by the CLS token, a learnable token used by transformers for classification, and the local representation of individual patches. We select the regions with the highest similarity to obtain crops, which are forwarded through the same transformer encoder. Finally, high-level features of the original and cropped representations are further refined together in order to make more robust predictions. Through extensive experimental evaluation we demonstrate the effectiveness of our proposed method, obtaining favorable results in terms of accuracy across a variety of datasets. Furthermore, our method achieves these results at a much lower computational cost compared to the alternatives. Code and checkpoints are available at: https://github.com/arkel23/GLSim.

  • 3 authors
·
Jul 17, 2024

Plant Disease Detection through Multimodal Large Language Models and Convolutional Neural Networks

Automation in agriculture plays a vital role in addressing challenges related to crop monitoring and disease management, particularly through early detection systems. This study investigates the effectiveness of combining multimodal Large Language Models (LLMs), specifically GPT-4o, with Convolutional Neural Networks (CNNs) for automated plant disease classification using leaf imagery. Leveraging the PlantVillage dataset, we systematically evaluate model performance across zero-shot, few-shot, and progressive fine-tuning scenarios. A comparative analysis between GPT-4o and the widely used ResNet-50 model was conducted across three resolutions (100, 150, and 256 pixels) and two plant species (apple and corn). Results indicate that fine-tuned GPT-4o models achieved slightly better performance compared to the performance of ResNet-50, achieving up to 98.12% classification accuracy on apple leaf images, compared to 96.88% achieved by ResNet-50, with improved generalization and near-zero training loss. However, zero-shot performance of GPT-4o was significantly lower, underscoring the need for minimal training. Additional evaluations on cross-resolution and cross-plant generalization revealed the models' adaptability and limitations when applied to new domains. The findings highlight the promise of integrating multimodal LLMs into automated disease detection pipelines, enhancing the scalability and intelligence of precision agriculture systems while reducing the dependence on large, labeled datasets and high-resolution sensor infrastructure. Large Language Models, Vision Language Models, LLMs and CNNs, Disease Detection with Vision Language Models, VLMs

  • 5 authors
·
Apr 29, 2025 1

Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field Crop Yield Prediction

Accurate crop yield prediction is of utmost importance for informed decision-making in agriculture, aiding farmers, and industry stakeholders. However, this task is complex and depends on multiple factors, such as environmental conditions, soil properties, and management practices. Combining heterogeneous data views poses a fusion challenge, like identifying the view-specific contribution to the predictive task. We present a novel multi-view learning approach to predict crop yield for different crops (soybean, wheat, rapeseed) and regions (Argentina, Uruguay, and Germany). Our multi-view input data includes multi-spectral optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season, complemented by static features like soil properties and topographic information. To effectively fuse the data, we introduce a Multi-view Gated Fusion (MVGF) model, comprising dedicated view-encoders and a Gated Unit (GU) module. The view-encoders handle the heterogeneity of data sources with varying temporal resolutions by learning a view-specific representation. These representations are adaptively fused via a weighted sum. The fusion weights are computed for each sample by the GU using a concatenation of the view-representations. The MVGF model is trained at sub-field level with 10 m resolution pixels. Our evaluations show that the MVGF outperforms conventional models on the same task, achieving the best results by incorporating all the data sources, unlike the usual fusion results in the literature. For Argentina, the MVGF model achieves an R2 value of 0.68 at sub-field yield prediction, while at field level evaluation (comparing field averages), it reaches around 0.80 across different countries. The GU module learned different weights based on the country and crop-type, aligning with the variable significance of each data source to the prediction task.

  • 14 authors
·
Jan 22, 2024

Grape detection, segmentation and tracking using deep neural networks and three-dimensional association

Agricultural applications such as yield prediction, precision agriculture and automated harvesting need systems able to infer the crop state from low-cost sensing devices. Proximal sensing using affordable cameras combined with computer vision has seen a promising alternative, strengthened after the advent of convolutional neural networks (CNNs) as an alternative for challenging pattern recognition problems in natural images. Considering fruit growing monitoring and automation, a fundamental problem is the detection, segmentation and counting of individual fruits in orchards. Here we show that for wine grapes, a crop presenting large variability in shape, color, size and compactness, grape clusters can be successfully detected, segmented and tracked using state-of-the-art CNNs. In a test set containing 408 grape clusters from images taken on a trellis-system based vineyard, we have reached an F 1 -score up to 0.91 for instance segmentation, a fine separation of each cluster from other structures in the image that allows a more accurate assessment of fruit size and shape. We have also shown as clusters can be identified and tracked along video sequences recording orchard rows. We also present a public dataset containing grape clusters properly annotated in 300 images and a novel annotation methodology for segmentation of complex objects in natural images. The presented pipeline for annotation, training, evaluation and tracking of agricultural patterns in images can be replicated for different crops and production systems. It can be employed in the development of sensing components for several agricultural and environmental applications.

  • 4 authors
·
Jul 26, 2019

An Open and Large-Scale Dataset for Multi-Modal Climate Change-aware Crop Yield Predictions

Precise crop yield predictions are of national importance for ensuring food security and sustainable agricultural practices. While AI-for-science approaches have exhibited promising achievements in solving many scientific problems such as drug discovery, precipitation nowcasting, etc., the development of deep learning models for predicting crop yields is constantly hindered by the lack of an open and large-scale deep learning-ready dataset with multiple modalities to accommodate sufficient information. To remedy this, we introduce the CropNet dataset, the first terabyte-sized, publicly available, and multi-modal dataset specifically targeting climate change-aware crop yield predictions for the contiguous United States (U.S.) continent at the county level. Our CropNet dataset is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR Computed Dataset, and USDA Crop Dataset, for over 2200 U.S. counties spanning 6 years (2017-2022), expected to facilitate researchers in developing versatile deep learning models for timely and precisely predicting crop yields at the county-level, by accounting for the effects of both short-term growing season weather variations and long-term climate change on crop yields. Besides, we develop the CropNet package, offering three types of APIs, for facilitating researchers in downloading the CropNet data on the fly over the time and region of interest, and flexibly building their deep learning models for accurate crop yield predictions. Extensive experiments have been conducted on our CropNet dataset via employing various types of deep learning solutions, with the results validating the general applicability and the efficacy of the CropNet dataset in climate change-aware crop yield predictions.

  • 6 authors
·
Jun 10, 2024

Lost in Translation: Modern Neural Networks Still Struggle With Small Realistic Image Transformations

Deep neural networks that achieve remarkable performance in image classification have previously been shown to be easily fooled by tiny transformations such as a one pixel translation of the input image. In order to address this problem, two approaches have been proposed in recent years. The first approach suggests using huge datasets together with data augmentation in the hope that a highly varied training set will teach the network to learn to be invariant. The second approach suggests using architectural modifications based on sampling theory to deal explicitly with image translations. In this paper, we show that these approaches still fall short in robustly handling 'natural' image translations that simulate a subtle change in camera orientation. Our findings reveal that a mere one-pixel translation can result in a significant change in the predicted image representation for approximately 40% of the test images in state-of-the-art models (e.g. open-CLIP trained on LAION-2B or DINO-v2) , while models that are explicitly constructed to be robust to cyclic translations can still be fooled with 1 pixel realistic (non-cyclic) translations 11% of the time. We present Robust Inference by Crop Selection: a simple method that can be proven to achieve any desired level of consistency, although with a modest tradeoff with the model's accuracy. Importantly, we demonstrate how employing this method reduces the ability to fool state-of-the-art models with a 1 pixel translation to less than 5% while suffering from only a 1% drop in classification accuracy. Additionally, we show that our method can be easy adjusted to deal with circular shifts as well. In such case we achieve 100% robustness to integer shifts with state-of-the-art accuracy, and with no need for any further training.

  • 2 authors
·
Apr 10, 2024

Efficient Image Pre-Training with Siamese Cropped Masked Autoencoders

Self-supervised pre-training of image encoders is omnipresent in the literature, particularly following the introduction of Masked autoencoders (MAE). Current efforts attempt to learn object-centric representations from motion in videos. In particular, SiamMAE recently introduced a Siamese network, training a shared-weight encoder from two frames of a video with a high asymmetric masking ratio (95%). In this work, we propose CropMAE, an alternative approach to the Siamese pre-training introduced by SiamMAE. Our method specifically differs by exclusively considering pairs of cropped images sourced from the same image but cropped differently, deviating from the conventional pairs of frames extracted from a video. CropMAE therefore alleviates the need for video datasets, while maintaining competitive performances and drastically reducing pre-training and learning time. Furthermore, we demonstrate that CropMAE learns similar object-centric representations without explicit motion, showing that current self-supervised learning methods do not learn such representations from explicit object motion, but rather thanks to the implicit image transformations that occur between the two views. Finally, CropMAE achieves the highest masking ratio to date (98.5%), enabling the reconstruction of images using only two visible patches. Our code is available at https://github.com/alexandre-eymael/CropMAE.

  • 6 authors
·
Mar 26, 2024

A Hybrid Deep Learning-based Approach for Optimal Genotype by Environment Selection

Precise crop yield prediction is essential for improving agricultural practices and ensuring crop resilience in varying climates. Integrating weather data across the growing season, especially for different crop varieties, is crucial for understanding their adaptability in the face of climate change. In the MLCAS2021 Crop Yield Prediction Challenge, we utilized a dataset comprising 93,028 training records to forecast yields for 10,337 test records, covering 159 locations across 28 U.S. states and Canadian provinces over 13 years (2003-2015). This dataset included details on 5,838 distinct genotypes and daily weather data for a 214-day growing season, enabling comprehensive analysis. As one of the winning teams, we developed two novel convolutional neural network (CNN) architectures: the CNN-DNN model, combining CNN and fully-connected networks, and the CNN-LSTM-DNN model, with an added LSTM layer for weather variables. Leveraging the Generalized Ensemble Method (GEM), we determined optimal model weights, resulting in superior performance compared to baseline models. The GEM model achieved lower RMSE (5.55% to 39.88%), reduced MAE (5.34% to 43.76%), and higher correlation coefficients (1.1% to 10.79%) when evaluated on test data. We applied the CNN-DNN model to identify top-performing genotypes for various locations and weather conditions, aiding genotype selection based on weather variables. Our data-driven approach is valuable for scenarios with limited testing years. Additionally, a feature importance analysis using RMSE change highlighted the significance of location, MG, year, and genotype, along with the importance of weather variables MDNI and AP.

  • 4 authors
·
Sep 22, 2023

Towards Efficient and Intelligent Laser Weeding: Method and Dataset for Weed Stem Detection

Weed control is a critical challenge in modern agriculture, as weeds compete with crops for essential nutrient resources, significantly reducing crop yield and quality. Traditional weed control methods, including chemical and mechanical approaches, have real-life limitations such as associated environmental impact and efficiency. An emerging yet effective approach is laser weeding, which uses a laser beam as the stem cutter. Although there have been studies that use deep learning in weed recognition, its application in intelligent laser weeding still requires a comprehensive understanding. Thus, this study represents the first empirical investigation of weed recognition for laser weeding. To increase the efficiency of laser beam cut and avoid damaging the crops of interest, the laser beam shall be directly aimed at the weed root. Yet, weed stem detection remains an under-explored problem. We integrate the detection of crop and weed with the localization of weed stem into one end-to-end system. To train and validate the proposed system in a real-life scenario, we curate and construct a high-quality weed stem detection dataset with human annotations. The dataset consists of 7,161 high-resolution pictures collected in the field with annotations of 11,151 instances of weed. Experimental results show that the proposed system improves weeding accuracy by 6.7% and reduces energy cost by 32.3% compared to existing weed recognition systems.

  • 8 authors
·
Feb 10, 2025

Presenting an extensive lab- and field-image dataset of crops and weeds for computer vision tasks in agriculture

We present two large datasets of labelled plant-images that are suited towards the training of machine learning and computer vision models. The first dataset encompasses as the day of writing over 1.2 million images of indoor-grown crops and weeds common to the Canadian Prairies and many US states. The second dataset consists of over 540,000 images of plants imaged in farmland. All indoor plant images are labelled by species and we provide rich etadata on the level of individual images. This comprehensive database allows to filter the datasets under user-defined specifications such as for example the crop-type or the age of the plant. Furthermore, the indoor dataset contains images of plants taken from a wide variety of angles, including profile shots, top-down shots, and angled perspectives. The images taken from plants in fields are all from a top-down perspective and contain usually multiple plants per image. For these images metadata is also available. In this paper we describe both datasets' characteristics with respect to plant variety, plant age, and number of images. We further introduce an open-access sample of the indoor-dataset that contains 1,000 images of each species covered in our dataset. These, in total 14,000 images, had been selected, such that they form a representative sample with respect to plant age and ndividual plants per species. This sample serves as a quick entry point for new users to the dataset, allowing them to explore the data on a small scale and find the parameters of data most useful for their application without having to deal with hundreds of thousands of individual images.

  • 6 authors
·
Aug 12, 2021

Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception

Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation. Code is available at https://github.com/xiaomoguhz/DeCLIP

  • 7 authors
·
Aug 15, 2025

A New Dataset and Comparative Study for Aphid Cluster Detection and Segmentation in Sorghum Fields

Aphid infestations are one of the primary causes of extensive damage to wheat and sorghum fields and are one of the most common vectors for plant viruses, resulting in significant agricultural yield losses. To address this problem, farmers often employ the inefficient use of harmful chemical pesticides that have negative health and environmental impacts. As a result, a large amount of pesticide is wasted on areas without significant pest infestation. This brings to attention the urgent need for an intelligent autonomous system that can locate and spray sufficiently large infestations selectively within the complex crop canopies. We have developed a large multi-scale dataset for aphid cluster detection and segmentation, collected from actual sorghum fields and meticulously annotated to include clusters of aphids. Our dataset comprises a total of 54,742 image patches, showcasing a variety of viewpoints, diverse lighting conditions, and multiple scales, highlighting its effectiveness for real-world applications. In this study, we trained and evaluated four real-time semantic segmentation models and three object detection models specifically for aphid cluster segmentation and detection. Considering the balance between accuracy and efficiency, Fast-SCNN delivered the most effective segmentation results, achieving 80.46% mean precision, 81.21% mean recall, and 91.66 frames per second (FPS). For object detection, RT-DETR exhibited the best overall performance with a 61.63% mean average precision (mAP), 92.6% mean recall, and 72.55 on an NVIDIA V100 GPU. Our experiments further indicate that aphid cluster segmentation is more suitable for assessing aphid infestations than using detection models.

  • 11 authors
·
May 7, 2024

A region-wide, multi-year set of crop field boundary labels for Africa

African agriculture is undergoing rapid transformation. Annual maps of crop fields are key to understanding the nature of this transformation, but such maps are currently lacking and must be developed using advanced machine learning models trained on high resolution remote sensing imagery. To enable the development of such models, we delineated field boundaries in 33,746 Planet images captured between 2017 and 2023 across the continent using a custom labeling platform with built-in procedures for assessing and mitigating label error. We collected 42,403 labels, including 7,204 labels arising from tasks dedicated to assessing label quality (Class 1 labels), 32,167 from sites mapped once by a single labeller (Class 2) and 3,032 labels from sites where 3 or more labellers were tasked to map the same location (Class 4). Class 1 labels were used to calculate labeller-specific quality scores, while Class 1 and 4 sites mapped by at least 3 labellers were used to further evaluate label uncertainty using a Bayesian risk metric. Quality metrics showed that label quality was moderately high (0.75) for measures of total field extent, but low regarding the number of individual fields delineated (0.33), and the position of field edges (0.05). These values are expected when delineating small-scale fields in 3-5 m resolution imagery, which can be too coarse to reliably distinguish smaller fields, particularly in dense croplands, and therefore requires substantial labeller judgement. Nevertheless, previous work shows that such labels can train effective field mapping models. Furthermore, this large, probabilistic sample on its own provides valuable insight into regional agricultural characteristics, highlighting variations in the median field size and density. The imagery and vectorized labels along with quality information is available for download from two public repositories.

  • 30 authors
·
Dec 24, 2024

An Overall Real-Time Mechanism for Classification and Quality Evaluation of Rice

Rice is one of the most widely cultivated crops globally and has been developed into numerous varieties. The quality of rice during cultivation is primarily determined by its cultivar and characteristics. Traditionally, rice classification and quality assessment rely on manual visual inspection, a process that is both time-consuming and prone to errors. However, with advancements in machine vision technology, automating rice classification and quality evaluation based on its cultivar and characteristics has become increasingly feasible, enhancing both accuracy and efficiency. This study proposes a real-time evaluation mechanism for comprehensive rice grain assessment, integrating a one-stage object detection approach, a deep convolutional neural network, and traditional machine learning techniques. The proposed framework enables rice variety identification, grain completeness grading, and grain chalkiness evaluation. The rice grain dataset used in this study comprises approximately 20,000 images from six widely cultivated rice varieties in China. Experimental results demonstrate that the proposed mechanism achieves a mean average precision (mAP) of 99.14% in the object detection task and an accuracy of 97.89% in the classification task. Furthermore, the framework attains an average accuracy of 97.56% in grain completeness grading within the same rice variety, contributing to an effective quality evaluation system.

  • 6 authors
·
Feb 19, 2025

A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis

While conversational generative AI has shown considerable potential in enhancing decision-making for agricultural professionals, its exploration has predominantly been anchored in text-based interactions. The evolution of multimodal conversational AI, leveraging vast amounts of image-text data from diverse sources, marks a significant stride forward. However, the application of such advanced vision-language models in the agricultural domain, particularly for crop disease diagnosis, remains underexplored. In this work, we present the crop disease domain multimodal (CDDM) dataset, a pioneering resource designed to advance the field of agricultural research through the application of multimodal learning techniques. The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge, from disease identification to management practices. By integrating visual and textual data, CDDM facilitates the development of sophisticated question-answering systems capable of providing precise, useful advice to farmers and agricultural professionals. We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis. Specifically, we employed a novel finetuning strategy that utilizes low-rank adaptation (LoRA) to finetune the visual encoder, adapter and language model simultaneously. Our contributions include not only the dataset but also a finetuning strategy and a benchmark to stimulate further research in agricultural technology, aiming to bridge the gap between advanced AI techniques and practical agricultural applications. The dataset is available at https: //github.com/UnicomAI/UnicomBenchmark/tree/main/CDDMBench.

  • 7 authors
·
Mar 10, 2025

Visual Funnel: Resolving Contextual Blindness in Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) demonstrate impressive reasoning capabilities, but often fail to perceive fine-grained visual details, limiting their applicability in precision-demanding tasks. While methods that crop salient regions of an image offer a partial solution, we identify a critical limitation they introduce: "Contextual Blindness". This failure occurs due to structural disconnect between high-fidelity details (from the crop) and the broader global context (from the original image), even when all necessary visual information is present. We argue that this limitation stems not from a lack of information 'Quantity', but from a lack of 'Structural Diversity' in the model's input. To resolve this, we propose Visual Funnel, a training-free, two-step approach. Visual Funnel first performs Contextual Anchoring to identify the region of interest in a single forward pass. It then constructs an Entropy-Scaled Portfolio that preserves the hierarchical context - ranging from focal detail to broader surroundings - by dynamically determining crop sizes based on attention entropy and refining crop centers. Through extensive experiments, we demonstrate that Visual Funnel significantly outperforms naive single-crop and unstructured multi-crop baselines. Our results further validate that simply adding more unstructured crops provides limited or even detrimental benefits, confirming that the hierarchical structure of our portfolio is key to resolving Contextual Blindness.

  • 5 authors
·
Dec 11, 2025

WisWheat: A Three-Tiered Vision-Language Dataset for Wheat Management

Wheat management strategies play a critical role in determining yield. Traditional management decisions often rely on labour-intensive expert inspections, which are expensive, subjective and difficult to scale. Recently, Vision-Language Models (VLMs) have emerged as a promising solution to enable scalable, data-driven management support. However, due to a lack of domain-specific knowledge, directly applying VLMs to wheat management tasks results in poor quantification and reasoning capabilities, ultimately producing vague or even misleading management recommendations. In response, we propose WisWheat, a wheat-specific dataset with a three-layered design to enhance VLM performance on wheat management tasks: (1) a foundational pretraining dataset of 47,871 image-caption pairs for coarsely adapting VLMs to wheat morphology; (2) a quantitative dataset comprising 7,263 VQA-style image-question-answer triplets for quantitative trait measuring tasks; and (3) an Instruction Fine-tuning dataset with 4,888 samples targeting biotic and abiotic stress diagnosis and management plan for different phenological stages. Extensive experimental results demonstrate that fine-tuning open-source VLMs (e.g., Qwen2.5 7B) on our dataset leads to significant performance improvements. Specifically, the Qwen2.5 VL 7B fine-tuned on our wheat instruction dataset achieves accuracy scores of 79.2% and 84.6% on wheat stress and growth stage conversation tasks respectively, surpassing even general-purpose commercial models such as GPT-4o by a margin of 11.9% and 34.6%.

  • 6 authors
·
Jun 6, 2025

Empowering Agricultural Insights: RiceLeafBD - A Novel Dataset and Optimal Model Selection for Rice Leaf Disease Diagnosis through Transfer Learning Technique

The number of people living in this agricultural nation of ours, which is surrounded by lush greenery, is growing on a daily basis. As a result of this, the level of arable land is decreasing, as well as residential houses and industrial factories. The food crisis is becoming the main threat for us in the upcoming days. Because on the one hand, the population is increasing, and on the other hand, the amount of food crop production is decreasing due to the attack of diseases. Rice is one of the most significant cultivated crops since it provides food for more than half of the world's population. Bangladesh is dependent on rice (Oryza sativa) as a vital crop for its agriculture, but it faces a significant problem as a result of the ongoing decline in rice yield brought on by common diseases. Early disease detection is the main difficulty in rice crop cultivation. In this paper, we proposed our own dataset, which was collected from the Bangladesh field, and also applied deep learning and transfer learning models for the evaluation of the datasets. We elaborately explain our dataset and also give direction for further research work to serve society using this dataset. We applied a light CNN model and pre-trained InceptionNet-V2, EfficientNet-V2, and MobileNet-V2 models, which achieved 91.5% performance for the EfficientNet-V2 model of this work. The results obtained assaulted other models and even exceeded approaches that are considered to be part of the state of the art. It has been demonstrated by this study that it is possible to precisely and effectively identify diseases that affect rice leaves using this unbiased datasets. After analysis of the performance of different models, the proposed datasets are significant for the society for research work to provide solutions for decreasing rice leaf disease.

  • 6 authors
·
Jan 15, 2025

WeedSense: Multi-Task Learning for Weed Segmentation, Height Estimation, and Growth Stage Classification

Weed management represents a critical challenge in agriculture, significantly impacting crop yields and requiring substantial resources for control. Effective weed monitoring and analysis strategies are crucial for implementing sustainable agricultural practices and site-specific management approaches. We introduce WeedSense, a novel multi-task learning architecture for comprehensive weed analysis that jointly performs semantic segmentation, height estimation, and growth stage classification. We present a unique dataset capturing 16 weed species over an 11-week growth cycle with pixel-level annotations, height measurements, and temporal labels. WeedSense leverages a dual-path encoder incorporating Universal Inverted Bottleneck blocks and a Multi-Task Bifurcated Decoder with transformer-based feature fusion to generate multi-scale features and enable simultaneous prediction across multiple tasks. WeedSense outperforms other state-of-the-art models on our comprehensive evaluation. On our multi-task dataset, WeedSense achieves mIoU of 89.78% for segmentation, 1.67cm MAE for height estimation, and 99.99% accuracy for growth stage classification while maintaining real-time inference at 160 FPS. Our multitask approach achieves 3times faster inference than sequential single-task execution and uses 32.4% fewer parameters. Please see our project page at weedsense.github.io.

  • 5 authors
·
Aug 20, 2025

AgroSense: An Integrated Deep Learning System for Crop Recommendation via Soil Image Analysis and Nutrient Profiling

Meeting the increasing global demand for food security and sustainable farming requires intelligent crop recommendation systems that operate in real time. Traditional soil analysis techniques are often slow, labor-intensive, and not suitable for on-field decision-making. To address these limitations, we introduce AgroSense, a deep-learning framework that integrates soil image classification and nutrient profiling to produce accurate and contextually relevant crop recommendations. AgroSense comprises two main components: a Soil Classification Module, which leverages ResNet-18, EfficientNet-B0, and Vision Transformer architectures to categorize soil types from images; and a Crop Recommendation Module, which employs a Multi-Layer Perceptron, XGBoost, LightGBM, and TabNet to analyze structured soil data, including nutrient levels, pH, and rainfall. We curated a multimodal dataset of 10,000 paired samples drawn from publicly available Kaggle repositories, approximately 50,000 soil images across seven classes, and 25,000 nutrient profiles for experimental evaluation. The fused model achieves 98.0% accuracy, with a precision of 97.8%, a recall of 97.7%, and an F1-score of 96.75%, while RMSE and MAE drop to 0.32 and 0.27, respectively. Ablation studies underscore the critical role of multimodal coupling, and statistical validation via t-tests and ANOVA confirms the significance of our improvements. AgroSense offers a practical, scalable solution for real-time decision support in precision agriculture and paves the way for future lightweight multimodal AI systems in resource-constrained environments.

  • 3 authors
·
Sep 1, 2025

DFYP: A Dynamic Fusion Framework with Spectral Channel Attention and Adaptive Operator learning for Crop Yield Prediction

Accurate remote sensing-based crop yield prediction remains a fundamental challenging task due to complex spatial patterns, heterogeneous spectral characteristics, and dynamic agricultural conditions. Existing methods often suffer from limited spatial modeling capacity, weak generalization across crop types and years. To address these challenges, we propose DFYP, a novel Dynamic Fusion framework for crop Yield Prediction, which combines spectral channel attention, edge-adaptive spatial modeling and a learnable fusion mechanism to improve robustness across diverse agricultural scenarios. Specifically, DFYP introduces three key components: (1) a Resolution-aware Channel Attention (RCA) module that enhances spectral representation by adaptively reweighting input channels based on resolution-specific characteristics; (2) an Adaptive Operator Learning Network (AOL-Net) that dynamically selects operators for convolutional kernels to improve edge-sensitive spatial feature extraction under varying crop and temporal conditions; and (3) a dual-branch architecture with a learnable fusion mechanism, which jointly models local spatial details and global contextual information to support cross-resolution and cross-crop generalization. Extensive experiments on multi-year datasets MODIS and multi-crop dataset Sentinel-2 demonstrate that DFYP consistently outperforms current state-of-the-art baselines in RMSE, MAE, and R2 across different spatial resolutions, crop types, and time periods, showcasing its effectiveness and robustness for real-world agricultural monitoring.

  • 5 authors
·
Jul 8, 2025

AgriFM: A Multi-source Temporal Remote Sensing Foundation Model for Crop Mapping

Accurate crop mapping fundamentally relies on modeling multi-scale spatiotemporal patterns, where spatial scales range from individual field textures to landscape-level context, and temporal scales capture both short-term phenological transitions and full growing-season dynamics. Transformer-based remote sensing foundation models (RSFMs) offer promising potential for crop mapping due to their innate ability for unified spatiotemporal processing. However, current RSFMs remain suboptimal for crop mapping: they either employ fixed spatiotemporal windows that ignore the multi-scale nature of crop systems or completely disregard temporal information by focusing solely on spatial patterns. To bridge these gaps, we present AgriFM, a multi-source remote sensing foundation model specifically designed for agricultural crop mapping. Our approach begins by establishing the necessity of simultaneous hierarchical spatiotemporal feature extraction, leading to the development of a modified Video Swin Transformer architecture where temporal down-sampling is synchronized with spatial scaling operations. This modified backbone enables efficient unified processing of long time-series satellite inputs. AgriFM leverages temporally rich data streams from three satellite sources including MODIS, Landsat-8/9 and Sentinel-2, and is pre-trained on a global representative dataset comprising over 25 million image samples supervised by land cover products. The resulting framework incorporates a versatile decoder architecture that dynamically fuses these learned spatiotemporal representations, supporting diverse downstream tasks. Comprehensive evaluations demonstrate AgriFM's superior performance over conventional deep learning approaches and state-of-the-art general-purpose RSFMs across all downstream tasks. Codes will be available at https://github.com/flyakon/AgriFM.

  • 10 authors
·
May 27, 2025

Can Large Multimodal Models Understand Agricultural Scenes? Benchmarking with AgroMind

Large Multimodal Models (LMMs) has demonstrated capabilities across various domains, but comprehensive benchmarks for agricultural remote sensing (RS) remain scarce. Existing benchmarks designed for agricultural RS scenarios exhibit notable limitations, primarily in terms of insufficient scene diversity in the dataset and oversimplified task design. To bridge this gap, we introduce AgroMind, a comprehensive agricultural remote sensing benchmark covering four task dimensions: spatial perception, object understanding, scene understanding, and scene reasoning, with a total of 13 task types, ranging from crop identification and health monitoring to environmental analysis. We curate a high-quality evaluation set by integrating eight public datasets and one private farmland plot dataset, containing 25,026 QA pairs and 15,556 images. The pipeline begins with multi-source data preprocessing, including collection, format standardization, and annotation refinement. We then generate a diverse set of agriculturally relevant questions through the systematic definition of tasks. Finally, we employ LMMs for inference, generating responses, and performing detailed examinations. We evaluated 18 open-source LMMs and 3 closed-source models on AgroMind. Experiments reveal significant performance gaps, particularly in spatial reasoning and fine-grained recognition, it is notable that human performance lags behind several leading LMMs. By establishing a standardized evaluation framework for agricultural RS, AgroMind reveals the limitations of LMMs in domain knowledge and highlights critical challenges for future work. Data and code can be accessed at https://rssysu.github.io/AgroMind/.

  • 13 authors
·
May 17, 2025

Empirical Study of PEFT techniques for Winter Wheat Segmentation

Parameter Efficient Fine Tuning (PEFT) techniques have recently experienced significant growth and have been extensively employed to adapt large vision and language models to various domains, enabling satisfactory model performance with minimal computational needs. Despite these advances, more research has yet to delve into potential PEFT applications in real-life scenarios, particularly in the critical domains of remote sensing and crop monitoring. The diversity of climates across different regions and the need for comprehensive large-scale datasets have posed significant obstacles to accurately identify crop types across varying geographic locations and changing growing seasons. This study seeks to bridge this gap by comprehensively exploring the feasibility of cross-area and cross-year out-of-distribution generalization using the State-of-the-Art (SOTA) wheat crop monitoring model. The aim of this work is to explore PEFT approaches for crop monitoring. Specifically, we focus on adapting the SOTA TSViT model to address winter wheat field segmentation, a critical task for crop monitoring and food security. This adaptation process involves integrating different PEFT techniques, including BigFit, LoRA, Adaptformer, and prompt tuning. Using PEFT techniques, we achieved notable results comparable to those achieved using full fine-tuning methods while training only a mere 0.7% parameters of the whole TSViT architecture. The in-house labeled data-set, referred to as the Beqaa-Lebanon dataset, comprises high-quality annotated polygons for wheat and non-wheat classes with a total surface of 170 kmsq, over five consecutive years. Using Sentinel-2 images, our model achieved a 84% F1-score. We intend to publicly release the Lebanese winter wheat data set, code repository, and model weights.

  • 5 authors
·
Oct 3, 2023 1

PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation

Plant diseases pose significant threats to agriculture. It necessitates proper diagnosis and effective treatment to safeguard crop yields. To automate the diagnosis process, image segmentation is usually adopted for precisely identifying diseased regions, thereby advancing precision agriculture. Developing robust image segmentation models for plant diseases demands high-quality annotations across numerous images. However, existing plant disease datasets typically lack segmentation labels and are often confined to controlled laboratory settings, which do not adequately reflect the complexity of natural environments. Motivated by this fact, we established PlantSeg, a large-scale segmentation dataset for plant diseases. PlantSeg distinguishes itself from existing datasets in three key aspects. (1) Annotation type: Unlike the majority of existing datasets that only contain class labels or bounding boxes, each image in PlantSeg includes detailed and high-quality segmentation masks, associated with plant types and disease names. (2) Image source: Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images. This choice enhances the practical applicability, as the trained models can be applied for integrated disease management. (3) Scale: PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type. Extensive technical experiments validate the high quality of PlantSeg's annotations. This dataset not only allows researchers to evaluate their image classification methods but also provides a critical foundation for developing and benchmarking advanced plant disease segmentation algorithms.

  • 6 authors
·
Sep 6, 2024

RowDetr: End-to-End Row Detection Using Polynomials

Crop row detection is essential for enabling autonomous navigation in GPS-denied environments, such as under-canopy agricultural settings. Traditional methods often struggle with occlusions, variable lighting conditions, and the structural variability of crop rows. To address these challenges, RowDetr, a novel end-to-end neural network architecture, is introduced for robust and efficient row detection. A new dataset of approximately 6,900 images is curated, capturing a diverse range of real-world agricultural conditions, including occluded rows, uneven terrain, and varying crop densities. Unlike previous approaches, RowDetr leverages smooth polynomial functions to precisely delineate crop boundaries in the image space, ensuring a more structured and interpretable representation of row geometry. A key innovation of this approach is PolyOptLoss, a novel energy-based loss function designed to enhance learning robustness, even in the presence of noisy or imperfect labels. This loss function significantly improves model stability and generalization by optimizing polynomial curve fitting directly in image space. Extensive experiments demonstrate that RowDetr significantly outperforms existing frameworks, including Agronav and RowColAttention, across key performance metrics. Additionally, RowDetr achieves a sixfold speedup over Agronav, making it highly suitable for real-time deployment on resource-constrained edge devices. To facilitate better comparisons across future studies, lane detection metrics from autonomous driving research are adapted, providing a more standardized and meaningful evaluation framework for crop row detection. This work establishes a new benchmark in under-canopy

  • 2 authors
·
Dec 13, 2024 1

Insect-Foundation: A Foundation Model and Large-scale 1M Dataset for Visual Insect Understanding

In precision agriculture, the detection and recognition of insects play an essential role in the ability of crops to grow healthy and produce a high-quality yield. The current machine vision model requires a large volume of data to achieve high performance. However, there are approximately 5.5 million different insect species in the world. None of the existing insect datasets can cover even a fraction of them due to varying geographic locations and acquisition costs. In this paper, we introduce a novel ``Insect-1M'' dataset, a game-changing resource poised to revolutionize insect-related foundation model training. Covering a vast spectrum of insect species, our dataset, including 1 million images with dense identification labels of taxonomy hierarchy and insect descriptions, offers a panoramic view of entomology, enabling foundation models to comprehend visual and semantic information about insects like never before. Then, to efficiently establish an Insect Foundation Model, we develop a micro-feature self-supervised learning method with a Patch-wise Relevant Attention mechanism capable of discerning the subtle differences among insect images. In addition, we introduce Description Consistency loss to improve micro-feature modeling via insect descriptions. Through our experiments, we illustrate the effectiveness of our proposed approach in insect modeling and achieve State-of-the-Art performance on standard benchmarks of insect-related tasks. Our Insect Foundation Model and Dataset promise to empower the next generation of insect-related vision models, bringing them closer to the ultimate goal of precision agriculture.

  • 6 authors
·
Nov 26, 2023

An Improved YOLOv8 Approach for Small Target Detection of Rice Spikelet Flowering in Field Environments

Accurately detecting rice flowering time is crucial for timely pollination in hybrid rice seed production. This not only enhances pollination efficiency but also ensures higher yields. However, due to the complexity of field environments and the characteristics of rice spikelets, such as their small size and short flowering period, automated and precise recognition remains challenging. To address this, this study proposes a rice spikelet flowering recognition method based on an improved YOLOv8 object detection model. First, a Bidirectional Feature Pyramid Network (BiFPN) replaces the original PANet structure to enhance feature fusion and improve multi-scale feature utilization. Second, to boost small object detection, a p2 small-object detection head is added, using finer feature mapping to reduce feature loss commonly seen in detecting small targets. Given the lack of publicly available datasets for rice spikelet flowering in field conditions, a high-resolution RGB camera and data augmentation techniques are used to construct a dedicated dataset, providing reliable support for model training and testing. Experimental results show that the improved YOLOv8s-p2 model achieves an mAP@0.5 of 65.9%, precision of 67.6%, recall of 61.5%, and F1-score of 64.41%, representing improvements of 3.10%, 8.40%, 10.80%, and 9.79%, respectively, over the baseline YOLOv8. The model also runs at 69 f/s on the test set, meeting practical application requirements. Overall, the improved YOLOv8s-p2 offers high accuracy and speed, providing an effective solution for automated monitoring in hybrid rice seed production.

  • 8 authors
·
Jul 28, 2025

PlantBert: An Open Source Language Model for Plant Science

The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantBert, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantBert is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantBert to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantBert exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields. By providing a scalable and reproducible framework for high-resolution entity recognition, PlantBert bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.

  • 8 authors
·
Jun 10, 2025

AgriCoT: A Chain-of-Thought Benchmark for Evaluating Reasoning in Vision-Language Models for Agriculture

Recent advancements in Vision-Language Models (VLMs) have significantly transformed various industries. In agriculture, these dual-modal capabilities offer promising applications such as precision farming, crop monitoring, pest detection, and environmental sustainability. While several Visual Question Answering (VQA) datasets and benchmarks have been developed to evaluate VLM performance, they often fail to adequately assess the critical reasoning and problem-solving skills required in complex agricultural contexts. To address this gap, we introduce AgriCoT, a VQA dataset that incorporates Chain-of-Thought (CoT) reasoning, specifically designed to evaluate the reasoning capabilities of VLMs. With 4,535 carefully curated samples, AgriCoT offers a comprehensive and robust evaluation of reasoning abilities for VLMs, particularly in zero-shot scenarios, by focusing on their capacity to engage in logical reasoning and effective problem-solving. Our evaluations, conducted with 26 representative VLMs, including both proprietary and open-source models, reveal that while some proprietary models excel at answering questions, there is a notable and significant gap in their reasoning capabilities. This underscores the importance of incorporating CoT for more precise and effective assessments. Our dataset are available at https://huggingface.co/datasets/wenyb/AgriCoT.

  • 15 authors
·
Nov 28, 2025

Deep Learning for automated multi-scale functional field boundaries extraction using multi-date Sentinel-2 and PlanetScope imagery: Case Study of Netherlands and Pakistan

This study explores the effectiveness of multi-temporal satellite imagery for better functional field boundary delineation using deep learning semantic segmentation architecture on two distinct geographical and multi-scale farming systems of Netherlands and Pakistan. Multidate images of April, August and October 2022 were acquired for PlanetScope and Sentinel-2 in sub regions of Netherlands and November 2022, February and March 2023 for selected area of Dunyapur in Pakistan. For Netherlands, Basic registration crop parcels (BRP) vector layer was used as labeled training data. while self-crafted field boundary vector data were utilized for Pakistan. Four deep learning models with UNET architecture were evaluated using different combinations of multi-date images and NDVI stacks in the Netherlands subregions. A comparative analysis of IoU scores assessed the effectiveness of the proposed multi-date NDVI stack approach. These findings were then applied for transfer learning, using pre-trained models from the Netherlands on the selected area in Pakistan. Additionally, separate models were trained using self-crafted field boundary data for Pakistan, and combined models were developed using data from both the Netherlands and Pakistan. Results indicate that multi-date NDVI stacks provide additional temporal context, reflecting crop growth over different times of the season. The study underscores the critical role of multi-scale ground information from diverse geographical areas in developing robust and universally applicable models for field boundary delineation. The results also highlight the importance of fine spatial resolution for extraction of field boundaries in regions with small scale framing. The findings can be extended to multi-scale implementations for improved automatic field boundary delineation in heterogeneous agricultural environments.

  • 4 authors
·
Nov 24, 2024

YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain

This survey investigates the transformative potential of various YOLO variants, from YOLOv1 to the state-of-the-art YOLOv10, in the context of agricultural advancements. The primary objective is to elucidate how these cutting-edge object detection models can re-energise and optimize diverse aspects of agriculture, ranging from crop monitoring to livestock management. It aims to achieve key objectives, including the identification of contemporary challenges in agriculture, a detailed assessment of YOLO's incremental advancements, and an exploration of its specific applications in agriculture. This is one of the first surveys to include the latest YOLOv10, offering a fresh perspective on its implications for precision farming and sustainable agricultural practices in the era of Artificial Intelligence and automation. Further, the survey undertakes a critical analysis of YOLO's performance, synthesizes existing research, and projects future trends. By scrutinizing the unique capabilities packed in YOLO variants and their real-world applications, this survey provides valuable insights into the evolving relationship between YOLO variants and agriculture. The findings contribute towards a nuanced understanding of the potential for precision farming and sustainable agricultural practices, marking a significant step forward in the integration of advanced object detection technologies within the agricultural sector.

  • 2 authors
·
Jun 14, 2024

Multilingual Vision-Language Pre-training for the Remote Sensing Domain

Methods based on Contrastive Language-Image Pre-training (CLIP) are nowadays extensively used in support of vision-and-language tasks involving remote sensing data, such as cross-modal retrieval. The adaptation of CLIP to this specific domain has relied on model fine-tuning with the standard contrastive objective, using existing human-labeled image-caption datasets, or using synthetic data corresponding to image-caption pairs derived from other annotations over remote sensing images (e.g., object classes). The use of different pre-training mechanisms has received less attention, and only a few exceptions have considered multilingual inputs. This work proposes a novel vision-and-language model for the remote sensing domain, exploring the fine-tuning of a multilingual CLIP model and testing the use of a self-supervised method based on aligning local and global representations from individual input images, together with the standard CLIP objective. Model training relied on assembling pre-existing datasets of remote sensing images paired with English captions, followed by the use of automated machine translation into nine additional languages. We show that translated data is indeed helpful, e.g. improving performance also on English. Our resulting model, which we named Remote Sensing Multilingual CLIP (RS-M-CLIP), obtains state-of-the-art results in a variety of vision-and-language tasks, including cross-modal and multilingual image-text retrieval, or zero-shot image classification.

  • 4 authors
·
Oct 30, 2024

Zero-Shot Automatic Annotation and Instance Segmentation using LLM-Generated Datasets: Eliminating Field Imaging and Manual Annotation for Deep Learning Model Development

Currently, deep learning-based instance segmentation for various applications (e.g., Agriculture) is predominantly performed using a labor-intensive process involving extensive field data collection using sophisticated sensors, followed by careful manual annotation of images, presenting significant logistical and financial challenges to researchers and organizations. The process also slows down the model development and training process. In this study, we presented a novel method for deep learning-based instance segmentation of apples in commercial orchards that eliminates the need for labor-intensive field data collection and manual annotation. Utilizing a Large Language Model (LLM), we synthetically generated orchard images and automatically annotated them using the Segment Anything Model (SAM) integrated with a YOLO11 base model. This method significantly reduces reliance on physical sensors and manual data processing, presenting a major advancement in "Agricultural AI". The synthetic, auto-annotated dataset was used to train the YOLO11 model for Apple instance segmentation, which was then validated on real orchard images. The results showed that the automatically generated annotations achieved a Dice Coefficient of 0.9513 and an IoU of 0.9303, validating the accuracy and overlap of the mask annotations. All YOLO11 configurations, trained solely on these synthetic datasets with automated annotations, accurately recognized and delineated apples, highlighting the method's efficacy. Specifically, the YOLO11m-seg configuration achieved a mask precision of 0.902 and a mask mAP@50 of 0.833 on test images collected from a commercial orchard. Additionally, the YOLO11l-seg configuration outperformed other models in validation on 40 LLM-generated images, achieving the highest mask precision and mAP@50 metrics. Keywords: YOLO, SAM, SAMv2, YOLO11, YOLOv11, Segment Anything, YOLO-SAM

  • 3 authors
·
Nov 18, 2024

Cascaded Zoom-in Detector for High Resolution Aerial Images

Detecting objects in aerial images is challenging because they are typically composed of crowded small objects distributed non-uniformly over high-resolution images. Density cropping is a widely used method to improve this small object detection where the crowded small object regions are extracted and processed in high resolution. However, this is typically accomplished by adding other learnable components, thus complicating the training and inference over a standard detection process. In this paper, we propose an efficient Cascaded Zoom-in (CZ) detector that re-purposes the detector itself for density-guided training and inference. During training, density crops are located, labeled as a new class, and employed to augment the training dataset. During inference, the density crops are first detected along with the base class objects, and then input for a second stage of inference. This approach is easily integrated into any detector, and creates no significant change in the standard detection process, like the uniform cropping approach popular in aerial image detection. Experimental results on the aerial images of the challenging VisDrone and DOTA datasets verify the benefits of the proposed approach. The proposed CZ detector also provides state-of-the-art results over uniform cropping and other density cropping methods on the VisDrone dataset, increasing the detection mAP of small objects by more than 3 points.

  • 3 authors
·
Mar 15, 2023

UASTHN: Uncertainty-Aware Deep Homography Estimation for UAV Satellite-Thermal Geo-localization

Geo-localization is an essential component of Unmanned Aerial Vehicle (UAV) navigation systems to ensure precise absolute self-localization in outdoor environments. To address the challenges of GPS signal interruptions or low illumination, Thermal Geo-localization (TG) employs aerial thermal imagery to align with reference satellite maps to accurately determine the UAV's location. However, existing TG methods lack uncertainty measurement in their outputs, compromising system robustness in the presence of textureless or corrupted thermal images, self-similar or outdated satellite maps, geometric noises, or thermal images exceeding satellite maps. To overcome these limitations, this paper presents UASTHN, a novel approach for Uncertainty Estimation (UE) in Deep Homography Estimation (DHE) tasks for TG applications. Specifically, we introduce a novel Crop-based Test-Time Augmentation (CropTTA) strategy, which leverages the homography consensus of cropped image views to effectively measure data uncertainty. This approach is complemented by Deep Ensembles (DE) employed for model uncertainty, offering comparable performance with improved efficiency and seamless integration with any DHE model. Extensive experiments across multiple DHE models demonstrate the effectiveness and efficiency of CropTTA in TG applications. Analysis of detected failure cases underscores the improved reliability of CropTTA under challenging conditions. Finally, we demonstrate the capability of combining CropTTA and DE for a comprehensive assessment of both data and model uncertainty. Our research provides profound insights into the broader intersection of localization and uncertainty estimation. The code and models are publicly available.

  • 2 authors
·
Feb 2, 2025

California Crop Yield Benchmark: Combining Satellite Image, Climate, Evapotranspiration, and Soil Data Layers for County-Level Yield Forecasting of Over 70 Crops

California is a global leader in agricultural production, contributing 12.5% of the United States total output and ranking as the fifth-largest food and cotton supplier in the world. Despite the availability of extensive historical yield data from the USDA National Agricultural Statistics Service, accurate and timely crop yield forecasting remains a challenge due to the complex interplay of environmental, climatic, and soil-related factors. In this study, we introduce a comprehensive crop yield benchmark dataset covering over 70 crops across all California counties from 2008 to 2022. The benchmark integrates diverse data sources, including Landsat satellite imagery, daily climate records, monthly evapotranspiration, and high-resolution soil properties. To effectively learn from these heterogeneous inputs, we develop a multi-modal deep learning model tailored for county-level, crop-specific yield forecasting. The model employs stratified feature extraction and a timeseries encoder to capture spatial and temporal dynamics during the growing season. Static inputs such as soil characteristics and crop identity inform long-term variability. Our approach achieves an overall R2 score of 0.76 across all crops of unseen test dataset, highlighting strong predictive performance across California diverse agricultural regions. This benchmark and modeling framework offer a valuable foundation for advancing agricultural forecasting, climate adaptation, and precision farming. The full dataset and codebase are publicly available at our GitHub repository.

  • 3 authors
·
Jun 11, 2025

Comparing Deep Learning Models for Rice Mapping in Bhutan Using High Resolution Satellite Imagery

The Bhutanese government is increasing its utilization of technological approaches such as including Remote Sensing-based knowledge in their decision-making process. This study focuses on crop type and crop extent in Paro, one of the top rice-yielding districts in Bhutan, and employs publicly available NICFI high-resolution satellite imagery from Planet. Two Deep Learning (DL) approaches, point-based (DNN) and patch-based (U-Net), models were used in conjunction with cloud-computing platforms. Three different models per DL approaches (DNN and U-Net) were trained: 1) RGBN channels from Planet; 2) RGBN and elevation data (RGBNE); 3) RGBN and Sentinel-1 (S1) data (RGBNS), and RGBN with E and S1 data (RGBNES). From this comprehensive analysis, the U-Net displayed higher performance metrics across both model training and model validation efforts. Among the U-Net model sets, the RGBN, RGBNE, RGBNS, and RGBNES models had an F1-score of 0.8546, 0.8563, 0.8467, and 0.8500 respectively. An independent model evaluation was performed and found a high level of performance variation across all the metrics. For this independent model evaluation, the U-Net RGBN, RGBNE, RGBNES, and RGBN models displayed the F1-scores of 0.5935, 0.6154, 0.5882, and 0.6582, suggesting U-Net RGBNES as the best model. The study shows that the DL approaches can predict rice. Also, DL methods can be used with the survey-based approaches currently utilized by the Bhutan Department of Agriculture. Further, this study demonstrated the usage of regional land cover products such as SERVIR's RLCMS as a weak label approach to capture different strata addressing the class imbalance problem and improving the sampling design for DL application. Finally, through preliminary model testing and comparisons outlined it was shown that using additional features such as NDVI, EVI, and NDWI did not drastically improve model performance.

  • 2 authors
·
Jun 11, 2024

AgMMU: A Comprehensive Agricultural Multimodal Understanding and Reasoning Benchmark

We curate a dataset AgMMU for evaluating and developing vision-language models (VLMs) to produce factually accurate answers for knowledge-intensive expert domains. Our AgMMU concentrates on one of the most socially beneficial domains, agriculture, which requires connecting detailed visual observation with precise knowledge to diagnose, e.g., pest identification, management instructions, etc. As a core uniqueness of our dataset, all facts, questions, and answers are extracted from 116,231 conversations between real-world users and authorized agricultural experts. After a three-step dataset curation pipeline with GPT-4o, LLaMA models, and human verification, AgMMU features an evaluation set of 5,460 multiple-choice questions (MCQs) and open-ended questions (OEQs). We also provide a development set that contains 205,399 pieces of agricultural knowledge information, including disease identification, symptoms descriptions, management instructions, insect and pest identification, and species identification. As a multimodal factual dataset, it reveals that existing VLMs face significant challenges with questions requiring both detailed perception and factual knowledge. Moreover, open-source VLMs still demonstrate a substantial performance gap compared to proprietary ones. To advance knowledge-intensive VLMs, we conduct fine-tuning experiments using our development set, which improves LLaVA-1.5 evaluation accuracy by up to 3.1%. We hope that AgMMU can serve both as an evaluation benchmark dedicated to agriculture and a development suite for incorporating knowledge-intensive expertise into general-purpose VLMs.

  • 6 authors
·
Apr 14, 2025

GrowliFlower: An image time series dataset for GROWth analysis of cauLIFLOWER

This article presents GrowliFlower, a georeferenced, image-based UAV time series dataset of two monitored cauliflower fields of size 0.39 and 0.60 ha acquired in 2020 and 2021. The dataset contains RGB and multispectral orthophotos from which about 14,000 individual plant coordinates are derived and provided. The coordinates enable the dataset users the extraction of complete and incomplete time series of image patches showing individual plants. The dataset contains collected phenotypic traits of 740 plants, including the developmental stage as well as plant and cauliflower size. As the harvestable product is completely covered by leaves, plant IDs and coordinates are provided to extract image pairs of plants pre and post defoliation, to facilitate estimations of cauliflower head size. Moreover, the dataset contains pixel-accurate leaf and plant instance segmentations, as well as stem annotations to address tasks like classification, detection, segmentation, instance segmentation, and similar computer vision tasks. The dataset aims to foster the development and evaluation of machine learning approaches. It specifically focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to foster the development of automation in agriculture. Two baseline results of instance segmentation at plant and leaf level based on the labeled instance segmentation data are presented. The entire data set is publicly available.

  • 9 authors
·
Apr 1, 2022

UniAP: Towards Universal Animal Perception in Vision via Few-shot Learning

Animal visual perception is an important technique for automatically monitoring animal health, understanding animal behaviors, and assisting animal-related research. However, it is challenging to design a deep learning-based perception model that can freely adapt to different animals across various perception tasks, due to the varying poses of a large diversity of animals, lacking data on rare species, and the semantic inconsistency of different tasks. We introduce UniAP, a novel Universal Animal Perception model that leverages few-shot learning to enable cross-species perception among various visual tasks. Our proposed model takes support images and labels as prompt guidance for a query image. Images and labels are processed through a Transformer-based encoder and a lightweight label encoder, respectively. Then a matching module is designed for aggregating information between prompt guidance and the query image, followed by a multi-head label decoder to generate outputs for various tasks. By capitalizing on the shared visual characteristics among different animals and tasks, UniAP enables the transfer of knowledge from well-studied species to those with limited labeled data or even unseen species. We demonstrate the effectiveness of UniAP through comprehensive experiments in pose estimation, segmentation, and classification tasks on diverse animal species, showcasing its ability to generalize and adapt to new classes with minimal labeled examples.

  • 8 authors
·
Aug 19, 2023

Knowledge distillation to effectively attain both region-of-interest and global semantics from an image where multiple objects appear

Models based on convolutional neural networks (CNN) and transformers have steadily been improved. They also have been applied in various computer vision downstream tasks. However, in object detection tasks, accurately localizing and classifying almost infinite categories of foods in images remains challenging. To address these problems, we first segmented the food as the region-of-interest (ROI) by using the segment-anything model (SAM) and masked the rest of the region except ROI as black pixels. This process simplified the problems into a single classification for which annotation and training were much simpler than object detection. The images in which only the ROI was preserved were fed as inputs to fine-tune various off-the-shelf models that encoded their own inductive biases. Among them, Data-efficient image Transformers (DeiTs) had the best classification performance. Nonetheless, when foods' shapes and textures were similar, the contextual features of the ROI-only images were not enough for accurate classification. Therefore, we introduced a novel type of combined architecture, RveRNet, which consisted of ROI, extra-ROI, and integration modules that allowed it to account for both the ROI's and global contexts. The RveRNet's F1 score was 10% better than other individual models when classifying ambiguous food images. If the RveRNet's modules were DeiT with the knowledge distillation from the CNN, performed the best. We investigated how architectures can be made robust against input noise caused by permutation and translocation. The results indicated that there was a trade-off between how much the CNN teacher's knowledge could be distilled to DeiT and DeiT's innate strength. Code is publicly available at: https://github.com/Seonwhee-Genome/RveRNet.

  • 1 authors
·
Jul 11, 2024

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or views) of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a swapped prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements much. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.

  • 6 authors
·
Jun 17, 2020

Overcome the Fear Of Missing Out: Active Sensing UAV Scanning for Precision Agriculture

This paper deals with the problem of informative path planning for a UAV deployed for precision agriculture applications. First, we observe that the ``fear of missing out'' data lead to uniform, conservative scanning policies over the whole agricultural field. Consequently, employing a non-uniform scanning approach can mitigate the expenditure of time in areas with minimal or negligible real value, while ensuring heightened precision in information-dense regions. Turning to the available informative path planning methodologies, we discern that certain methods entail intensive computational requirements, while others necessitate training on an ideal world simulator. To address the aforementioned issues, we propose an active sensing coverage path planning approach, named OverFOMO, that regulates the speed of the UAV in accordance with both the relative quantity of the identified classes, i.e. crops and weeds, and the confidence level of such detections. To identify these instances, a robust Deep Learning segmentation model is deployed. The computational needs of the proposed algorithm are independent of the size of the agricultural field, rendering its applicability on modern UAVs quite straightforward. The proposed algorithm was evaluated with a simu-realistic pipeline, combining data from real UAV missions and the high-fidelity dynamics of AirSim simulator, showcasing its performance improvements over the established state of affairs for this type of missions. An open-source implementation of the algorithm and the evaluation pipeline is also available: https://github.com/emmarapt/OverFOMO.

  • 6 authors
·
Dec 15, 2023

A Fast Fourier Convolutional Deep Neural Network For Accurate and Explainable Discrimination Of Wheat Yellow Rust And Nitrogen Deficiency From Sentinel-2 Time-Series Data

Accurate and timely detection of plant stress is essential for yield protection, allowing better-targeted intervention strategies. Recent advances in remote sensing and deep learning have shown great potential for rapid non-invasive detection of plant stress in a fully automated and reproducible manner. However, the existing models always face several challenges: 1) computational inefficiency and the misclassifications between the different stresses with similar symptoms; and 2) the poor interpretability of the host-stress interaction. In this work, we propose a novel fast Fourier Convolutional Neural Network (FFDNN) for accurate and explainable detection of two plant stresses with similar symptoms (i.e. Wheat Yellow Rust And Nitrogen Deficiency). Specifically, unlike the existing CNN models, the main components of the proposed model include: 1) a fast Fourier convolutional block, a newly fast Fourier transformation kernel as the basic perception unit, to substitute the traditional convolutional kernel to capture both local and global responses to plant stress in various time-scale and improve computing efficiency with reduced learning parameters in Fourier domain; 2) Capsule Feature Encoder to encapsulate the extracted features into a series of vector features to represent part-to-whole relationship with the hierarchical structure of the host-stress interactions of the specific stress. In addition, in order to alleviate over-fitting, a photochemical vegetation indices-based filter is placed as pre-processing operator to remove the non-photochemical noises from the input Sentinel-2 time series.

  • 10 authors
·
Jun 29, 2023

Total Nitrogen Estimation in Agricultural Soils via Aerial Multispectral Imaging and LIBS

Measuring soil health indicators is an important and challenging task that affects farmers' decisions on timing, placement, and quantity of fertilizers applied in the farms. Most existing methods to measure soil health indicators (SHIs) are in-lab wet chemistry or spectroscopy-based methods, which require significant human input and effort, time-consuming, costly, and are low-throughput in nature. To address this challenge, we develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing (UMS) solution to estimate total nitrogen (TN) of the soil, an important macro-nutrient or SHI that directly affects the crop health. Accurate prediction of soil TN can significantly increase crop yield through informed decision making on the timing of seed planting, and fertilizer quantity and timing. We train two machine learning models including multi-layer perceptron and support vector machine to predict the soil nitrogen using a suite of data classes including multispectral characteristics of the soil and crops in red, near-infrared, and green spectral bands, computed vegetation indices, and environmental variables including air temperature and relative humidity. To generate the ground-truth data or the training data for the machine learning models, we measure the total nitrogen of the soil samples (collected from a farm) using laser-induced breakdown spectroscopy (LIBS).

  • 3 authors
·
Jul 5, 2021

TasselNetV4: A vision foundation model for cross-scene, cross-scale, and cross-species plant counting

Accurate plant counting provides valuable information for agriculture such as crop yield prediction, plant density assessment, and phenotype quantification. Vision-based approaches are currently the mainstream solution. Prior art typically uses a detection or a regression model to count a specific plant. However, plants have biodiversity, and new cultivars are increasingly bred each year. It is almost impossible to exhaust and build all species-dependent counting models. Inspired by class-agnostic counting (CAC) in computer vision, we argue that it is time to rethink the problem formulation of plant counting, from what plants to count to how to count plants. In contrast to most daily objects with spatial and temporal invariance, plants are dynamic, changing with time and space. Their non-rigid structure often leads to worse performance than counting rigid instances like heads and cars such that current CAC and open-world detection models are suboptimal to count plants. In this work, we inherit the vein of the TasselNet plant counting model and introduce a new extension, TasselNetV4, shifting from species-specific counting to cross-species counting. TasselNetV4 marries the local counting idea of TasselNet with the extract-and-match paradigm in CAC. It builds upon a plain vision transformer and incorporates novel multi-branch box-aware local counters used to enhance cross-scale robustness. Two challenging datasets, PAC-105 and PAC-Somalia, are harvested. Extensive experiments against state-of-the-art CAC models show that TasselNetV4 achieves not only superior counting performance but also high efficiency.Our results indicate that TasselNetV4 emerges to be a vision foundation model for cross-scene, cross-scale, and cross-species plant counting.

  • 11 authors
·
Sep 25, 2025

VITA: Variational Pretraining of Transformers for Climate-Robust Crop Yield Forecasting

Accurate crop yield forecasting is essential for global food security. However, current AI models systematically underperform when yields deviate from historical trends. We attribute this to the lack of rich, physically grounded datasets directly linking atmospheric states to yields. To address this, we introduce VITA (Variational Inference Transformer for Asymmetric data), a variational pretraining framework that learns representations from large satellite-based weather datasets and transfers to the ground-based limited measurements available for yield prediction. VITA is trained using detailed meteorological variables as proxy targets during pretraining and learns to predict latent atmospheric states under a seasonality-aware sinusoidal prior. This allows the model to be fine-tuned using limited weather statistics during deployment. Applied to 763 counties in the U.S. Corn Belt, VITA achieves state-of-the-art performance in predicting corn and soybean yields across all evaluation scenarios, particularly during extreme years, with statistically significant improvements (paired t-test, p < 0.0001). Importantly, VITA outperforms prior frameworks like GNN-RNN without soil data, and bigger foundational models (e.g., Chronos-Bolt) with less compute, making it practical for real-world use--especially in data-scarce regions. This work highlights how domain-aware AI design can overcome data limitations and support resilient agricultural forecasting in a changing climate.

  • 3 authors
·
Aug 5, 2025

AGILE: A Diffusion-Based Attention-Guided Image and Label Translation for Efficient Cross-Domain Plant Trait Identification

Semantically consistent cross-domain image translation facilitates the generation of training data by transferring labels across different domains, making it particularly useful for plant trait identification in agriculture. However, existing generative models struggle to maintain object-level accuracy when translating images between domains, especially when domain gaps are significant. In this work, we introduce AGILE (Attention-Guided Image and Label Translation for Efficient Cross-Domain Plant Trait Identification), a diffusion-based framework that leverages optimized text embeddings and attention guidance to semantically constrain image translation. AGILE utilizes pretrained diffusion models and publicly available agricultural datasets to improve the fidelity of translated images while preserving critical object semantics. Our approach optimizes text embeddings to strengthen the correspondence between source and target images and guides attention maps during the denoising process to control object placement. We evaluate AGILE on cross-domain plant datasets and demonstrate its effectiveness in generating semantically accurate translated images. Quantitative experiments show that AGILE enhances object detection performance in the target domain while maintaining realism and consistency. Compared to prior image translation methods, AGILE achieves superior semantic alignment, particularly in challenging cases where objects vary significantly or domain gaps are substantial.

  • 5 authors
·
Mar 27, 2025

Comparing YOLOv8 and Mask RCNN for object segmentation in complex orchard environments

Instance segmentation, an important image processing operation for automation in agriculture, is used to precisely delineate individual objects of interest within images, which provides foundational information for various automated or robotic tasks such as selective harvesting and precision pruning. This study compares the one-stage YOLOv8 and the two-stage Mask R-CNN machine learning models for instance segmentation under varying orchard conditions across two datasets. Dataset 1, collected in dormant season, includes images of dormant apple trees, which were used to train multi-object segmentation models delineating tree branches and trunks. Dataset 2, collected in the early growing season, includes images of apple tree canopies with green foliage and immature (green) apples (also called fruitlet), which were used to train single-object segmentation models delineating only immature green apples. The results showed that YOLOv8 performed better than Mask R-CNN, achieving good precision and near-perfect recall across both datasets at a confidence threshold of 0.5. Specifically, for Dataset 1, YOLOv8 achieved a precision of 0.90 and a recall of 0.95 for all classes. In comparison, Mask R-CNN demonstrated a precision of 0.81 and a recall of 0.81 for the same dataset. With Dataset 2, YOLOv8 achieved a precision of 0.93 and a recall of 0.97. Mask R-CNN, in this single-class scenario, achieved a precision of 0.85 and a recall of 0.88. Additionally, the inference times for YOLOv8 were 10.9 ms for multi-class segmentation (Dataset 1) and 7.8 ms for single-class segmentation (Dataset 2), compared to 15.6 ms and 12.8 ms achieved by Mask R-CNN's, respectively.

  • 3 authors
·
Dec 13, 2023

VLM-R$^3$: Region Recognition, Reasoning, and Refinement for Enhanced Multimodal Chain-of-Thought

Recently, reasoning-based MLLMs have achieved a degree of success in generating long-form textual reasoning chains. However, they still struggle with complex tasks that necessitate dynamic and iterative focusing on and revisiting of visual regions to achieve precise grounding of textual reasoning in visual evidence. We introduce VLM-R^3 (Visual Language Model with Region Recognition and Reasoning), a framework that equips an MLLM with the ability to (i) decide when additional visual evidence is needed, (ii) determine where to ground within the image, and (iii) seamlessly weave the relevant sub-image content back into an interleaved chain-of-thought. The core of our method is Region-Conditioned Reinforcement Policy Optimization (R-GRPO), a training paradigm that rewards the model for selecting informative regions, formulating appropriate transformations (e.g.\ crop, zoom), and integrating the resulting visual context into subsequent reasoning steps. To bootstrap this policy, we compile a modest but carefully curated Visuo-Lingual Interleaved Rationale (VLIR) corpus that provides step-level supervision on region selection and textual justification. Extensive experiments on MathVista, ScienceQA, and other benchmarks show that VLM-R^3 sets a new state of the art in zero-shot and few-shot settings, with the largest gains appearing on questions demanding subtle spatial reasoning or fine-grained visual cue extraction.

  • 9 authors
·
May 21, 2025 5

Multispectral Vineyard Segmentation: A Deep Learning approach

Digital agriculture has evolved significantly over the last few years due to the technological developments in automation and computational intelligence applied to the agricultural sector, including vineyards which are a relevant crop in the Mediterranean region. In this work, a study is presented of semantic segmentation for vine detection in real-world vineyards by exploring state-of-the-art deep segmentation networks and conventional unsupervised methods. Camera data have been collected on vineyards using an Unmanned Aerial System (UAS) equipped with a dual imaging sensor payload, namely a high-definition RGB camera and a five-band multispectral and thermal camera. Extensive experiments using deep-segmentation networks and unsupervised methods have been performed on multimodal datasets representing four distinct vineyards located in the central region of Portugal. The reported results indicate that SegNet, U-Net, and ModSegNet have equivalent overall performance in vine segmentation. The results also show that multimodality slightly improves the performance of vine segmentation, but the NIR spectrum alone generally is sufficient on most of the datasets. Furthermore, results suggest that high-definition RGB images produce equivalent or higher performance than any lower resolution multispectral band combination. Lastly, Deep Learning (DL) networks have higher overall performance than classical methods. The code and dataset are publicly available at https://github.com/Cybonic/DL_vineyard_segmentation_study.git

  • 7 authors
·
Aug 2, 2021

Grounding Descriptions in Images informs Zero-Shot Visual Recognition

Vision-language models (VLMs) like CLIP have been cherished for their ability to perform zero-shot visual recognition on open-vocabulary concepts. This is achieved by selecting the object category whose textual representation bears the highest similarity with the query image. While successful in some domains, this method struggles with identifying fine-grained entities as well as generalizing to unseen concepts that are not captured by the training distribution. Recent works attempt to mitigate these challenges by integrating category descriptions at test time, albeit yielding modest improvements. We attribute these limited gains to a fundamental misalignment between image and description representations, which is rooted in the pretraining structure of CLIP. In this paper, we propose GRAIN, a new pretraining strategy aimed at aligning representations at both fine and coarse levels simultaneously. Our approach learns to jointly ground textual descriptions in image regions along with aligning overarching captions with global image representations. To drive this pre-training, we leverage frozen Multimodal Large Language Models (MLLMs) to derive large-scale synthetic annotations. We demonstrate the enhanced zero-shot performance of our model compared to current state-of-the art methods across 11 diverse image classification datasets. Additionally, we introduce Products-2023, a newly curated, manually labeled dataset featuring novel concepts, and showcase our model's ability to recognize these concepts by benchmarking on it. Significant improvements achieved by our model on other downstream tasks like retrieval further highlight the superior quality of representations learned by our approach. Code available at https://github.com/shaunak27/grain-clip .

  • 7 authors
·
Dec 5, 2024

AgAsk: An Agent to Help Answer Farmer's Questions From Scientific Documents

Decisions in agriculture are increasingly data-driven; however, valuable agricultural knowledge is often locked away in free-text reports, manuals and journal articles. Specialised search systems are needed that can mine agricultural information to provide relevant answers to users' questions. This paper presents AgAsk -- an agent able to answer natural language agriculture questions by mining scientific documents. We carefully survey and analyse farmers' information needs. On the basis of these needs we release an information retrieval test collection comprising real questions, a large collection of scientific documents split in passages, and ground truth relevance assessments indicating which passages are relevant to each question. We implement and evaluate a number of information retrieval models to answer farmers questions, including two state-of-the-art neural ranking models. We show that neural rankers are highly effective at matching passages to questions in this context. Finally, we propose a deployment architecture for AgAsk that includes a client based on the Telegram messaging platform and retrieval model deployed on commodity hardware. The test collection we provide is intended to stimulate more research in methods to match natural language to answers in scientific documents. While the retrieval models were evaluated in the agriculture domain, they are generalisable and of interest to others working on similar problems. The test collection is available at: https://github.com/ielab/agvaluate.

  • 9 authors
·
Dec 20, 2022

Coconut Palm Tree Counting on Drone Images with Deep Object Detection and Synthetic Training Data

Drones have revolutionized various domains, including agriculture. Recent advances in deep learning have propelled among other things object detection in computer vision. This study utilized YOLO, a real-time object detector, to identify and count coconut palm trees in Ghanaian farm drone footage. The farm presented has lost track of its trees due to different planting phases. While manual counting would be very tedious and error-prone, accurately determining the number of trees is crucial for efficient planning and management of agricultural processes, especially for optimizing yields and predicting production. We assessed YOLO for palm detection within a semi-automated framework, evaluated accuracy augmentations, and pondered its potential for farmers. Data was captured in September 2022 via drones. To optimize YOLO with scarce data, synthetic images were created for model training and validation. The YOLOv7 model, pretrained on the COCO dataset (excluding coconut palms), was adapted using tailored data. Trees from footage were repositioned on synthetic images, with testing on distinct authentic images. In our experiments, we adjusted hyperparameters, improving YOLO's mean average precision (mAP). We also tested various altitudes to determine the best drone height. From an initial mAP@.5 of 0.65, we achieved 0.88, highlighting the value of synthetic images in agricultural scenarios.

  • 6 authors
·
Dec 16, 2024

Taec: a Manually annotated text dataset for trait and phenotype extraction and entity linking in wheat breeding literature

Wheat varieties show a large diversity of traits and phenotypes. Linking them to genetic variability is essential for shorter and more efficient wheat breeding programs. Newly desirable wheat variety traits include disease resistance to reduce pesticide use, adaptation to climate change, resistance to heat and drought stresses, or low gluten content of grains. Wheat breeding experiments are documented by a large body of scientific literature and observational data obtained in-field and under controlled conditions. The cross-referencing of complementary information from the literature and observational data is essential to the study of the genotype-phenotype relationship and to the improvement of wheat selection. The scientific literature on genetic marker-assisted selection describes much information about the genotype-phenotype relationship. However, the variety of expressions used to refer to traits and phenotype values in scientific articles is a hinder to finding information and cross-referencing it. When trained adequately by annotated examples, recent text mining methods perform highly in named entity recognition and linking in the scientific domain. While several corpora contain annotations of human and animal phenotypes, currently, no corpus is available for training and evaluating named entity recognition and entity-linking methods in plant phenotype literature. The Triticum aestivum trait Corpus is a new gold standard for traits and phenotypes of wheat. It consists of 540 PubMed references fully annotated for trait, phenotype, and species named entities using the Wheat Trait and Phenotype Ontology and the species taxonomy of the National Center for Biotechnology Information. A study of the performance of tools trained on the Triticum aestivum trait Corpus shows that the corpus is suitable for the training and evaluation of named entity recognition and linking.

  • 5 authors
·
Jan 14, 2024