Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA general language model for peptide identification
Advances in peptide identification are revolutionizing our ability to decipher protein functions and accelerate therapeutic discovery. We present PDeepPP, a deep learning framework that integrates pretrained protein language models with parallel transformer-CNN architectures, achieving state-of-the-art performance in peptide characterization tasks. The model's hybrid architecture demonstrates unique capabilities in capturing both local sequence motifs and global structural features, as evidenced by 29% improved cluster separation in UMAP visualizations compared to conventional approaches. Evaluated across 33 biological recognition tasks - including post-translational modification site prediction and bioactive peptide identification - PDeepPP outperformed existing methods in 25 tasks with average AUC improvements of 4.2%. Notably, it achieved 0.9726 accuracy with PR AUC 0.9977 in antimicrobial peptide detection while reducing false negatives by 37.5% in antimalarial recognition scenarios. This framework enables accurate large-scale peptide analysis, achieving 218* acceleration over sequence-alignment-based methods while maintaining 99.5% specificity in critical glycosylation site detection.PDeepPP establishes a new paradigm for computational peptide analysis through its synergistic architecture design, enabling rapid yet precise functional annotation that bridges molecular pattern recognition with translational biomedical applications.We have made our implementation, including code, data, and pretrained models, publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP).
Symbolic Knowledge Distillation: from General Language Models to Commonsense Models
The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
DISC-MedLLM: Bridging General Large Language Models and Real-World Medical Consultation
We propose DISC-MedLLM, a comprehensive solution that leverages Large Language Models (LLMs) to provide accurate and truthful medical response in end-to-end conversational healthcare services. To construct high-quality Supervised Fine-Tuning (SFT) datasets, we employ three strategies: utilizing medical knowledge-graphs, reconstructing real-world dialogues, and incorporating human-guided preference rephrasing. These datasets are instrumental in training DISC-MedLLM, surpassing existing medical LLMs in both single-turn and multi-turn consultation scenarios. Extensive experimental results demonstrate the effectiveness of the proposed model in bridging the gap between general language models and real-world medical consultation. Additionally, we release the constructed dataset and model weights to further contribute to research and development. Further details and resources can be found at https://github.com/FudanDISC/DISC-MedLLM
Agent Instructs Large Language Models to be General Zero-Shot Reasoners
We introduce a method to improve the zero-shot reasoning abilities of large language models on general language understanding tasks. Specifically, we build an autonomous agent to instruct the reasoning process of large language models. We show this approach further unleashes the zero-shot reasoning abilities of large language models to more tasks. We study the performance of our method on a wide set of datasets spanning generation, classification, and reasoning. We show that our method generalizes to most tasks and obtains state-of-the-art zero-shot performance on 20 of the 29 datasets that we evaluate. For instance, our method boosts the performance of state-of-the-art large language models by a large margin, including Vicuna-13b (13.3%), Llama-2-70b-chat (23.2%), and GPT-3.5 Turbo (17.0%). Compared to zero-shot chain of thought, our improvement in reasoning is striking, with an average increase of 10.5%. With our method, Llama-2-70b-chat outperforms zero-shot GPT-3.5 Turbo by 10.2%.
Flexible, Model-Agnostic Method for Materials Data Extraction from Text Using General Purpose Language Models
Accurate and comprehensive material databases extracted from research papers are critical for materials science and engineering but require significant human effort to develop. In this paper we present a simple method of extracting materials data from full texts of research papers suitable for quickly developing modest-sized databases. The method requires minimal to no coding, prior knowledge about the extracted property, or model training, and provides high recall and almost perfect precision in the resultant database. The method is fully automated except for one human-assisted step, which typically requires just a few hours of human labor. The method builds on top of natural language processing and large general language models but can work with almost any such model. The language models GPT-3/3.5, bart and DeBERTaV3 are evaluated here for comparison. We provide a detailed detailed analysis of the methods performance in extracting bulk modulus data, obtaining up to 90% precision at 96% recall, depending on the amount of human effort involved. We then demonstrate the methods broader effectiveness by developing a database of critical cooling rates for metallic glasses.
RedStone: Curating General, Code, Math, and QA Data for Large Language Models
Pre-training Large Language Models (LLMs) on high-quality, meticulously curated datasets is widely recognized as critical for enhancing their performance and generalization capabilities. This study explores the untapped potential of Common Crawl as a comprehensive and flexible resource for pre-training LLMs, addressing both general-purpose language understanding and specialized domain knowledge. We introduce RedStone, an innovative and scalable pipeline engineered to extract and process data from Common Crawl, facilitating the creation of extensive and varied pre-training datasets. Unlike traditional datasets, which often require expensive curation and domain-specific expertise, RedStone leverages the breadth of Common Crawl to deliver datasets tailored to a wide array of domains. In this work, we exemplify its capability by constructing pre-training datasets across multiple fields, including general language understanding, code, mathematics, and question-answering tasks. The flexibility of RedStone allows for easy adaptation to other specialized domains, significantly lowering the barrier to creating valuable domain-specific datasets. Our findings demonstrate that Common Crawl, when harnessed through effective pipelines like RedStone, can serve as a rich, renewable source of pre-training data, unlocking new avenues for domain adaptation and knowledge discovery in LLMs. This work also underscores the importance of innovative data acquisition strategies and highlights the role of web-scale data as a powerful resource in the continued evolution of LLMs. RedStone code and data samples will be publicly available at https://aka.ms/redstone.
Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
REPT: Bridging Language Models and Machine Reading Comprehension via Retrieval-Based Pre-training
Pre-trained Language Models (PLMs) have achieved great success on Machine Reading Comprehension (MRC) over the past few years. Although the general language representation learned from large-scale corpora does benefit MRC, the poor support in evidence extraction which requires reasoning across multiple sentences hinders PLMs from further advancing MRC. To bridge the gap between general PLMs and MRC, we present REPT, a REtrieval-based Pre-Training approach. In particular, we introduce two self-supervised tasks to strengthen evidence extraction during pre-training, which is further inherited by downstream MRC tasks through the consistent retrieval operation and model architecture. To evaluate our proposed method, we conduct extensive experiments on five MRC datasets that require collecting evidence from and reasoning across multiple sentences. Experimental results demonstrate the effectiveness of our pre-training approach. Moreover, further analysis shows that our approach is able to enhance the capacity of evidence extraction without explicit supervision.
A General Language Assistant as a Laboratory for Alignment
Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.
CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain
The field of cybersecurity is evolving fast. Experts need to be informed about past, current and - in the best case - upcoming threats, because attacks are becoming more advanced, targets bigger and systems more complex. As this cannot be addressed manually, cybersecurity experts need to rely on machine learning techniques. In the texutual domain, pre-trained language models like BERT have shown to be helpful, by providing a good baseline for further fine-tuning. However, due to the domain-knowledge and many technical terms in cybersecurity general language models might miss the gist of textual information, hence doing more harm than good. For this reason, we create a high-quality dataset and present a language model specifically tailored to the cybersecurity domain, which can serve as a basic building block for cybersecurity systems that deal with natural language. The model is compared with other models based on 15 different domain-dependent extrinsic and intrinsic tasks as well as general tasks from the SuperGLUE benchmark. On the one hand, the results of the intrinsic tasks show that our model improves the internal representation space of words compared to the other models. On the other hand, the extrinsic, domain-dependent tasks, consisting of sequence tagging and classification, show that the model is best in specific application scenarios, in contrast to the others. Furthermore, we show that our approach against catastrophic forgetting works, as the model is able to retrieve the previously trained domain-independent knowledge. The used dataset and trained model are made publicly available
Astro-HEP-BERT: A bidirectional language model for studying the meanings of concepts in astrophysics and high energy physics
I present Astro-HEP-BERT, a transformer-based language model specifically designed for generating contextualized word embeddings (CWEs) to study the meanings of concepts in astrophysics and high-energy physics. Built on a general pretrained BERT model, Astro-HEP-BERT underwent further training over three epochs using the Astro-HEP Corpus, a dataset I curated from 21.84 million paragraphs extracted from more than 600,000 scholarly articles on arXiv, all belonging to at least one of these two scientific domains. The project demonstrates both the effectiveness and feasibility of adapting a bidirectional transformer for applications in the history, philosophy, and sociology of science (HPSS). The entire training process was conducted using freely available code, pretrained weights, and text inputs, completed on a single MacBook Pro Laptop (M2/96GB). Preliminary evaluations indicate that Astro-HEP-BERT's CWEs perform comparably to domain-adapted BERT models trained from scratch on larger datasets for domain-specific word sense disambiguation and induction and related semantic change analyses. This suggests that retraining general language models for specific scientific domains can be a cost-effective and efficient strategy for HPSS researchers, enabling high performance without the need for extensive training from scratch.
Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE
This technical report briefly describes our JDExplore d-team's Vega v2 submission on the SuperGLUE leaderboard. SuperGLUE is more challenging than the widely used general language understanding evaluation (GLUE) benchmark, containing eight difficult language understanding tasks, including question answering, natural language inference, word sense disambiguation, coreference resolution, and reasoning. [Method] Instead of arbitrarily increasing the size of a pretrained language model (PLM), our aim is to 1) fully extract knowledge from the input pretraining data given a certain parameter budget, e.g., 6B, and 2) effectively transfer this knowledge to downstream tasks. To achieve goal 1), we propose self-evolution learning for PLMs to wisely predict the informative tokens that should be masked, and supervise the masked language modeling (MLM) process with rectified smooth labels. For goal 2), we leverage the prompt transfer technique to improve the low-resource tasks by transferring the knowledge from the foundation model and related downstream tasks to the target task. [Results] According to our submission record (Oct. 2022), with our optimized pretraining and fine-tuning strategies, our 6B Vega method achieved new state-of-the-art performance on 4/8 tasks, sitting atop the SuperGLUE leaderboard on Oct. 8, 2022, with an average score of 91.3.
Diffusion Language Models Can Perform Many Tasks with Scaling and Instruction-Finetuning
The recent surge of generative AI has been fueled by the generative power of diffusion probabilistic models and the scalable capabilities of large language models. Despite their potential, it remains elusive whether diffusion language models can solve general language tasks comparable to their autoregressive counterparts. This paper demonstrates that scaling diffusion models w.r.t. data, sizes, and tasks can effectively make them strong language learners. We build competent diffusion language models at scale by first acquiring knowledge from massive data via masked language modeling pretraining thanks to their intrinsic connections. We then reprogram pretrained masked language models into diffusion language models via diffusive adaptation, wherein task-specific finetuning and instruction finetuning are explored to unlock their versatility in solving general language tasks. Experiments show that scaling diffusion language models consistently improves performance across downstream language tasks. We further discover that instruction finetuning can elicit zero-shot and few-shot in-context learning abilities that help tackle many unseen tasks by following natural language instructions, and show promise in advanced and challenging abilities such as reasoning.
Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate
Modern large language models (LLMs) like ChatGPT have shown remarkable performance on general language tasks but still struggle on complex reasoning tasks, which drives the research on cognitive behaviors of LLMs to explore human-like problem-solving strategies. Along this direction, one representative strategy is self-reflection, which asks an LLM to refine the solution with the feedback generated by itself iteratively. However, our study shows that such reflection-style methods suffer from the Degeneration-of-Thought (DoT) problem: once the LLM has established confidence in its solutions, it is unable to generate novel thoughts later through reflection even if its initial stance is incorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution. Clearly, our MAD framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation. Experiment results on two challenging datasets, commonsense machine translation and counter-intuitive arithmetic reasoning, demonstrate the effectiveness of our MAD framework. Extensive analyses suggest that the adaptive break of debate and the modest level of "tit for tat" state are required for MAD to obtain good performance. Moreover, we find that LLMs might not be a fair judge if different LLMs are used for agents. Codes: https://github.com/Skytliang/Multi-Agents-Debate
ClimateBert: A Pretrained Language Model for Climate-Related Text
Over the recent years, large pretrained language models (LM) have revolutionized the field of natural language processing (NLP). However, while pretraining on general language has been shown to work very well for common language, it has been observed that niche language poses problems. In particular, climate-related texts include specific language that common LMs can not represent accurately. We argue that this shortcoming of today's LMs limits the applicability of modern NLP to the broad field of text processing of climate-related texts. As a remedy, we propose CLIMATEBERT, a transformer-based language model that is further pretrained on over 2 million paragraphs of climate-related texts, crawled from various sources such as common news, research articles, and climate reporting of companies. We find that CLIMATEBERT leads to a 48% improvement on a masked language model objective which, in turn, leads to lowering error rates by 3.57% to 35.71% for various climate-related downstream tasks like text classification, sentiment analysis, and fact-checking.
Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for Code
In this work we systematically review the recent advancements in software engineering with language models, covering 70+ models, 40+ evaluation tasks, 180+ datasets, and 900 related works. Unlike previous works, we integrate software engineering (SE) with natural language processing (NLP) by discussing the perspectives of both sides: SE applies language models for development automation, while NLP adopts SE tasks for language model evaluation. We break down code processing models into general language models represented by the GPT family and specialized models that are specifically pretrained on code, often with tailored objectives. We discuss the relations and differences between these models, and highlight the historical transition of code modeling from statistical models and RNNs to pretrained Transformers and LLMs, which is exactly the same course that had been taken by NLP. We also go beyond programming and review LLMs' application in other software engineering activities including requirement engineering, testing, deployment, and operations in an endeavor to provide a global view of NLP in SE, and identify key challenges and potential future directions in this domain. We keep the survey open and updated on GitHub at https://github.com/codefuse-ai/Awesome-Code-LLM.
bgGLUE: A Bulgarian General Language Understanding Evaluation Benchmark
We present bgGLUE(Bulgarian General Language Understanding Evaluation), a benchmark for evaluating language models on Natural Language Understanding (NLU) tasks in Bulgarian. Our benchmark includes NLU tasks targeting a variety of NLP problems (e.g., natural language inference, fact-checking, named entity recognition, sentiment analysis, question answering, etc.) and machine learning tasks (sequence labeling, document-level classification, and regression). We run the first systematic evaluation of pre-trained language models for Bulgarian, comparing and contrasting results across the nine tasks in the benchmark. The evaluation results show strong performance on sequence labeling tasks, but there is a lot of room for improvement for tasks that require more complex reasoning. We make bgGLUE publicly available together with the fine-tuning and the evaluation code, as well as a public leaderboard at https://bgglue.github.io/, and we hope that it will enable further advancements in developing NLU models for Bulgarian.
DISCO: Distilling Counterfactuals with Large Language Models
Models trained with counterfactually augmented data learn representations of the causal structure of tasks, enabling robust generalization. However, high-quality counterfactual data is scarce for most tasks and not easily generated at scale. When crowdsourced, such data is typically limited in scale and diversity; when generated using supervised methods, it is computationally expensive to extend to new counterfactual dimensions. In this work, we introduce DISCO (DIStilled COunterfactual Data), a new method for automatically generating high quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters these generations to distill high-quality counterfactual data. While task-agnostic, we apply our pipeline to the task of natural language inference (NLI) and find that on challenging evaluations such as the NLI stress test, comparatively smaller student models trained with DISCO generated counterfactuals are more robust (6% absolute) and generalize better across distributions (2%) compared to models trained without data augmentation. Furthermore, DISCO augmented models are 10% more consistent between counterfactual pairs on three evaluation sets, demonstrating that DISCO augmentation enables models to more reliably learn causal representations. Our repository is available at: https://github.com/eric11eca/disco
Radiology-GPT: A Large Language Model for Radiology
We introduce Radiology-GPT, a large language model for radiology. Using an instruction tuning approach on an extensive dataset of radiology domain knowledge, Radiology-GPT demonstrates superior performance compared to general language models such as StableLM, Dolly and LLaMA. It exhibits significant versatility in radiological diagnosis, research, and communication. This work serves as a catalyst for future developments in clinical NLP. The successful implementation of Radiology-GPT is indicative of the potential of localizing generative large language models, specifically tailored for distinctive medical specialties, while ensuring adherence to privacy standards such as HIPAA. The prospect of developing individualized, large-scale language models that cater to specific needs of various hospitals presents a promising direction. The fusion of conversational competence and domain-specific knowledge in these models is set to foster future development in healthcare AI. A demo of Radiology-GPT is available at https://huggingface.co/spaces/allen-eric/radiology-gpt.
Bag of Tricks for Effective Language Model Pretraining and Downstream Adaptation: A Case Study on GLUE
This technical report briefly describes our JDExplore d-team's submission Vega v1 on the General Language Understanding Evaluation (GLUE) leaderboard, where GLUE is a collection of nine natural language understanding tasks, including question answering, linguistic acceptability, sentiment analysis, text similarity, paraphrase detection, and natural language inference. [Method] We investigate several effective strategies and choose their best combination setting as the training recipes. As for model structure, we employ the vanilla Transformer with disentangled attention as the basic block encoder. For self-supervised training, we employ the representative denoising objective (i.e., replaced token detection) in phase 1 and combine the contrastive objective (i.e., sentence embedding contrastive learning) with it in phase 2. During fine-tuning, several advanced techniques such as transductive fine-tuning, self-calibrated fine-tuning, and adversarial fine-tuning are adopted. [Results] According to our submission record (Jan. 2022), with our optimized pretraining and fine-tuning strategies, our 1.3 billion model sets new state-of-the-art on 4/9 tasks, achieving the best average score of 91.3. Encouragingly, our Vega v1 is the first to exceed powerful human performance on the two challenging tasks, i.e., SST-2 and WNLI. We believe our empirically successful recipe with a bag of tricks could shed new light on developing efficient discriminative large language models.
Math Neurosurgery: Isolating Language Models' Math Reasoning Abilities Using Only Forward Passes
Math reasoning is a highly active area of Large Language Model (LLM) research because it is a hallmark of artificial intelligence. However, few works have explored how math reasoning is encoded within LLM parameters and if it is a skill that can be isolated within a model. Doing so could allow targeted intervention to improve math performance without altering non-math behavior and foster understanding of how models encode math reasoning. We introduce Math Neurosurgery (MathNeuro), a method for isolating math-specific parameters in LLMs using only forward passes. MathNeuro builds on existing work by using weights and activations to calculate parameter importance, but isolates math-specific parameters by removing those important for general language tasks. Pruning parameters MathNeuro identifies deletes a LLM's math reasoning ability without destroying its general language ability. Scaling these parameters by a small constant improves a pretrained or instruction-tuned LLM's performance by 4-17% on GSM8K while leaving non-math behavior unaltered. MathNeuro is also data efficient: most of its effectiveness holds when identifying math-specific parameters using a single sample. MathNeuro highlights the potential for future work to intervene on math-specific parameters.
Language Models Meet World Models: Embodied Experiences Enhance Language Models
While large language models (LMs) have shown remarkable capabilities across numerous tasks, they often struggle with simple reasoning and planning in physical environments, such as understanding object permanence or planning household activities. The limitation arises from the fact that LMs are trained only on written text and miss essential embodied knowledge and skills. In this paper, we propose a new paradigm of enhancing LMs by finetuning them with world models, to gain diverse embodied knowledge while retaining their general language capabilities. Our approach deploys an embodied agent in a world model, particularly a simulator of the physical world (VirtualHome), and acquires a diverse set of embodied experiences through both goal-oriented planning and random exploration. These experiences are then used to finetune LMs to teach diverse abilities of reasoning and acting in the physical world, e.g., planning and completing goals, object permanence and tracking, etc. Moreover, it is desirable to preserve the generality of LMs during finetuning, which facilitates generalizing the embodied knowledge across tasks rather than being tied to specific simulations. We thus further introduce the classical elastic weight consolidation (EWC) for selective weight updates, combined with low-rank adapters (LoRA) for training efficiency. Extensive experiments show our approach substantially improves base LMs on 18 downstream tasks by 64.28% on average. In particular, the small LMs (1.3B and 6B) enhanced by our approach match or even outperform much larger LMs (e.g., ChatGPT).
CDLM: Cross-Document Language Modeling
We introduce a new pretraining approach geared for multi-document language modeling, incorporating two key ideas into the masked language modeling self-supervised objective. First, instead of considering documents in isolation, we pretrain over sets of multiple related documents, encouraging the model to learn cross-document relationships. Second, we improve over recent long-range transformers by introducing dynamic global attention that has access to the entire input to predict masked tokens. We release CDLM (Cross-Document Language Model), a new general language model for multi-document setting that can be easily applied to downstream tasks. Our extensive analysis shows that both ideas are essential for the success of CDLM, and work in synergy to set new state-of-the-art results for several multi-text tasks. Code and models are available at https://github.com/aviclu/CDLM.
Incorporating Word Sense Disambiguation in Neural Language Models
We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural language models (LMs). The training improves our models' performance for Word Sense Disambiguation (WSD) but also benefits general language understanding tasks while adding almost no parameters. We evaluate our techniques with seven different neural LMs and find that XLNet is more suitable for WSD than BERT. Our best-performing methods exceeds state-of-the-art WSD techniques on the SemCor 3.0 dataset by 0.5% F1 and increase BERT's performance on the GLUE benchmark by 1.1% on average.
CPM-2: Large-scale Cost-effective Pre-trained Language Models
In recent years, the size of pre-trained language models (PLMs) has grown by leaps and bounds. However, efficiency issues of these large-scale PLMs limit their utilization in real-world scenarios. We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference. (1) We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch. (2) We explore the best practice of prompt tuning with large-scale PLMs. Compared with conventional fine-tuning, prompt tuning significantly reduces the number of task-specific parameters. (3) We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources. Based on our cost-effective pipeline, we pre-train two models: an encoder-decoder bilingual model with 11 billion parameters (CPM-2) and its corresponding MoE version with 198 billion parameters. In our experiments, we compare CPM-2 with mT5 on downstream tasks. Experimental results show that CPM-2 has excellent general language intelligence. Moreover, we validate the efficiency of InfMoE when conducting inference of large-scale models having tens of billions of parameters on a single GPU. All source code and model parameters are available at https://github.com/TsinghuaAI/CPM.
Bactrainus: Optimizing Large Language Models for Multi-hop Complex Question Answering Tasks
In recent years, the use of large language models (LLMs) has significantly increased, and these models have demonstrated remarkable performance in a variety of general language tasks. However, the evaluation of their performance in domain-specific tasks, particularly those requiring deep natural language understanding, has received less attention. In this research, we evaluate the ability of large language models in performing domain-specific tasks, focusing on the multi-hop question answering (MHQA) problem using the HotpotQA dataset. This task, due to its requirement for reasoning and combining information from multiple textual sources, serves as a challenging benchmark for assessing the language comprehension capabilities of these models. To tackle this problem, we have designed a two-stage selector-reader architecture, where each stage utilizes an independent LLM. In addition, methods such as Chain of Thought (CoT) and question decomposition have been employed to investigate their impact on improving the model's performance. The results of the study show that the integration of large language models with these techniques can lead to up to a 4% improvement in F1 score for finding answers, providing evidence of the models' ability to handle domain-specific tasks and their understanding of complex language.
TransformLLM: Adapting Large Language Models via LLM-Transformed Reading Comprehension Text
Large Language Models (LLMs) have shown promise in highly-specialized domains, however challenges are still present in aspects of accuracy and costs. These limitations restrict the usage of existing models in domain-specific tasks. While fine-tuning pre-trained models have shown promising results, this process can be computationally expensive and require massive datasets of the specialized application in hand. In this work, we bridge that gap. We have developed Phi-2-Legal and Mistral-Legal-7B, which are language models specifically designed for legal applications. These models are based on Phi-2 and Mistral-7B-v0.1, and have gone through continued pre-training with over 500 million tokens of legal texts. Our innovative approach significantly improves capabilities in legal tasks by using Large Language Models (LLMs) to convert raw training data into reading comprehension text. Our legal LLMs have demonstrated superior performance in legal benchmarks, even outperforming models trained on much larger datasets with more resources. This work emphasizes the effectiveness of continued pre-training on domain-specific texts, while using affordable LLMs for data conversion, which gives these models domain expertise while retaining general language understanding capabilities. While this work uses the legal domain as a test case, our method can be scaled and applied to any pre-training dataset, resulting in significant improvements across different tasks. These findings underscore the potential of domain-adaptive pre-training and reading comprehension for the development of highly effective domain-specific language models.
Fine-Tuning Medical Language Models for Enhanced Long-Contextual Understanding and Domain Expertise
Large Language Models (LLMs) have been widely applied in various professional fields. By fine-tuning the models using domain specific question and answer datasets, the professional domain knowledge and Q\&A abilities of these models have significantly improved, for example, medical professional LLMs that use fine-tuning of doctor-patient Q\&A data exhibit extraordinary disease diagnostic abilities. However, we observed that despite improvements in specific domain knowledge, the performance of medical LLM in long-context understanding has significantly declined, especially compared to general language models with similar parameters. The purpose of this study is to investigate the phenomenon of reduced performance in understanding long-context in medical LLM. We designed a series of experiments to conduct open-book professional knowledge exams on all models to evaluate their ability to read long-context. By adjusting the proportion and quantity of general data and medical data in the process of fine-tuning, we can determine the best data composition to optimize the professional model and achieve a balance between long-context performance and specific domain knowledge.
Leveraging Knowledge and Reinforcement Learning for Enhanced Reliability of Language Models
The Natural Language Processing(NLP) community has been using crowd sourcing techniques to create benchmark datasets such as General Language Understanding and Evaluation(GLUE) for training modern Language Models such as BERT. GLUE tasks measure the reliability scores using inter annotator metrics i.e. Cohens Kappa. However, the reliability aspect of LMs has often been overlooked. To counter this problem, we explore a knowledge-guided LM ensembling approach that leverages reinforcement learning to integrate knowledge from ConceptNet and Wikipedia as knowledge graph embeddings. This approach mimics human annotators resorting to external knowledge to compensate for information deficits in the datasets. Across nine GLUE datasets, our research shows that ensembling strengthens reliability and accuracy scores, outperforming state of the art.
dKV-Cache: The Cache for Diffusion Language Models
Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.
Knowledge Unlearning for Mitigating Privacy Risks in Language Models
Pretrained Language Models (LMs) memorize a vast amount of knowledge during initial pretraining, including information that may violate the privacy of personal lives and identities. Previous work addressing privacy issues for language models has mostly focused on data preprocessing and differential privacy methods, both requiring re-training the underlying LM. We propose knowledge unlearning as an alternative method to reduce privacy risks for LMs post hoc. We show that simply performing gradient ascent on target token sequences is effective at forgetting them with little to no degradation of general language modeling performances for larger LMs; it sometimes even substantially improves the underlying LM with just a few iterations. We also find that sequential unlearning is better than trying to unlearn all the data at once and that unlearning is highly dependent on which kind of data (domain) is forgotten. By showing comparisons with a previous data preprocessing method and a decoding method known to mitigate privacy risks for LMs, we show that unlearning can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori while being much more efficient and robust. We release the code and dataset needed to replicate our results at https://github.com/joeljang/knowledge-unlearning.
GLoRE: Evaluating Logical Reasoning of Large Language Models
Recently, large language models (LLMs), including notable models such as GPT-4 and burgeoning community models, have showcased significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a meticulously assembled General Logical Reasoning Evaluation benchmark comprised of 12 datasets that span three different types of tasks. Our experimental results show that compared to the performance of human and supervised fine-tuning, the logical reasoning capabilities of open LLM models necessitate additional improvement; ChatGPT and GPT-4 show a strong capability of logical reasoning, with GPT-4 surpassing ChatGPT by a large margin. We propose a self-consistency probing method to enhance the accuracy of ChatGPT and a fine-tuned method to boost the performance of an open LLM. We release the datasets and evaluation programs to facilitate future research.
Identifying and Adapting Transformer-Components Responsible for Gender Bias in an English Language Model
Language models (LMs) exhibit and amplify many types of undesirable biases learned from the training data, including gender bias. However, we lack tools for effectively and efficiently changing this behavior without hurting general language modeling performance. In this paper, we study three methods for identifying causal relations between LM components and particular output: causal mediation analysis, automated circuit discovery and our novel, efficient method called DiffMask+ based on differential masking. We apply the methods to GPT-2 small and the problem of gender bias, and use the discovered sets of components to perform parameter-efficient fine-tuning for bias mitigation. Our results show significant overlap in the identified components (despite huge differences in the computational requirements of the methods) as well as success in mitigating gender bias, with less damage to general language modeling compared to full model fine-tuning. However, our work also underscores the difficulty of defining and measuring bias, and the sensitivity of causal discovery procedures to dataset choice. We hope our work can contribute to more attention for dataset development, and lead to more effective mitigation strategies for other types of bias.
Mastering Board Games by External and Internal Planning with Language Models
While large language models perform well on a range of complex tasks (e.g., text generation, question answering, summarization), robust multi-step planning and reasoning remains a considerable challenge for them. In this paper we show that search-based planning can significantly improve LLMs' playing strength across several board games (Chess, Fischer Random / Chess960, Connect Four, and Hex). We introduce, compare and contrast two major approaches: In external search, the model guides Monte Carlo Tree Search (MCTS) rollouts and evaluations without calls to an external engine, and in internal search, the model directly generates in-context a linearized tree of potential futures and a resulting final choice. Both build on a language model pre-trained on relevant domain knowledge, capturing the transition and value functions across these games. We find that our pre-training method minimizes hallucinations, as our model is highly accurate regarding state prediction and legal moves. Additionally, both internal and external search indeed improve win-rates against state-of-the-art bots, even reaching Grandmaster-level performance in chess while operating on a similar move count search budget per decision as human Grandmasters. The way we combine search with domain knowledge is not specific to board games, suggesting direct extensions into more general language model inference and training techniques.
PathologyBERT -- Pre-trained Vs. A New Transformer Language Model for Pathology Domain
Pathology text mining is a challenging task given the reporting variability and constant new findings in cancer sub-type definitions. However, successful text mining of a large pathology database can play a critical role to advance 'big data' cancer research like similarity-based treatment selection, case identification, prognostication, surveillance, clinical trial screening, risk stratification, and many others. While there is a growing interest in developing language models for more specific clinical domains, no pathology-specific language space exist to support the rapid data-mining development in pathology space. In literature, a few approaches fine-tuned general transformer models on specialized corpora while maintaining the original tokenizer, but in fields requiring specialized terminology, these models often fail to perform adequately. We propose PathologyBERT - a pre-trained masked language model which was trained on 347,173 histopathology specimen reports and publicly released in the Huggingface repository. Our comprehensive experiments demonstrate that pre-training of transformer model on pathology corpora yields performance improvements on Natural Language Understanding (NLU) and Breast Cancer Diagnose Classification when compared to nonspecific language models.
HMT: Hierarchical Memory Transformer for Long Context Language Processing
Transformer-based large language models (LLM) have been widely used in language processing applications. However, most of them restrict the context window that permits the model to attend to every token in the inputs. Previous works in recurrent models can memorize past tokens to enable unlimited context and maintain effectiveness. However, they have "flat" memory architectures, which have limitations in selecting and filtering information. Since humans are good at learning and self-adjustment, we speculate that imitating brain memory hierarchy is beneficial for model memorization. We propose the Hierarchical Memory Transformer (HMT), a novel framework that enables and improves models' long-context processing ability by imitating human memorization behavior. Leveraging memory-augmented segment-level recurrence, we organize the memory hierarchy by preserving tokens from early input token segments, passing memory embeddings along the sequence, and recalling relevant information from history. Evaluating general language modeling (Wikitext-103, PG-19) and question-answering tasks (PubMedQA), we show that HMT steadily improves the long-context processing ability of context-constrained and long-context models. With an additional 0.5% - 2% of parameters, HMT can easily plug in and augment future LLMs to handle long context effectively. Our code is open-sourced on Github: https://github.com/OswaldHe/HMT-pytorch.
Lifelong Language Pretraining with Distribution-Specialized Experts
Pretraining on a large-scale corpus has become a standard method to build general language models (LMs). Adapting a model to new data distributions targeting different downstream tasks poses significant challenges. Naive fine-tuning may incur catastrophic forgetting when the over-parameterized LMs overfit the new data but fail to preserve the pretrained features. Lifelong learning (LLL) aims to enable information systems to learn from a continuous data stream across time. However, most prior work modifies the training recipe assuming a static fixed network architecture. We find that additional model capacity and proper regularization are key elements to achieving strong LLL performance. Thus, we propose Lifelong-MoE, an extensible MoE (Mixture-of-Experts) architecture that dynamically adds model capacity via adding experts with regularized pretraining. Our results show that by only introducing a limited number of extra experts while keeping the computation cost constant, our model can steadily adapt to data distribution shifts while preserving the previous knowledge. Compared to existing lifelong learning approaches, Lifelong-MoE achieves better few-shot performance on 19 downstream NLP tasks.
GIRT-Model: Automated Generation of Issue Report Templates
Platforms such as GitHub and GitLab introduce Issue Report Templates (IRTs) to enable more effective issue management and better alignment with developer expectations. However, these templates are not widely adopted in most repositories, and there is currently no tool available to aid developers in generating them. In this work, we introduce GIRT-Model, an assistant language model that automatically generates IRTs based on the developer's instructions regarding the structure and necessary fields. We create GIRT-Instruct, a dataset comprising pairs of instructions and IRTs, with the IRTs sourced from GitHub repositories. We use GIRT-Instruct to instruction-tune a T5-base model to create the GIRT-Model. In our experiments, GIRT-Model outperforms general language models (T5 and Flan-T5 with different parameter sizes) in IRT generation by achieving significantly higher scores in ROUGE, BLEU, METEOR, and human evaluation. Additionally, we analyze the effectiveness of GIRT-Model in a user study in which participants wrote short IRTs with GIRT-Model. Our results show that the participants find GIRT-Model useful in the automated generation of templates. We hope that through the use of GIRT-Model, we can encourage more developers to adopt IRTs in their repositories. We publicly release our code, dataset, and model at https://github.com/ISE-Research/girt-model.
RINAS: Training with Dataset Shuffling Can Be General and Fast
Deep learning datasets are expanding at an unprecedented pace, creating new challenges for data processing in model training pipelines. A crucial aspect of these pipelines is dataset shuffling, which significantly improves unbiased learning and convergence accuracy by adhering to the principles of random sampling. However, loading shuffled data for large datasets incurs significant overhead in the deep learning pipeline and severely impacts the end-to-end training throughput. To mitigate this, current deep learning systems often resort to partial dataset shuffling, sacrificing global randomness to maintain acceptable training throughput on large datasets, still leaving global shuffling efficiency issues not fully explored. In this work, we present RINAS, a data loading framework that systematically addresses the performance bottleneck of loading global shuffled datasets. Our key contribution is to offer an intra-batch unordered data fetching approach, which unleashes unexplored parallelism of data loading. We implement RINAS under the PyTorch framework for common dataset libraries HuggingFace and TorchVision. Our experimental results show that RINAS improves the throughput of general language model training and vision model training by up to 59% and 89%, respectively.
Directed Beam Search: Plug-and-Play Lexically Constrained Language Generation
Large pre-trained language models are capable of generating realistic text. However, controlling these models so that the generated text satisfies lexical constraints, i.e., contains specific words, is a challenging problem. Given that state-of-the-art language models are too large to be trained from scratch in a manageable time, it is desirable to control these models without re-training them. Methods capable of doing this are called plug-and-play. Recent plug-and-play methods have been successful in constraining small bidirectional language models as well as forward models in tasks with a restricted search space, e.g., machine translation. However, controlling large transformer-based models to meet lexical constraints without re-training them remains a challenge. In this work, we propose Directed Beam Search (DBS), a plug-and-play method for lexically constrained language generation. Our method can be applied to any language model, is easy to implement and can be used for general language generation. In our experiments we use DBS to control GPT-2. We demonstrate its performance on keyword-to-phrase generation and we obtain comparable results as a state-of-the-art non-plug-and-play model for lexically constrained story generation.
M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts
Recently, 3D understanding has become popular to facilitate autonomous agents to perform further decisionmaking. However, existing 3D datasets and methods are often limited to specific tasks. On the other hand, recent progress in Large Language Models (LLMs) and Multimodal Language Models (MLMs) have demonstrated exceptional general language and imagery tasking performance. Therefore, it is interesting to unlock MLM's potential to be 3D generalist for wider tasks. However, current MLMs' research has been less focused on 3D tasks due to a lack of large-scale 3D instruction-following datasets. In this work, we introduce a comprehensive 3D instructionfollowing dataset called M3DBench, which possesses the following characteristics: 1) It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts. 2) It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments. 3) It is a large-scale 3D instruction-following dataset with over 320k instruction-response pairs. Furthermore, we establish a new benchmark for assessing the performance of large models in understanding multi-modal 3D prompts. Extensive experiments demonstrate the effectiveness of our dataset and baseline, supporting general 3D-centric tasks, which can inspire future research.
The Catalan Language CLUB
The Catalan Language Understanding Benchmark (CLUB) encompasses various datasets representative of different NLU tasks that enable accurate evaluations of language models, following the General Language Understanding Evaluation (GLUE) example. It is part of AINA and PlanTL, two public funding initiatives to empower the Catalan language in the Artificial Intelligence era.
The Benefits of Bad Advice: Autocontrastive Decoding across Model Layers
Applying language models to natural language processing tasks typically relies on the representations in the final model layer, as intermediate hidden layer representations are presumed to be less informative. In this work, we argue that due to the gradual improvement across model layers, additional information can be gleaned from the contrast between higher and lower layers during inference. Specifically, in choosing between the probable next token predictions of a generative model, the predictions of lower layers can be used to highlight which candidates are best avoided. We propose a novel approach that utilizes the contrast between layers to improve text generation outputs, and show that it mitigates degenerative behaviors of the model in open-ended generation, significantly improving the quality of generated texts. Furthermore, our results indicate that contrasting between model layers at inference time can yield substantial benefits to certain aspects of general language model capabilities, more effectively extracting knowledge during inference from a given set of model parameters.
How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise and Element-Wise Regularization
Large Language Models (LLMs) exhibit strong general language capabilities. However, fine-tuning these models on domain-specific tasks often leads to catastrophic forgetting, where the model overwrites or loses essential knowledge acquired during pretraining. This phenomenon significantly limits the broader applicability of LLMs. To address this challenge, we propose a novel approach to compute the element-wise importance of model parameters crucial for preserving general knowledge during fine-tuning. Our method utilizes a dual-objective optimization strategy: (1) regularization loss based on element-wise parameter importance, which constrains the updates to parameters crucial for general knowledge; (2) cross-entropy loss to adapt to domain-specific tasks. Additionally, we introduce layer-wise coefficients to account for the varying contributions of different layers, dynamically balancing the dual-objective optimization. Extensive experiments on scientific, medical, and physical tasks using GPT-J and LLaMA-3 demonstrate that our approach mitigates catastrophic forgetting while enhancing model adaptability. Compared to previous methods, our solution is approximately 20 times faster and requires only 10-15% of the storage, highlighting the practical efficiency. The code will be released.
BiLLM: Pushing the Limit of Post-Training Quantization for LLMs
Pretrained large language models (LLMs) exhibit exceptional general language processing capabilities but come with significant demands on memory and computational resources. As a powerful compression technology, binarization can extremely reduce model weights to a mere 1 bit, lowering the expensive computation and memory requirements. However, existing quantization techniques fall short of maintaining LLM performance under ultra-low bit-widths. In response to this challenge, we present BiLLM, a groundbreaking 1-bit post-training quantization scheme tailored for pretrained LLMs. Based on the weight distribution of LLMs, BiLLM first identifies and structurally selects salient weights, and minimizes the compression loss through an effective binary residual approximation strategy. Moreover, considering the bell-shaped distribution of the non-salient weights, we propose an optimal splitting search to group and binarize them accurately. BiLLM achieving for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families and evaluation metrics, outperforms SOTA quantization methods of LLM by significant margins. Moreover, BiLLM enables the binarization process of the LLM with 7 billion weights within 0.5 hours on a single GPU, demonstrating satisfactory time efficiency.
BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining
Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e., BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large scale biomedical literature. We evaluate BioGPT on six biomedical NLP tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our larger model BioGPT-Large achieves 81.0% on PubMedQA. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms. Code is available at https://github.com/microsoft/BioGPT.
What the HellaSwag? On the Validity of Common-Sense Reasoning Benchmarks
Common-sense reasoning is a key language model capability because it encapsulates not just specific factual knowledge but rather general language and world understanding. Measuring common-sense reasoning, therefore, is crucial for language models of different sizes and applications. One of the most widely used benchmarks for evaluating such capabilities is HellaSwag; however, in this paper, we show that it has severe construct validity issues. These issues range from basic ungrammaticality and numerous typos to misleading prompts or equally correct options. Furthermore, we show that if models are evaluated only on answer texts, or with "Lorem ipsum dolor..." instead of the question, more than 65% of model predictions remain the same, and this cannot be attributed merely to contamination. Since benchmark scores are an essential part of model selection in both research and commercial applications, these validity issues can have severe consequences. In particular, knowing that taking benchmark scores at face value is ubiquitous, inadequate evaluation leads to ill-informed decisions about models. In this paper, we thoroughly investigate critical validity issues posed by HellaSwag and illustrate them with various evaluations using generative language models of different sizes. We argue that this benchmark does not accurately measure common-sense reasoning and, therefore, should not be used for evaluation in its current state. Based on the results of our study, we propose requirements that should be met by future common-sense reasoning benchmarks. In addition, we release GoldenSwag, a corrected subset of HellaSwag, which, to our belief, facilitates acceptable common-sense reasoning evaluation.
ProcessBench: Identifying Process Errors in Mathematical Reasoning
As language models regularly make mistakes when solving math problems, automated identification of errors in the reasoning process becomes increasingly significant for their scalable oversight. In this paper, we introduce ProcessBench for measuring the ability to identify erroneous steps in mathematical reasoning. It consists of 3,400 test cases, primarily focused on competition- and Olympiad-level math problems. Each test case contains a step-by-step solution with error location annotated by human experts. Models are required to identify the earliest step that contains an error, or conclude that all steps are correct. We conduct extensive evaluation on ProcessBench, involving two types of models: process reward models (PRMs) and critic models, where for the latter we prompt general language models to critique each solution step by step. We draw two main observations: (1) Existing PRMs typically fail to generalize to more challenging math problems beyond GSM8K and MATH. They underperform both critic models (i.e., prompted general language models) and our own trained PRM that is straightforwardly fine-tuned on the PRM800K dataset. (2) The best open-source model, QwQ-32B-Preview, has demonstrated the critique capability competitive with the proprietary model GPT-4o, despite that it still lags behind the reasoning-specialized o1-mini. We hope ProcessBench can foster future research in reasoning process assessment, paving the way toward scalable oversight of language models.
Mechanistic Unlearning: Robust Knowledge Unlearning and Editing via Mechanistic Localization
Methods for knowledge editing and unlearning in large language models seek to edit or remove undesirable knowledge or capabilities without compromising general language modeling performance. This work investigates how mechanistic interpretability -- which, in part, aims to identify model components (circuits) associated to specific interpretable mechanisms that make up a model capability -- can improve the precision and effectiveness of editing and unlearning. We find a stark difference in unlearning and edit robustness when training components localized by different methods. We highlight an important distinction between methods that localize components based primarily on preserving outputs, and those finding high level mechanisms with predictable intermediate states. In particular, localizing edits/unlearning to components associated with the lookup-table mechanism for factual recall 1) leads to more robust edits/unlearning across different input/output formats, and 2) resists attempts to relearn the unwanted information, while also reducing unintended side effects compared to baselines, on both a sports facts dataset and the CounterFact dataset across multiple models. We also find that certain localized edits disrupt the latent knowledge in the model more than any other baselines, making unlearning more robust to various attacks.
Evaluation of Word Embeddings for the Social Sciences
Word embeddings are an essential instrument in many NLP tasks. Most available resources are trained on general language from Web corpora or Wikipedia dumps. However, word embeddings for domain-specific language are rare, in particular for the social science domain. Therefore, in this work, we describe the creation and evaluation of word embedding models based on 37,604 open-access social science research papers. In the evaluation, we compare domain-specific and general language models for (i) language coverage, (ii) diversity, and (iii) semantic relationships. We found that the created domain-specific model, even with a relatively small vocabulary size, covers a large part of social science concepts, their neighborhoods are diverse in comparison to more general models. Across all relation types, we found a more extensive coverage of semantic relationships.
HuatuoGPT-II, One-stage Training for Medical Adaption of LLMs
Adapting a language model into a specific domain, a.k.a `domain adaption', is a common practice when specialized knowledge, e.g. medicine, is not encapsulated in a general language model like Llama2. The challenge lies in the heterogeneity of data across the two training stages, as it varies in languages, genres, or formats. To tackle this and simplify the learning protocol, we propose to transform heterogeneous data, from the both pre-training and supervised stages, into a unified, simple input-output pair format. We validate the new protocol in the domains where proprietary LLMs like ChatGPT perform relatively poorly, such as Traditional Chinese Medicine. The developed model, HuatuoGPT-II, has shown state-of-the-art performance in Chinese medicine domain on a number of benchmarks, e.g. medical licensing exams. It even outperforms proprietary models like ChatGPT and GPT-4 in some aspects, especially in Traditional Chinese Medicine. Expert manual evaluations further validate HuatuoGPT-II's advantages over existing LLMs. Notably, HuatuoGPT-II was benchmarked in a fresh Chinese National Medical Licensing Examination where it achieved the best performance, showcasing not only its effectiveness but also its generalization capabilities.
CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers
The development of the transformer-based text-to-image models are impeded by its slow generation and complexity for high-resolution images. In this work, we put forward a solution based on hierarchical transformers and local parallel auto-regressive generation. We pretrain a 6B-parameter transformer with a simple and flexible self-supervised task, Cross-modal general language model (CogLM), and finetune it for fast super-resolution. The new text-to-image system, CogView2, shows very competitive generation compared to concurrent state-of-the-art DALL-E-2, and naturally supports interactive text-guided editing on images.
On the Expressivity Role of LayerNorm in Transformers' Attention
Layer Normalization (LayerNorm) is an inherent component in all Transformer-based models. In this paper, we show that LayerNorm is crucial to the expressivity of the multi-head attention layer that follows it. This is in contrast to the common belief that LayerNorm's only role is to normalize the activations during the forward pass, and their gradients during the backward pass. We consider a geometric interpretation of LayerNorm and show that it consists of two components: (a) projection of the input vectors to a d-1 space that is orthogonal to the left[1,1,...,1right] vector, and (b) scaling of all vectors to the same norm of d. We show that each of these components is important for the attention layer that follows it in Transformers: (a) projection allows the attention mechanism to create an attention query that attends to all keys equally, offloading the need to learn this operation by the attention; and (b) scaling allows each key to potentially receive the highest attention, and prevents keys from being "un-select-able". We show empirically that Transformers do indeed benefit from these properties of LayeNorm in general language modeling and even in computing simple functions such as "majority". Our code is available at https://github.com/tech-srl/layer_norm_expressivity_role .
Vector-ICL: In-context Learning with Continuous Vector Representations
Large language models (LLMs) have shown remarkable in-context learning (ICL) capabilities on textual data. We explore whether these capabilities can be extended to continuous vectors from diverse domains, obtained from black-box pretrained encoders. By aligning input data with an LLM's embedding space through lightweight projectors, we observe that LLMs can effectively process and learn from these projected vectors, which we term Vector-ICL. In particular, we find that pretraining projectors with general language modeling objectives enables Vector-ICL, while task-specific finetuning further enhances performance. In our experiments across various tasks and modalities, including text reconstruction, numerical function regression, text classification, summarization, molecule captioning, time-series classification, graph classification, and fMRI decoding, Vector-ICL often surpasses both few-shot ICL and domain-specific model or tuning. We further conduct analyses and case studies, indicating the potential of LLMs to process vector representations beyond traditional token-based paradigms.
WebGLM: Towards An Efficient Web-Enhanced Question Answering System with Human Preferences
We present WebGLM, a web-enhanced question-answering system based on the General Language Model (GLM). Its goal is to augment a pre-trained large language model (LLM) with web search and retrieval capabilities while being efficient for real-world deployments. To achieve this, we develop WebGLM with strategies for the LLM-augmented retriever, bootstrapped generator, and human preference-aware scorer. Specifically, we identify and address the limitations of WebGPT (OpenAI), through which WebGLM is enabled with accuracy, efficiency, and cost-effectiveness advantages. In addition, we propose systematic criteria for evaluating web-enhanced QA systems. We conduct multi-dimensional human evaluation and quantitative ablation studies, which suggest the outperformance of the proposed WebGLM designs over existing systems. WebGLM with the 10-billion-parameter GLM (10B) is shown to perform better than the similar-sized WebGPT (13B) and even comparably to WebGPT (175B) in human evaluation. The code, demo, and data are at https://github.com/THUDM/WebGLM.
OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text
There is growing evidence that pretraining on high quality, carefully thought-out tokens such as code or mathematics plays an important role in improving the reasoning abilities of large language models. For example, Minerva, a PaLM model finetuned on billions of tokens of mathematical documents from arXiv and the web, reported dramatically improved performance on problems that require quantitative reasoning. However, because all known open source web datasets employ preprocessing that does not faithfully preserve mathematical notation, the benefits of large scale training on quantitive web documents are unavailable to the research community. We introduce OpenWebMath, an open dataset inspired by these works containing 14.7B tokens of mathematical webpages from Common Crawl. We describe in detail our method for extracting text and LaTeX content and removing boilerplate from HTML documents, as well as our methods for quality filtering and deduplication. Additionally, we run small-scale experiments by training 1.4B parameter language models on OpenWebMath, showing that models trained on 14.7B tokens of our dataset surpass the performance of models trained on over 20x the amount of general language data. We hope that our dataset, openly released on the Hugging Face Hub, will help spur advances in the reasoning abilities of large language models.
AutoTIR: Autonomous Tools Integrated Reasoning via Reinforcement Learning
Large Language Models (LLMs), when enhanced through reasoning-oriented post-training, evolve into powerful Large Reasoning Models (LRMs). Tool-Integrated Reasoning (TIR) further extends their capabilities by incorporating external tools, but existing methods often rely on rigid, predefined tool-use patterns that risk degrading core language competence. Inspired by the human ability to adaptively select tools, we introduce AutoTIR, a reinforcement learning framework that enables LLMs to autonomously decide whether and which tool to invoke during the reasoning process, rather than following static tool-use strategies. AutoTIR leverages a hybrid reward mechanism that jointly optimizes for task-specific answer correctness, structured output adherence, and penalization of incorrect tool usage, thereby encouraging both precise reasoning and efficient tool integration. Extensive evaluations across diverse knowledge-intensive, mathematical, and general language modeling tasks demonstrate that AutoTIR achieves superior overall performance, significantly outperforming baselines and exhibits superior generalization in tool-use behavior. These results highlight the promise of reinforcement learning in building truly generalizable and scalable TIR capabilities in LLMs. The code and data are available at https://github.com/weiyifan1023/AutoTIR.
Does your data spark joy? Performance gains from domain upsampling at the end of training
Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.
InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning
General-purpose language models that can solve various language-domain tasks have emerged driven by the pre-training and instruction-tuning pipeline. However, building general-purpose vision-language models is challenging due to the increased task discrepancy introduced by the additional visual input. Although vision-language pre-training has been widely studied, vision-language instruction tuning remains relatively less explored. In this paper, we conduct a systematic and comprehensive study on vision-language instruction tuning based on the pre-trained BLIP-2 models. We gather a wide variety of 26 publicly available datasets, transform them into instruction tuning format and categorize them into two clusters for held-in instruction tuning and held-out zero-shot evaluation. Additionally, we introduce instruction-aware visual feature extraction, a crucial method that enables the model to extract informative features tailored to the given instruction. The resulting InstructBLIP models achieve state-of-the-art zero-shot performance across all 13 held-out datasets, substantially outperforming BLIP-2 and the larger Flamingo. Our models also lead to state-of-the-art performance when finetuned on individual downstream tasks (e.g., 90.7% accuracy on ScienceQA IMG). Furthermore, we qualitatively demonstrate the advantages of InstructBLIP over concurrent multimodal models. All InstructBLIP models have been open-sourced at https://github.com/salesforce/LAVIS/tree/main/projects/instructblip.
CooK: Empowering General-Purpose Language Models with Modular and Collaborative Knowledge
Large language models (LLMs) are increasingly adopted for knowledge-intensive tasks and contexts. Existing approaches improve the knowledge capabilities of general-purpose LLMs through retrieval or generated knowledge prompting, but they fall short of reflecting two key properties of knowledge-rich models: knowledge should be modular, ever-growing, sourced from diverse domains; knowledge acquisition and production should be a collaborative process, where diverse stakeholders contribute new information. To this end, we propose CooK, a novel framework to empower general-purpose large language models with modular and collaboratively sourced knowledge. We first introduce specialized language models, autoregressive models trained on corpora from a wide range of domains and sources. These specialized LMs serve as parametric knowledge repositories that are later prompted to generate background knowledge for general-purpose LLMs. We then propose three knowledge filters to dynamically select and retain information in generated documents by controlling for relevance, brevity, and factuality. Finally, we propose bottom-up and top-down knowledge integration approaches to augment general-purpose LLMs with the curated (relevant, factual) knowledge from community-driven specialized LMs that enable multi-domain knowledge synthesis and on-demand knowledge requests. Through extensive experiments, we demonstrate that CooK achieves state-of-the-art performance on six benchmark datasets. Our results highlight the potential of enriching general-purpose LLMs with evolving and modular knowledge -- relevant knowledge that can be continuously updated through the collective efforts of the research community.
ParaCLAP -- Towards a general language-audio model for computational paralinguistic tasks
Contrastive language-audio pretraining (CLAP) has recently emerged as a method for making audio analysis more generalisable. Specifically, CLAP-style models are able to `answer' a diverse set of language queries, extending the capabilities of audio models beyond a closed set of labels. However, CLAP relies on a large set of (audio, query) pairs for pretraining. While such sets are available for general audio tasks, like captioning or sound event detection, there are no datasets with matched audio and text queries for computational paralinguistic (CP) tasks. As a result, the community relies on generic CLAP models trained for general audio with limited success. In the present study, we explore training considerations for ParaCLAP, a CLAP-style model suited to CP, including a novel process for creating audio-language queries. We demonstrate its effectiveness on a set of computational paralinguistic tasks, where it is shown to surpass the performance of open-source state-of-the-art models.
Annotated Dataset Creation through General Purpose Language Models for non-English Medical NLP
Obtaining text datasets with semantic annotations is an effortful process, yet crucial for supervised training in natural language processsing (NLP). In general, developing and applying new NLP pipelines in domain-specific contexts for tasks often requires custom designed datasets to address NLP tasks in supervised machine learning fashion. When operating in non-English languages for medical data processing, this exposes several minor and major, interconnected problems such as lack of task-matching datasets as well as task-specific pre-trained models. In our work we suggest to leverage pretrained language models for training data acquisition in order to retrieve sufficiently large datasets for training smaller and more efficient models for use-case specific tasks. To demonstrate the effectiveness of your approach, we create a custom dataset which we use to train a medical NER model for German texts, GPTNERMED, yet our method remains language-independent in principle. Our obtained dataset as well as our pre-trained models are publicly available at: https://github.com/frankkramer-lab/GPTNERMED
GUICourse: From General Vision Language Models to Versatile GUI Agents
Utilizing Graphic User Interface (GUI) for human-computer interaction is essential for accessing a wide range of digital tools. Recent advancements in Vision Language Models (VLMs) highlight the compelling potential to develop versatile agents to help humans finish GUI navigation tasks. However, current VLMs are challenged in terms of fundamental abilities (OCR and grounding) and GUI knowledge (the functions and control methods of GUI elements), preventing them from becoming practical GUI agents. To solve these challenges, we contribute GUICourse, a suite of datasets to train visual-based GUI agents from general VLMs. First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs. Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions. Experiments demonstrate that our GUI agents have better performance on common GUI tasks than their baseline VLMs. Even the small-size GUI agent (with 3.1B parameters) can still work well on single-step and multi-step GUI tasks. Finally, we analyze the different varieties in the training stage of this agent by ablation study. Our source codes and datasets are released at https://github.com/yiye3/GUICourse.
Large Language Models: A Survey
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks, since the release of ChatGPT in November 2022. LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data, as predicted by scaling laws kaplan2020scaling,hoffmann2022training. The research area of LLMs, while very recent, is evolving rapidly in many different ways. In this paper, we review some of the most prominent LLMs, including three popular LLM families (GPT, LLaMA, PaLM), and discuss their characteristics, contributions and limitations. We also give an overview of techniques developed to build, and augment LLMs. We then survey popular datasets prepared for LLM training, fine-tuning, and evaluation, review widely used LLM evaluation metrics, and compare the performance of several popular LLMs on a set of representative benchmarks. Finally, we conclude the paper by discussing open challenges and future research directions.
IvyGPT: InteractiVe Chinese pathwaY language model in medical domain
General large language models (LLMs) such as ChatGPT have shown remarkable success. However, such LLMs have not been widely adopted for medical purposes, due to poor accuracy and inability to provide medical advice. We propose IvyGPT, an LLM based on LLaMA that is trained and fine-tuned with high-quality medical question-answer (QA) instances and Reinforcement Learning from Human Feedback (RLHF). After supervised fine-tuning, IvyGPT has good multi-turn conversation capabilities, but it cannot perform like a doctor in other aspects, such as comprehensive diagnosis. Through RLHF, IvyGPT can output richer diagnosis and treatment answers that are closer to human. In the training, we used QLoRA to train 33 billion parameters on a small number of NVIDIA A100 (80GB) GPUs. Experimental results show that IvyGPT has outperformed other medical GPT models.
A Survey of Large Language Models for Code: Evolution, Benchmarking, and Future Trends
General large language models (LLMs), represented by ChatGPT, have demonstrated significant potential in tasks such as code generation in software engineering. This has led to the development of specialized LLMs for software engineering, known as Code LLMs. A considerable portion of Code LLMs is derived from general LLMs through model fine-tuning. As a result, Code LLMs are often updated frequently and their performance can be influenced by the base LLMs. However, there is currently a lack of systematic investigation into Code LLMs and their performance. In this study, we conduct a comprehensive survey and analysis of the types of Code LLMs and their differences in performance compared to general LLMs. We aim to address three questions: (1) What LLMs are specifically designed for software engineering tasks, and what is the relationship between these Code LLMs? (2) Do Code LLMs really outperform general LLMs in software engineering tasks? (3) Which LLMs are more proficient in different software engineering tasks? To answer these questions, we first collect relevant literature and work from five major databases and open-source communities, resulting in 134 works for analysis. Next, we categorize the Code LLMs based on their publishers and examine their relationships with general LLMs and among themselves. Furthermore, we investigate the performance differences between general LLMs and Code LLMs in various software engineering tasks to demonstrate the impact of base models and Code LLMs. Finally, we comprehensively maintained the performance of LLMs across multiple mainstream benchmarks to identify the best-performing LLMs for each software engineering task. Our research not only assists developers of Code LLMs in choosing base models for the development of more advanced LLMs but also provides insights for practitioners to better understand key improvement directions for Code LLMs.
DetectGPT-SC: Improving Detection of Text Generated by Large Language Models through Self-Consistency with Masked Predictions
General large language models (LLMs) such as ChatGPT have shown remarkable success, but it has also raised concerns among people about the misuse of AI-generated texts. Therefore, an important question is how to detect whether the texts are generated by ChatGPT or by humans. Existing detectors are built on the assumption that there is a distribution gap between human-generated and AI-generated texts. These gaps are typically identified using statistical information or classifiers. In contrast to prior research methods, we find that large language models such as ChatGPT exhibit strong self-consistency in text generation and continuation. Self-consistency capitalizes on the intuition that AI-generated texts can still be reasoned with by large language models using the same logical reasoning when portions of the texts are masked, which differs from human-generated texts. Using this observation, we subsequently proposed a new method for AI-generated texts detection based on self-consistency with masked predictions to determine whether a text is generated by LLMs. This method, which we call DetectGPT-SC. We conducted a series of experiments to evaluate the performance of DetectGPT-SC. In these experiments, we employed various mask scheme, zero-shot, and simple prompt for completing masked texts and self-consistency predictions. The results indicate that DetectGPT-SC outperforms the current state-of-the-art across different tasks.
Do We Still Need Clinical Language Models?
Although recent advances in scaling large language models (LLMs) have resulted in improvements on many NLP tasks, it remains unclear whether these models trained primarily with general web text are the right tool in highly specialized, safety critical domains such as clinical text. Recent results have suggested that LLMs encode a surprising amount of medical knowledge. This raises an important question regarding the utility of smaller domain-specific language models. With the success of general-domain LLMs, is there still a need for specialized clinical models? To investigate this question, we conduct an extensive empirical analysis of 12 language models, ranging from 220M to 175B parameters, measuring their performance on 3 different clinical tasks that test their ability to parse and reason over electronic health records. As part of our experiments, we train T5-Base and T5-Large models from scratch on clinical notes from MIMIC III and IV to directly investigate the efficiency of clinical tokens. We show that relatively small specialized clinical models substantially outperform all in-context learning approaches, even when finetuned on limited annotated data. Further, we find that pretraining on clinical tokens allows for smaller, more parameter-efficient models that either match or outperform much larger language models trained on general text. We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
Towards Reasoning in Large Language Models via Multi-Agent Peer Review Collaboration
Large Language Models (LLMs) have shown remarkable capabilities in general natural language processing tasks but often fall short in complex reasoning tasks. Recent studies have explored human-like problem-solving strategies, such as self-correct, to push further the boundary of single-model reasoning ability. In this work, we let a single model "step outside the box" by engaging multiple models to correct each other. We introduce a multi-agent collaboration strategy that emulates the academic peer review process. Each agent independently constructs its own solution, provides reviews on the solutions of others, and assigns confidence levels to its reviews. Upon receiving peer reviews, agents revise their initial solutions. Extensive experiments on three different types of reasoning tasks show that our collaboration approach delivers superior accuracy across all ten datasets compared to existing methods. Further study underscores the effectiveness of integrating confidence in reviews, demonstrates the superiority of feedback exchange over mere solution sharing, and highlights the role of capability and diversity in fostering successful collaboration.
SecureBERT 2.0: Advanced Language Model for Cybersecurity Intelligence
Effective analysis of cybersecurity and threat intelligence data demands language models that can interpret specialized terminology, complex document structures, and the interdependence of natural language and source code. Encoder-only transformer architectures provide efficient and robust representations that support critical tasks such as semantic search, technical entity extraction, and semantic analysis, which are key to automated threat detection, incident triage, and vulnerability assessment. However, general-purpose language models often lack the domain-specific adaptation required for high precision. We present SecureBERT 2.0, an enhanced encoder-only language model purpose-built for cybersecurity applications. Leveraging the ModernBERT architecture, SecureBERT 2.0 introduces improved long-context modeling and hierarchical encoding, enabling effective processing of extended and heterogeneous documents, including threat reports and source code artifacts. Pretrained on a domain-specific corpus more than thirteen times larger than its predecessor, comprising over 13 billion text tokens and 53 million code tokens from diverse real-world sources, SecureBERT 2.0 achieves state-of-the-art performance on multiple cybersecurity benchmarks. Experimental results demonstrate substantial improvements in semantic search for threat intelligence, semantic analysis, cybersecurity-specific named entity recognition, and automated vulnerability detection in code within the cybersecurity domain.
Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model
Pretrained general-purpose language models can achieve state-of-the-art accuracies in various natural language processing domains by adapting to downstream tasks via zero-shot, few-shot and fine-tuning techniques. Because of their success, the size of these models has increased rapidly, requiring high-performance hardware, software, and algorithmic techniques to enable training such large models. As the result of a joint effort between Microsoft and NVIDIA, we present details on the training of the largest monolithic transformer based language model, Megatron-Turing NLG 530B (MT-NLG), with 530 billion parameters. In this paper, we first focus on the infrastructure as well as the 3D parallelism methodology used to train this model using DeepSpeed and Megatron. Next, we detail the training process, the design of our training corpus, and our data curation techniques, which we believe is a key ingredient to the success of the model. Finally, we discuss various evaluation results, as well as other interesting observations and new properties exhibited by MT-NLG. We demonstrate that MT-NLG achieves superior zero-, one-, and few-shot learning accuracies on several NLP benchmarks and establishes new state-of-the-art results. We believe that our contributions will help further the development of large-scale training infrastructures, large-scale language models, and natural language generations.
Large Language Models for Mathematicians
Large language models (LLMs) such as ChatGPT have received immense interest for their general-purpose language understanding and, in particular, their ability to generate high-quality text or computer code. For many professions, LLMs represent an invaluable tool that can speed up and improve the quality of work. In this note, we discuss to what extent they can aid professional mathematicians. We first provide a mathematical description of the transformer model used in all modern language models. Based on recent studies, we then outline best practices and potential issues and report on the mathematical abilities of language models. Finally, we shed light on the potential of LMMs to change how mathematicians work.
Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing
Pretraining large neural language models, such as BERT, has led to impressive gains on many natural language processing (NLP) tasks. However, most pretraining efforts focus on general domain corpora, such as newswire and Web. A prevailing assumption is that even domain-specific pretraining can benefit by starting from general-domain language models. In this paper, we challenge this assumption by showing that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains over continual pretraining of general-domain language models. To facilitate this investigation, we compile a comprehensive biomedical NLP benchmark from publicly-available datasets. Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks, leading to new state-of-the-art results across the board. Further, in conducting a thorough evaluation of modeling choices, both for pretraining and task-specific fine-tuning, we discover that some common practices are unnecessary with BERT models, such as using complex tagging schemes in named entity recognition (NER). To help accelerate research in biomedical NLP, we have released our state-of-the-art pretrained and task-specific models for the community, and created a leaderboard featuring our BLURB benchmark (short for Biomedical Language Understanding & Reasoning Benchmark) at https://aka.ms/BLURB.
From Instructions to Constraints: Language Model Alignment with Automatic Constraint Verification
User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.
A Survey on Video Temporal Grounding with Multimodal Large Language Model
The recent advancement in video temporal grounding (VTG) has significantly enhanced fine-grained video understanding, primarily driven by multimodal large language models (MLLMs). With superior multimodal comprehension and reasoning abilities, VTG approaches based on MLLMs (VTG-MLLMs) are gradually surpassing traditional fine-tuned methods. They not only achieve competitive performance but also excel in generalization across zero-shot, multi-task, and multi-domain settings. Despite extensive surveys on general video-language understanding, comprehensive reviews specifically addressing VTG-MLLMs remain scarce. To fill this gap, this survey systematically examines current research on VTG-MLLMs through a three-dimensional taxonomy: 1) the functional roles of MLLMs, highlighting their architectural significance; 2) training paradigms, analyzing strategies for temporal reasoning and task adaptation; and 3) video feature processing techniques, which determine spatiotemporal representation effectiveness. We further discuss benchmark datasets, evaluation protocols, and summarize empirical findings. Finally, we identify existing limitations and propose promising research directions. For additional resources and details, readers are encouraged to visit our repository at https://github.com/ki-lw/Awesome-MLLMs-for-Video-Temporal-Grounding.
RooseBERT: A New Deal For Political Language Modelling
The increasing amount of political debates and politics-related discussions calls for the definition of novel computational methods to automatically analyse such content with the final goal of lightening up political deliberation to citizens. However, the specificity of the political language and the argumentative form of these debates (employing hidden communication strategies and leveraging implicit arguments) make this task very challenging, even for current general-purpose pre-trained Language Models. To address this issue, we introduce a novel pre-trained Language Model for political discourse language called RooseBERT. Pre-training a language model on a specialised domain presents different technical and linguistic challenges, requiring extensive computational resources and large-scale data. RooseBERT has been trained on large political debate and speech corpora (8K debates, each composed of several sub-debates on different topics) in English. To evaluate its performances, we fine-tuned it on four downstream tasks related to political debate analysis, i.e., named entity recognition, sentiment analysis, argument component detection and classification, and argument relation prediction and classification. Our results demonstrate significant improvements over general-purpose Language Models on these four tasks, highlighting how domain-specific pre-training enhances performance in political debate analysis. We release the RooseBERT language model for the research community.
MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
Starting from the resurgence of deep learning, vision-language models (VLMs) benefiting from large language models (LLMs) have never been so popular. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images. The issue can traced back to the architectural design of VLMs or pre-training data. Specifically, the current VLMs primarily emphasize utilizing multi-modal data with a single image some, rather than multi-modal prompts with interleaved multiple images and text. Even though some newly proposed VLMs could handle user prompts with multiple images, pre-training data does not provide more sophisticated multi-modal prompts than interleaved image and text crawled from the web. We propose MMICL to address the issue by considering both the model and data perspectives. We introduce a well-designed architecture capable of seamlessly integrating visual and textual context in an interleaved manner and MIC dataset to reduce the gap between the training data and the complex user prompts in real-world applications, including: 1) multi-modal context with interleaved images and text, 2) textual references for each image, and 3) multi-image data with spatial, logical, or temporal relationships. Our experiments confirm that MMICL achieves new stat-of-the-art zero-shot and few-shot performance on a wide range of general vision-language tasks, especially for complex reasoning benchmarks including MME and MMBench. Our analysis demonstrates that MMICL effectively deals with the challenge of complex multi-modal prompt understanding. The experiments on ScienceQA-IMG also show that MMICL successfully alleviates the issue of language bias in VLMs, which we believe is the reason behind the advanced performance of MMICL.
A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers
Scientific Large Language Models (Sci-LLMs) are transforming how knowledge is represented, integrated, and applied in scientific research, yet their progress is shaped by the complex nature of scientific data. This survey presents a comprehensive, data-centric synthesis that reframes the development of Sci-LLMs as a co-evolution between models and their underlying data substrate. We formulate a unified taxonomy of scientific data and a hierarchical model of scientific knowledge, emphasizing the multimodal, cross-scale, and domain-specific challenges that differentiate scientific corpora from general natural language processing datasets. We systematically review recent Sci-LLMs, from general-purpose foundations to specialized models across diverse scientific disciplines, alongside an extensive analysis of over 270 pre-/post-training datasets, showing why Sci-LLMs pose distinct demands -- heterogeneous, multi-scale, uncertainty-laden corpora that require representations preserving domain invariance and enabling cross-modal reasoning. On evaluation, we examine over 190 benchmark datasets and trace a shift from static exams toward process- and discovery-oriented assessments with advanced evaluation protocols. These data-centric analyses highlight persistent issues in scientific data development and discuss emerging solutions involving semi-automated annotation pipelines and expert validation. Finally, we outline a paradigm shift toward closed-loop systems where autonomous agents based on Sci-LLMs actively experiment, validate, and contribute to a living, evolving knowledge base. Collectively, this work provides a roadmap for building trustworthy, continually evolving artificial intelligence (AI) systems that function as a true partner in accelerating scientific discovery.
Solving Quantitative Reasoning Problems with Language Models
Language models have achieved remarkable performance on a wide range of tasks that require natural language understanding. Nevertheless, state-of-the-art models have generally struggled with tasks that require quantitative reasoning, such as solving mathematics, science, and engineering problems at the college level. To help close this gap, we introduce Minerva, a large language model pretrained on general natural language data and further trained on technical content. The model achieves state-of-the-art performance on technical benchmarks without the use of external tools. We also evaluate our model on over two hundred undergraduate-level problems in physics, biology, chemistry, economics, and other sciences that require quantitative reasoning, and find that the model can correctly answer nearly a third of them.
RWKV-X: A Linear Complexity Hybrid Language Model
In this paper, we introduce RWKV-X, a novel hybrid architecture that combines the efficiency of RWKV for short-range modeling with a sparse attention mechanism designed to capture long-range context. Unlike previous hybrid approaches that rely on full attention layers and retain quadratic complexity, RWKV-X achieves linear-time complexity in training and constant-time complexity in inference decoding. We demonstrate that RWKV-X, when continually pretrained on 64K-token sequences, achieves near-perfect accuracy on the 64K passkey retrieval benchmark. It consistently outperforms prior RWKV-7 models on long-context benchmarks, while maintaining strong performance on short-context tasks. These results highlight RWKV-X as a scalable and efficient backbone for general-purpose language modeling, capable of decoding sequences up to 1 million tokens with stable speed and memory usage. To facilitate further research and analysis, we have made the checkpoints and the associated code publicly accessible at: https://github.com/howard-hou/RWKV-X.
PhysVLM: Enabling Visual Language Models to Understand Robotic Physical Reachability
Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.
Is ChatGPT a Financial Expert? Evaluating Language Models on Financial Natural Language Processing
The emergence of Large Language Models (LLMs), such as ChatGPT, has revolutionized general natural language preprocessing (NLP) tasks. However, their expertise in the financial domain lacks a comprehensive evaluation. To assess the ability of LLMs to solve financial NLP tasks, we present FinLMEval, a framework for Financial Language Model Evaluation, comprising nine datasets designed to evaluate the performance of language models. This study compares the performance of encoder-only language models and the decoder-only language models. Our findings reveal that while some decoder-only LLMs demonstrate notable performance across most financial tasks via zero-shot prompting, they generally lag behind the fine-tuned expert models, especially when dealing with proprietary datasets. We hope this study provides foundation evaluations for continuing efforts to build more advanced LLMs in the financial domain.
AF Adapter: Continual Pretraining for Building Chinese Biomedical Language Model
Continual pretraining is a popular way of building a domain-specific pretrained language model from a general-domain language model. In spite of its high efficiency, continual pretraining suffers from catastrophic forgetting, which may harm the model's performance in downstream tasks. To alleviate the issue, in this paper, we propose a continual pretraining method for the BERT-based model, named Attention-FFN Adapter. Its main idea is to introduce a small number of attention heads and hidden units inside each self-attention layer and feed-forward network. Furthermore, we train a domain-specific language model named AF Adapter based RoBERTa for the Chinese biomedical domain. In experiments, models are applied to downstream tasks for evaluation. The results demonstrate that with only about 17% of model parameters trained, AF Adapter achieves 0.6%, 2% gain in performance on average, compared to strong baselines. Further experimental results show that our method alleviates the catastrophic forgetting problem by 11% compared to the fine-tuning method.
Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
Natural Language Processing (NLP) is revolutionising the way both professionals and laypersons operate in the legal field. The considerable potential for NLP in the legal sector, especially in developing computational assistance tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 131 after manual filtering. It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document lengths, complex language, and limited open legal datasets. We provide an overview of NLP tasks specific to legal text, such as Document Summarisation, Named Entity Recognition, Question Answering, Argument Mining, Text Classification, and Judgement Prediction. Furthermore, we analyse both developed legal-oriented language models, and approaches for adapting general-purpose language models to the legal domain. Additionally, we identify sixteen open research challenges, including the detection and mitigation of bias in artificial intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
A Survey on Evaluation of Large Language Models
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.
Metacognitive Prompting Improves Understanding in Large Language Models
In Large Language Models (LLMs), there have been consistent advancements in task-specific performance, largely influenced by effective prompt design. While recent research on prompting has enhanced the reasoning capabilities of LLMs, a gap remains in further improving their understanding abilities. In this study, we introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes. Using MP, LLMs undergo a systematic series of structured, self-aware evaluations, drawing on both their vast inherent knowledge and new insights. Our experiments involve five prevalent LLMs: Llama2, Vicuna, PaLM, GPT-3.5, and GPT-4, all of which span various general natural language understanding (NLU) tasks from the GLUE and SuperGLUE benchmarks. Results indicate that, although GPT-4 consistently excels in most tasks, PaLM, when equipped with MP, approaches its performance level. Furthermore, across models and datasets, MP consistently outperforms existing prompting methods, including standard and chain-of-thought prompting. This study underscores the potential to amplify the understanding abilities of LLMs and highlights the benefits of mirroring human introspective reasoning in NLU tasks.
Neuron-Level Analysis of Cultural Understanding in Large Language Models
As large language models (LLMs) are increasingly deployed worldwide, ensuring their fair and comprehensive cultural understanding is important. However, LLMs exhibit cultural bias and limited awareness of underrepresented cultures, while the mechanisms underlying their cultural understanding remain underexplored. To fill this gap, we conduct a neuron-level analysis to identify neurons that drive cultural behavior, introducing a gradient-based scoring method with additional filtering for precise refinement. We identify both culture-general neurons contributing to cultural understanding regardless of cultures, and culture-specific neurons tied to an individual culture. These neurons account for less than 1% of all neurons and are concentrated in shallow to middle MLP layers. We validate their role by showing that suppressing them substantially degrades performance on cultural benchmarks (by up to 30%), while performance on general natural language understanding (NLU) benchmarks remains largely unaffected. Moreover, we show that culture-specific neurons support knowledge of not only the target culture, but also related cultures. Finally, we demonstrate that training on NLU benchmarks can diminish models' cultural understanding when we update modules containing many culture-general neurons. These findings provide insights into the internal mechanisms of LLMs and offer practical guidance for model training and engineering. Our code is available at https://github.com/ynklab/CULNIG
Complementary Subspace Low-Rank Adaptation of Vision-Language Models for Few-Shot Classification
Vision language model (VLM) has been designed for large scale image-text alignment as a pretrained foundation model. For downstream few shot classification tasks, parameter efficient fine-tuning (PEFT) VLM has gained much popularity in the computer vision community. PEFT methods like prompt tuning and linear adapter have been studied for fine-tuning VLM while low rank adaptation (LoRA) algorithm has rarely been considered for few shot fine-tuning VLM. The main obstacle to use LoRA for few shot fine-tuning is the catastrophic forgetting problem. Because the visual language alignment knowledge is important for the generality in few shot learning, whereas low rank adaptation interferes with the most informative direction of the pretrained weight matrix. We propose the complementary subspace low rank adaptation (Comp-LoRA) method to regularize the catastrophic forgetting problem in few shot VLM finetuning. In detail, we optimize the low rank matrix in the complementary subspace, thus preserving the general vision language alignment ability of VLM when learning the novel few shot information. We conduct comparison experiments of the proposed Comp-LoRA method and other PEFT methods on fine-tuning VLM for few shot classification. And we also present the suppression on the catastrophic forgetting problem of our proposed method against directly applying LoRA to VLM. The results show that the proposed method surpasses the baseline method by about +1.0\% Top-1 accuracy and preserves the VLM zero-shot performance over the baseline method by about +1.3\% Top-1 accuracy.
Extreme Multi-Label Skill Extraction Training using Large Language Models
Online job ads serve as a valuable source of information for skill requirements, playing a crucial role in labor market analysis and e-recruitment processes. Since such ads are typically formatted in free text, natural language processing (NLP) technologies are required to automatically process them. We specifically focus on the task of detecting skills (mentioned literally, or implicitly described) and linking them to a large skill ontology, making it a challenging case of extreme multi-label classification (XMLC). Given that there is no sizable labeled (training) dataset are available for this specific XMLC task, we propose techniques to leverage general Large Language Models (LLMs). We describe a cost-effective approach to generate an accurate, fully synthetic labeled dataset for skill extraction, and present a contrastive learning strategy that proves effective in the task. Our results across three skill extraction benchmarks show a consistent increase of between 15 to 25 percentage points in R-Precision@5 compared to previously published results that relied solely on distant supervision through literal matches.
VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
RS5M and GeoRSCLIP: A Large Scale Vision-Language Dataset and A Large Vision-Language Model for Remote Sensing
Pre-trained Vision-Language Models (VLMs) utilizing extensive image-text paired data have demonstrated unprecedented image-text association capabilities, achieving remarkable results across various downstream tasks. A critical challenge is how to make use of existing large-scale pre-trained VLMs, which are trained on common objects, to perform the domain-specific transfer for accomplishing domain-related downstream tasks. A critical challenge is how to make use of existing large-scale pre-trained VLMs, which are trained on common objects, to perform the domain-specific transfer for accomplishing domain-related downstream tasks. In this paper, we propose a new framework that includes the Domain pre-trained Vision-Language Model (DVLM), bridging the gap between the General Vision-Language Model (GVLM) and domain-specific downstream tasks. Moreover, we present an image-text paired dataset in the field of remote sensing (RS), RS5M, which has 5 million RS images with English descriptions. The dataset is obtained from filtering publicly available image-text paired datasets and captioning label-only RS datasets with pre-trained VLM. These constitute the first large-scale RS image-text paired dataset. Additionally, we fine-tuned the CLIP model and tried several Parameter-Efficient Fine-Tuning methods on RS5M to implement the DVLM. Experimental results show that our proposed dataset is highly effective for various tasks, and our model GeoRSCLIP improves upon the baseline or previous state-of-the-art model by 3%sim20% in Zero-shot Classification (ZSC), 3%sim6% in Remote Sensing Cross-Modal Text-Image Retrieval (RSCTIR) and 4%sim5% in Semantic Localization (SeLo) tasks. Dataset and models have been released in: https://github.com/om-ai-lab/RS5M.
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
LLaMAX2: Your Translation-Enhanced Model also Performs Well in Reasoning
General Large Language Models (LLMs) excel in reasoning, but those enhanced for translation struggle with reasoning tasks. To address this, we propose a novel translationenhanced recipe that begins with instruct models and applies layer-selective tuning only on parallel data. Following this pipeline, we introduce the Qwen3-XPlus models, which demonstrate significant improvements in translation performance across both high- and lowresource languages, achieving 15+ spBLEU and 40+ xComet in low-resource languages, like Swahili. Interestingly, training only with small parallel datasets, Qwen3-XPlus achieves an average improvement of 1+ points on 7 multilingual tasks while maintaining proficiency comparable to the Qwen3 instruct model in 15 popular reasoning datasets. This work offers a promising approach to multilingual enhancement, significantly reducing complexity and enhancing accessibility for a wider range of languages. The code and model are publicly available.
Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks
Large Language Models (LLMs) have demonstrated considerable proficiency in general natural language processing (NLP) tasks. Instruction tuning, a successful paradigm, enhances the ability of LLMs to follow natural language instructions and exhibit robust generalization across a wide range of tasks. However, these models often encounter performance limitations across multiple tasks due to constrained model capacity. Expanding this capacity during the instruction tuning phase poses significant challenges. To address this issue, we introduce a novel approach, Parameter-Efficient Sparsity Crafting (PESC), which transitions dense models to sparse models using a Mixture of Experts (MoE) architecture. PESC integrates adapters into the MoE layers of sparse models, differentiating experts without altering the individual weights within these layers. This method significantly reduces computational costs and GPU memory requirements, facilitating model capacity expansion through a minimal increase in parameters via the inserted adapters. Our empirical evaluation demonstrates the effectiveness of the PESC method. Using PESC during instruction tuning, our sparse models, dubbed Camelidae outperform all other opensource sparse models and exhibit superior general capabilities compared to GPT3.5.
Talk2BEV: Language-enhanced Bird's-eye View Maps for Autonomous Driving
Talk2BEV is a large vision-language model (LVLM) interface for bird's-eye view (BEV) maps in autonomous driving contexts. While existing perception systems for autonomous driving scenarios have largely focused on a pre-defined (closed) set of object categories and driving scenarios, Talk2BEV blends recent advances in general-purpose language and vision models with BEV-structured map representations, eliminating the need for task-specific models. This enables a single system to cater to a variety of autonomous driving tasks encompassing visual and spatial reasoning, predicting the intents of traffic actors, and decision-making based on visual cues. We extensively evaluate Talk2BEV on a large number of scene understanding tasks that rely on both the ability to interpret free-form natural language queries, and in grounding these queries to the visual context embedded into the language-enhanced BEV map. To enable further research in LVLMs for autonomous driving scenarios, we develop and release Talk2BEV-Bench, a benchmark encompassing 1000 human-annotated BEV scenarios, with more than 20,000 questions and ground-truth responses from the NuScenes dataset.
Embodied Navigation Foundation Model
Navigation is a fundamental capability in embodied AI, representing the intelligence required to perceive and interact within physical environments following language instructions. Despite significant progress in large Vision-Language Models (VLMs), which exhibit remarkable zero-shot performance on general vision-language tasks, their generalization ability in embodied navigation remains largely confined to narrow task settings and embodiment-specific architectures. In this work, we introduce a cross-embodiment and cross-task Navigation Foundation Model (NavFoM), trained on eight million navigation samples that encompass quadrupeds, drones, wheeled robots, and vehicles, and spanning diverse tasks such as vision-and-language navigation, object searching, target tracking, and autonomous driving. NavFoM employs a unified architecture that processes multimodal navigation inputs from varying camera configurations and navigation horizons. To accommodate diverse camera setups and temporal horizons, NavFoM incorporates identifier tokens that embed camera view information of embodiments and the temporal context of tasks. Furthermore, to meet the demands of real-world deployment, NavFoM controls all observation tokens using a dynamically adjusted sampling strategy under a limited token length budget. Extensive evaluations on public benchmarks demonstrate that our model achieves state-of-the-art or highly competitive performance across multiple navigation tasks and embodiments without requiring task-specific fine-tuning. Additional real-world experiments further confirm the strong generalization capability and practical applicability of our approach.
Language Grounded QFormer for Efficient Vision Language Understanding
Large-scale pretraining and instruction tuning have been successful for training general-purpose language models with broad competencies. However, extending to general-purpose vision-language models is challenging due to the distributional diversity in visual inputs. A recent line of work explores vision-language instruction tuning, taking inspiration from the Query Transformer (QFormer) approach proposed in BLIP-2 models for bridging frozen modalities. However, these approaches rely heavily on large-scale multi-modal pretraining for representation learning before eventual finetuning, incurring a huge computational overhead, poor scaling, and limited accessibility. To that end, we propose a more efficient method for QFormer-based vision-language alignment and demonstrate the effectiveness of our strategy compared to existing baselines in improving the efficiency of vision-language pretraining.
VIMA: General Robot Manipulation with Multimodal Prompts
Prompt-based learning has emerged as a successful paradigm in natural language processing, where a single general-purpose language model can be instructed to perform any task specified by input prompts. Yet task specification in robotics comes in various forms, such as imitating one-shot demonstrations, following language instructions, and reaching visual goals. They are often considered different tasks and tackled by specialized models. This work shows that we can express a wide spectrum of robot manipulation tasks with multimodal prompts, interleaving textual and visual tokens. We design a transformer-based generalist robot agent, VIMA, that processes these prompts and outputs motor actions autoregressively. To train and evaluate VIMA, we develop a new simulation benchmark with thousands of procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert trajectories for imitation learning, and four levels of evaluation protocol for systematic generalization. VIMA achieves strong scalability in both model capacity and data size. It outperforms prior SOTA methods in the hardest zero-shot generalization setting by up to 2.9times task success rate given the same training data. With 10times less training data, VIMA still performs 2.7times better than the top competing approach. We open-source all code, pretrained models, dataset, and simulation benchmark at https://vimalabs.github.io
Hop, Skip, and Overthink: Diagnosing Why Reasoning Models Fumble during Multi-Hop Analysis
The emergence of reasoning models and their integration into practical AI chat bots has led to breakthroughs in solving advanced math, deep search, and extractive question answering problems that requires a complex and multi-step thought process. Yet, a complete understanding of why these models hallucinate more than general purpose language models is missing. In this investigative study, we systematicallyexplore reasoning failures of contemporary language models on multi-hop question answering tasks. We introduce a novel, nuanced error categorization framework that examines failures across three critical dimensions: the diversity and uniqueness of source documents involved ("hops"), completeness in capturing relevant information ("coverage"), and cognitive inefficiency ("overthinking"). Through rigorous hu-man annotation, supported by complementary automated metrics, our exploration uncovers intricate error patterns often hidden by accuracy-centric evaluations. This investigative approach provides deeper insights into the cognitive limitations of current models and offers actionable guidance toward enhancing reasoning fidelity, transparency, and robustness in future language modeling efforts.
Do GPTs Produce Less Literal Translations?
Large Language Models (LLMs) such as GPT-3 have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks. On the task of Machine Translation (MT), multiple works have investigated few-shot prompting mechanisms to elicit better translations from LLMs. However, there has been relatively little investigation on how such translations differ qualitatively from the translations generated by standard Neural Machine Translation (NMT) models. In this work, we investigate these differences in terms of the literalness of translations produced by the two systems. Using literalness measures involving word alignment and monotonicity, we find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on MT quality metrics. We demonstrate that this finding is borne out in human evaluations as well. We then show that these differences are especially pronounced when translating sentences that contain idiomatic expressions.
Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
LLM-Detector: Improving AI-Generated Chinese Text Detection with Open-Source LLM Instruction Tuning
ChatGPT and other general large language models (LLMs) have achieved remarkable success, but they have also raised concerns about the misuse of AI-generated texts. Existing AI-generated text detection models, such as based on BERT and RoBERTa, are prone to in-domain over-fitting, leading to poor out-of-domain (OOD) detection performance. In this paper, we first collected Chinese text responses generated by human experts and 9 types of LLMs, for which to multiple domains questions, and further created a dataset that mixed human-written sentences and sentences polished by LLMs. We then proposed LLM-Detector, a novel method for both document-level and sentence-level text detection through Instruction Tuning of LLMs. Our method leverages the wealth of knowledge LLMs acquire during pre-training, enabling them to detect the text they generate. Instruction tuning aligns the model's responses with the user's expected text detection tasks. Experimental results show that previous methods struggle with sentence-level AI-generated text detection and OOD detection. In contrast, our proposed method not only significantly outperforms baseline methods in both sentence-level and document-level text detection but also demonstrates strong generalization capabilities. Furthermore, since LLM-Detector is trained based on open-source LLMs, it is easy to customize for deployment.
ChatGPT for Zero-shot Dialogue State Tracking: A Solution or an Opportunity?
Recent research on dialogue state tracking (DST) focuses on methods that allow few- and zero-shot transfer to new domains or schemas. However, performance gains heavily depend on aggressive data augmentation and fine-tuning of ever larger language model based architectures. In contrast, general purpose language models, trained on large amounts of diverse data, hold the promise of solving any kind of task without task-specific training. We present preliminary experimental results on the ChatGPT research preview, showing that ChatGPT achieves state-of-the-art performance in zero-shot DST. Despite our findings, we argue that properties inherent to general purpose models limit their ability to replace specialized systems. We further theorize that the in-context learning capabilities of such models will likely become powerful tools to support the development of dedicated and dynamic dialogue state trackers.
Privacy Preserving Prompt Engineering: A Survey
Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks. Researchers have observed a direct correlation between the performance of these models and their sizes. As a result, the sizes of these models have notably expanded in recent years, persuading researchers to adopt the term large language models (LLMs) to characterize the larger-sized PLMs. The size expansion comes with a distinct capability called in-context learning (ICL), which represents a special form of prompting and allows the models to be utilized through the presentation of demonstration examples without modifications to the model parameters. Although interesting, privacy concerns have become a major obstacle in its widespread usage. Multiple studies have examined the privacy risks linked to ICL and prompting in general, and have devised techniques to alleviate these risks. Thus, there is a necessity to organize these mitigation techniques for the benefit of the community. This survey provides a systematic overview of the privacy protection methods employed during ICL and prompting in general. We review, analyze, and compare different methods under this paradigm. Furthermore, we provide a summary of the resources accessible for the development of these frameworks. Finally, we discuss the limitations of these frameworks and offer a detailed examination of the promising areas that necessitate further exploration.
Towards Visuospatial Cognition via Hierarchical Fusion of Visual Experts
While Multimodal Large Language Models (MLLMs) excel at general vision-language tasks, visuospatial cognition - reasoning about spatial layouts, relations, and dynamics - remains a significant challenge. Existing models often lack the necessary architectural components and specialized training data for fine-grained spatial understanding. We introduce ViCA2 (Visuospatial Cognitive Assistant 2), a novel MLLM designed to enhance spatial reasoning. ViCA2 features a dual vision encoder architecture integrating SigLIP for semantics and Hiera for spatial structure, coupled with a token ratio control mechanism for efficiency. We also developed ViCA-322K, a new large-scale dataset with over 322,000 spatially grounded question-answer pairs for targeted instruction tuning. On the challenging VSI-Bench benchmark, our ViCA2-7B model achieves a state-of-the-art average score of 56.8, significantly surpassing larger open-source models (e.g., LLaVA-NeXT-Video-72B, 40.9) and leading proprietary models (Gemini-1.5 Pro, 45.4). This demonstrates the effectiveness of our approach in achieving strong visuospatial intelligence with a compact model. We release ViCA2, its codebase, and the ViCA-322K dataset to facilitate further research.
From Seeing to Doing: Bridging Reasoning and Decision for Robotic Manipulation
Achieving generalization in robotic manipulation remains a critical challenge, particularly for unseen scenarios and novel tasks. Current Vision-Language-Action (VLA) models, while building on top of general Vision-Language Models (VLMs), still fall short of achieving robust zero-shot performance due to the scarcity and heterogeneity prevalent in embodied datasets. To address these limitations, we propose FSD (From Seeing to Doing), a novel vision-language model that generates intermediate representations through spatial relationship reasoning, providing fine-grained guidance for robotic manipulation. Our approach combines a hierarchical data pipeline for training with a self-consistency mechanism that aligns spatial coordinates with visual signals. Through extensive experiments, we comprehensively validated FSD's capabilities in both "seeing" and "doing," achieving outstanding performance across 8 benchmarks for general spatial reasoning and embodied reference abilities, as well as on our proposed more challenging benchmark VABench. We also verified zero-shot capabilities in robot manipulation, demonstrating significant performance improvements over baseline methods in both SimplerEnv and real robot settings. Experimental results show that FSD achieves 40.6% success rate in SimplerEnv and 72% success rate across 8 real-world tasks, outperforming the strongest baseline by 30%.
GUIDE: Towards Scalable Advising for Research Ideas
The field of AI research is advancing at an unprecedented pace, enabling automated hypothesis generation and experimental design across diverse domains such as biology, mathematics, and artificial intelligence. Despite these advancements, there remains a significant gap in the availability of scalable advising systems capable of providing high-quality, well-reasoned feedback to refine proposed hypotheses and experimental designs. To address this challenge, we explore key factors that underlie the development of robust advising systems, including model size, context length, confidence estimation, and structured reasoning processes. Our findings reveal that a relatively small model, when equipped with a well-compressed literature database and a structured reasoning framework, can outperform powerful general-purpose language models such as Deepseek-R1 in terms of acceptance rates for self-ranked top-30% submissions to ICLR 2025. Moreover, when limited to high-confidence predictions, our system achieves an acceptance rate exceeding 90% on the ICLR 2025 test set, underscoring its potential to significantly enhance the quality and efficiency of hypothesis generation and experimental design. The code is released at https://github.com/HowardLiu0830/GUIDE-Research-Idea-Evaluation.
AutoCode: LLMs as Problem Setters for Competitive Programming
Writing competitive programming problems is exacting. Authors must: set constraints, input distributions, and edge cases that rule out shortcuts; target specific algorithms (e.g., max-flow, dynamic programming, data structures); and calibrate complexity beyond the reach of most competitors. We argue that this makes for an ideal test of general large language model capabilities and study whether they can do this reliably. We introduce AutoCode, which uses multiple rounds of validation to yield competition-grade problem statements and test cases. On held-out problems, AutoCode test suites approach 99% consistency with official judgments, a significant improvement over current state-of-the-art methods like HardTests, which achieve less than 81%. Furthermore, starting with a random seed problem, AutoCode can create novel variants with reference and brute-force solutions. By cross-verifying these generated solutions against test cases, we can further filter out malformed problems. Our system ensures high correctness, as verified by human experts. AutoCode successfully produces novel problems judged by Grandmaster-level (top 0.3%) competitive programmers to be of contest quality.
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings
Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning, and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) models sample-efficiently, and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.
Interpretability at Scale: Identifying Causal Mechanisms in Alpaca
Obtaining human-interpretable explanations of large, general-purpose language models is an urgent goal for AI safety. However, it is just as important that our interpretability methods are faithful to the causal dynamics underlying model behavior and able to robustly generalize to unseen inputs. Distributed Alignment Search (DAS) is a powerful gradient descent method grounded in a theory of causal abstraction that uncovered perfect alignments between interpretable symbolic algorithms and small deep learning models fine-tuned for specific tasks. In the present paper, we scale DAS significantly by replacing the remaining brute-force search steps with learned parameters -- an approach we call DAS. This enables us to efficiently search for interpretable causal structure in large language models while they follow instructions. We apply DAS to the Alpaca model (7B parameters), which, off the shelf, solves a simple numerical reasoning problem. With DAS, we discover that Alpaca does this by implementing a causal model with two interpretable boolean variables. Furthermore, we find that the alignment of neural representations with these variables is robust to changes in inputs and instructions. These findings mark a first step toward deeply understanding the inner-workings of our largest and most widely deployed language models.
Data-augmented phrase-level alignment for mitigating object hallucination
Despite their significant advancements, Multimodal Large Language Models (MLLMs) often generate factually inaccurate information, referred to as hallucination. In this work, we address object hallucinations in MLLMs, where information is generated about an object not present in the input image. We introduce Data-augmented Phrase-level Alignment (DPA), a novel loss which can be applied to instruction-tuned off-the-shelf MLLMs to mitigate hallucinations, while preserving their general vision-language capabilities. To fine-tune MLLMs with DPA, we first generate a set of `hallucinated' and `correct' response pairs through generative data augmentation by selectively altering the ground-truth information of the correct responses at a phrase level. The DPA loss is then used to train MLLMs to reduce the likelihood of hallucinated phrases compared to the correct ones. Our thorough evaluation on various benchmarks confirms the effectiveness of DPA in mitigating hallucination while retaining the out-of-the-box performance of the MLLMs on general tasks. For instance, MLLMs finetuned with DPA, which we refer to as Hallucination Attenuated Language and Vision Assistant (HALVA), improve F1 by up to 13.4% on hallucination visual question-answering and reduce the hallucination rate by up to 4.2% on image description tasks.
Re3: Generating Longer Stories With Recursive Reprompting and Revision
We consider the problem of automatically generating longer stories of over two thousand words. Compared to prior work on shorter stories, long-range plot coherence and relevance are more central challenges here. We propose the Recursive Reprompting and Revision framework (Re3) to address these challenges by (a) prompting a general-purpose language model to construct a structured overarching plan, and (b) generating story passages by repeatedly injecting contextual information from both the plan and current story state into a language model prompt. We then revise by (c) reranking different continuations for plot coherence and premise relevance, and finally (d) editing the best continuation for factual consistency. Compared to similar-length stories generated directly from the same base model, human evaluators judged substantially more of Re3's stories as having a coherent overarching plot (by 14% absolute increase), and relevant to the given initial premise (by 20%).
Can GPT-4 Perform Neural Architecture Search?
We investigate the potential of GPT-4~gpt4 to perform Neural Architecture Search (NAS) -- the task of designing effective neural architectures. Our proposed approach, GPT-4 Enhanced Neural archItectUre Search (GENIUS), leverages the generative capabilities of GPT-4 as a black-box optimiser to quickly navigate the architecture search space, pinpoint promising candidates, and iteratively refine these candidates to improve performance. We assess GENIUS across several benchmarks, comparing it with existing state-of-the-art NAS techniques to illustrate its effectiveness. Rather than targeting state-of-the-art performance, our objective is to highlight GPT-4's potential to assist research on a challenging technical problem through a simple prompting scheme that requires relatively limited domain expertiseCode available at \href{https://github.com/mingkai-zheng/GENIUS{https://github.com/mingkai-zheng/GENIUS}.}. More broadly, we believe our preliminary results point to future research that harnesses general purpose language models for diverse optimisation tasks. We also highlight important limitations to our study, and note implications for AI safety.
Detecting Harmful Memes with Decoupled Understanding and Guided CoT Reasoning
Detecting harmful memes is essential for maintaining the integrity of online environments. However, current approaches often struggle with resource efficiency, flexibility, or explainability, limiting their practical deployment in content moderation systems. To address these challenges, we introduce U-CoT+, a novel framework for harmful meme detection. Instead of relying solely on prompting or fine-tuning multimodal models, we first develop a high-fidelity meme-to-text pipeline that converts visual memes into detail-preserving textual descriptions. This design decouples meme interpretation from meme classification, thus avoiding immediate reasoning over complex raw visual content and enabling resource-efficient harmful meme detection with general large language models (LLMs). Building on these textual descriptions, we further incorporate targeted, interpretable human-crafted guidelines to guide models' reasoning under zero-shot CoT prompting. As such, this framework allows for easy adaptation to different harmfulness detection criteria across platforms, regions, and over time, offering high flexibility and explainability. Extensive experiments on seven benchmark datasets validate the effectiveness of our framework, highlighting its potential for explainable and low-resource harmful meme detection using small-scale LLMs. Codes and data are available at: https://anonymous.4open.science/r/HMC-AF2B/README.md.
RJUA-QA: A Comprehensive QA Dataset for Urology
We introduce RJUA-QA, a novel medical dataset for question answering (QA) and reasoning with clinical evidence, contributing to bridge the gap between general large language models (LLMs) and medical-specific LLM applications. RJUA-QA is derived from realistic clinical scenarios and aims to facilitate LLMs in generating reliable diagnostic and advice. The dataset contains 2,132 curated Question-Context-Answer pairs, corresponding about 25,000 diagnostic records and clinical cases. The dataset covers 67 common urological disease categories, where the disease coverage exceeds 97.6\% of the population seeking medical services in urology. Each data instance in RJUA-QA comprises: (1) a question mirroring real patient to inquiry about clinical symptoms and medical conditions, (2) a context including comprehensive expert knowledge, serving as a reference for medical examination and diagnosis, (3) a doctor response offering the diagnostic conclusion and suggested examination guidance, (4) a diagnosed clinical disease as the recommended diagnostic outcome, and (5) clinical advice providing recommendations for medical examination. RJUA-QA is the first medical QA dataset for clinical reasoning over the patient inquiries, where expert-level knowledge and experience are required for yielding diagnostic conclusions and medical examination advice. A comprehensive evaluation is conducted to evaluate the performance of both medical-specific and general LLMs on the RJUA-QA dataset.
Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training
Most recently, there has been significant interest in learning contextual representations for various NLP tasks, by leveraging large scale text corpora to train large neural language models with self-supervised learning objectives, such as Masked Language Model (MLM). However, based on a pilot study, we observe three issues of existing general-purpose language models when they are applied to text-to-SQL semantic parsers: fail to detect column mentions in the utterances, fail to infer column mentions from cell values, and fail to compose complex SQL queries. To mitigate these issues, we present a model pre-training framework, Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data. GAP MODEL is trained on 2M utterance-schema pairs and 30K utterance-schema-SQL triples, whose utterances are produced by generative models. Based on experimental results, neural semantic parsers that leverage GAP MODEL as a representation encoder obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-SQL benchmarks.
Can General-Purpose Large Language Models Generalize to English-Thai Machine Translation ?
Large language models (LLMs) perform well on common tasks but struggle with generalization in low-resource and low-computation settings. We examine this limitation by testing various LLMs and specialized translation models on English-Thai machine translation and code-switching datasets. Our findings reveal that under more strict computational constraints, such as 4-bit quantization, LLMs fail to translate effectively. In contrast, specialized models, with comparable or lower computational requirements, consistently outperform LLMs. This underscores the importance of specialized models for maintaining performance under resource constraints.
RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks
Ribonucleic acid (RNA) plays a variety of crucial roles in fundamental biological processes. Recently, RNA has become an interesting drug target, emphasizing the need to improve our understanding of its structures and functions. Over the years, sequencing technologies have produced an enormous amount of unlabeled RNA data, which hides important knowledge and potential. Motivated by the successes of protein language models, we introduce RiboNucleic Acid Language Model (RiNALMo) to help unveil the hidden code of RNA. RiNALMo is the largest RNA language model to date with 650 million parameters pre-trained on 36 million non-coding RNA sequences from several available databases. RiNALMo is able to extract hidden knowledge and capture the underlying structure information implicitly embedded within the RNA sequences. RiNALMo achieves state-of-the-art results on several downstream tasks. Notably, we show that its generalization capabilities can overcome the inability of other deep learning methods for secondary structure prediction to generalize on unseen RNA families. The code has been made publicly available on https://github.com/lbcb-sci/RiNALMo.
BEYOND DIALOGUE: A Profile-Dialogue Alignment Framework Towards General Role-Playing Language Model
The rapid advancement of large language models (LLMs) has revolutionized role-playing, enabling the development of general role-playing models. However, current role-playing training has two significant issues: (I) Using a predefined role profile to prompt dialogue training for specific scenarios usually leads to inconsistencies and even conflicts between the dialogue and the profile, resulting in training biases. (II) The model learns to imitate the role based solely on the profile, neglecting profile-dialogue alignment at the sentence level. In this work, we propose a simple yet effective framework called BEYOND DIALOGUE, designed to overcome these hurdles. This framework innovatively introduces "beyond dialogue" tasks to align dialogue with profile traits based on each specific scenario, thereby eliminating biases during training. Furthermore, by adopting an innovative prompting mechanism that generates reasoning outcomes for training, the framework allows the model to achieve fine-grained alignment between profile and dialogue at the sentence level. The aforementioned methods are fully automated and low-cost. Additionally, the integration of automated dialogue and objective evaluation methods forms a comprehensive framework, paving the way for general role-playing. Experimental results demonstrate that our model excels in adhering to and reflecting various dimensions of role profiles, outperforming most proprietary general and specialized role-playing baselines. All code and datasets are available at https://github.com/yuyouyu32/BeyondDialogue.
