- What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of different sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications. 37 authors · Sep 9, 2021
- HyperCLOVA X THINK Technical Report We introduce HyperCLOVA X THINK, the first reasoning-focused large language model in the HyperCLOVA X family, pre-trained on roughly 6 trillion high-quality Korean, and English tokens, augmented with targeted synthetic Korean data. It was implemented as a compute-memory-balanced Peri-LN Transformer scaled with muP, pre-trained through a three-stage curriculum that expands the context window to 128K tokens, and post-trained via supervised fine-tuning with Reinforcement Learning from Verifiable Rewards supports both detailed rationale and concise-answer modes. It delivers competitive performance against similarly sized models on Korea-focused benchmarks such as KMMLU, CSAT, KoBALT-700, HAERAE-1.0, and KoBigBench, while preserving robust bilingual consistency and translation quality. In addition, a vision-augmented variant matches or exceeds GPT-4.1 on the KCSAT STEM benchmark, all of which are achieved with substantially lower training compute than existing models of similar sizes. We also present a pruning and distillation technique that will soon be applied to HyperCLOVA X THINK for an open-source and business-friendly foundation model. Altogether, these capabilities position HyperCLOVA X THINK as a robust foundation for Korean AI innovation and a valuable resource for the global research community. 1 authors · Jun 27
25 HyperCLOVA X Technical Report We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs. 377 authors · Apr 2, 2024 1
- TinyLLaVA Factory: A Modularized Codebase for Small-scale Large Multimodal Models We present TinyLLaVA Factory, an open-source modular codebase for small-scale large multimodal models (LMMs) with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. Following the design philosophy of the factory pattern in software engineering, TinyLLaVA Factory modularizes the entire system into interchangeable components, with each component integrating a suite of cutting-edge models and methods, meanwhile leaving room for extensions to more features. In addition to allowing users to customize their own LMMs, TinyLLaVA Factory provides popular training recipes to let users pretrain and finetune their models with less coding effort. Empirical experiments validate the effectiveness of our codebase. The goal of TinyLLaVA Factory is to assist researchers and practitioners in exploring the wide landscape of designing and training small-scale LMMs with affordable computational resources. 11 authors · May 20, 2024