Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMind the Gap! Static and Interactive Evaluations of Large Audio Models
As AI chatbots become ubiquitous, voice interaction presents a compelling way to enable rapid, high-bandwidth communication for both semantic and social signals. This has driven research into Large Audio Models (LAMs) to power voice-native experiences. However, aligning LAM development with user goals requires a clear understanding of user needs and preferences to establish reliable progress metrics. This study addresses these challenges by introducing an interactive approach to evaluate LAMs and collecting 7,500 LAM interactions from 484 participants. Through topic modeling of user queries, we identify primary use cases for audio interfaces. We then analyze user preference rankings and qualitative feedback to determine which models best align with user needs. Finally, we evaluate how static benchmarks predict interactive performance - our analysis reveals no individual benchmark strongly correlates with interactive results (tau leq 0.33 for all benchmarks). While combining multiple coarse-grained features yields modest predictive power (R^2=0.30), only two out of twenty datasets on spoken question answering and age prediction show significantly positive correlations. This suggests a clear need to develop LAM evaluations that better correlate with user preferences.
Hi-Reco: High-Fidelity Real-Time Conversational Digital Humans
High-fidelity digital humans are increasingly used in interactive applications, yet achieving both visual realism and real-time responsiveness remains a major challenge. We present a high-fidelity, real-time conversational digital human system that seamlessly combines a visually realistic 3D avatar, persona-driven expressive speech synthesis, and knowledge-grounded dialogue generation. To support natural and timely interaction, we introduce an asynchronous execution pipeline that coordinates multi-modal components with minimal latency. The system supports advanced features such as wake word detection, emotionally expressive prosody, and highly accurate, context-aware response generation. It leverages novel retrieval-augmented methods, including history augmentation to maintain conversational flow and intent-based routing for efficient knowledge access. Together, these components form an integrated system that enables responsive and believable digital humans, suitable for immersive applications in communication, education, and entertainment.
Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC
Human Latency Conversational Turns for Spoken Avatar Systems
A problem with many current Large Language Model (LLM) driven spoken dialogues is the response time. Some efforts such as Groq address this issue by lightning fast processing of the LLM, but we know from the cognitive psychology literature that in human-to-human dialogue often responses occur prior to the speaker completing their utterance. No amount of delay for LLM processing is acceptable if we wish to maintain human dialogue latencies. In this paper, we discuss methods for understanding an utterance in close to real time and generating a response so that the system can comply with human-level conversational turn delays. This means that the information content of the final part of the speaker's utterance is lost to the LLM. Using the Google NaturalQuestions (NQ) database, our results show GPT-4 can effectively fill in missing context from a dropped word at the end of a question over 60% of the time. We also provide some examples of utterances and the impacts of this information loss on the quality of LLM response in the context of an avatar that is currently under development. These results indicate that a simple classifier could be used to determine whether a question is semantically complete, or requires a filler phrase to allow a response to be generated within human dialogue time constraints.
Towards General-Purpose Speech Abilities for Large Language Models Using Unpaired Data
In this work, we extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities while maintaining the wide range of LLM capabilities, without using any carefully curated paired data. The proposed model can utilize audio prompts as a replacement for text and sustain a conversation. Such a model also has extended cross-modal capabilities such as being able to perform speech question answering, speech translation, and audio summarization amongst many other closed and open-domain tasks. This is unlike prior approaches in speech, in which LLMs are extended to handle audio for a limited number of pre-designated tasks. Experiments show that our end-to-end approach is on par with or outperforms a cascaded system (speech recognizer + LLM) in terms of modeling the response to a prompt. Furthermore, unlike a cascade, our approach shows the ability to interchange text and audio modalities and utilize the prior context in a conversation to provide better results.
VocalBench: Benchmarking the Vocal Conversational Abilities for Speech Interaction Models
The rapid advancement of large language models (LLMs) has accelerated the development of multi-modal models capable of vocal communication. Unlike text-based interactions, speech conveys rich and diverse information, including semantic content, acoustic variations, paralanguage cues, and environmental context. However, existing evaluations of speech interaction models predominantly focus on the quality of their textual responses, often overlooking critical aspects of vocal performance and lacking benchmarks with vocal-specific test instances. To address this gap, we propose VocalBench, a comprehensive benchmark designed to evaluate speech interaction models' capabilities in vocal communication. VocalBench comprises 9,400 carefully curated instances across four key dimensions: semantic quality, acoustic performance, conversational abilities, and robustness. It covers 16 fundamental skills essential for effective vocal interaction. Experimental results reveal significant variability in current model capabilities, each exhibiting distinct strengths and weaknesses, and provide valuable insights to guide future research in speech-based interaction systems. Code and evaluation instances are available at https://github.com/SJTU-OmniAgent/VocalBench.
Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models
As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while it is generating responses. To overcome these limitations, we adapt existing LLMs to duplex models so that these LLMs can listen for users while generating output and dynamically adjust themselves to provide users with instant feedback. % such as in response to interruptions. Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to pseudo-simultaneously process these slices. Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions. Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released.
WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries
Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.
Multimodal Data and Resource Efficient Device-Directed Speech Detection with Large Foundation Models
Interactions with virtual assistants typically start with a trigger phrase followed by a command. In this work, we explore the possibility of making these interactions more natural by eliminating the need for a trigger phrase. Our goal is to determine whether a user addressed the virtual assistant based on signals obtained from the streaming audio recorded by the device microphone. We address this task by combining 1-best hypotheses and decoder signals from an automatic speech recognition system with acoustic representations from an audio encoder as input features to a large language model (LLM). In particular, we are interested in data and resource efficient systems that require only a small amount of training data and can operate in scenarios with only a single frozen LLM available on a device. For this reason, our model is trained on 80k or less examples of multimodal data using a combination of low-rank adaptation and prefix tuning. We compare the proposed system to unimodal baselines and show that the multimodal approach achieves lower equal-error-rates (EERs), while using only a fraction of the training data. We also show that low-dimensional specialized audio representations lead to lower EERs than high-dimensional general audio representations.
Speakerly: A Voice-based Writing Assistant for Text Composition
We present Speakerly, a new real-time voice-based writing assistance system that helps users with text composition across various use cases such as emails, instant messages, and notes. The user can interact with the system through instructions or dictation, and the system generates a well-formatted and coherent document. We describe the system architecture and detail how we address the various challenges while building and deploying such a system at scale. More specifically, our system uses a combination of small, task-specific models as well as pre-trained language models for fast and effective text composition while supporting a variety of input modes for better usability.
Simple Baselines for Interactive Video Retrieval with Questions and Answers
To date, the majority of video retrieval systems have been optimized for a "single-shot" scenario in which the user submits a query in isolation, ignoring previous interactions with the system. Recently, there has been renewed interest in interactive systems to enhance retrieval, but existing approaches are complex and deliver limited gains in performance. In this work, we revisit this topic and propose several simple yet effective baselines for interactive video retrieval via question-answering. We employ a VideoQA model to simulate user interactions and show that this enables the productive study of the interactive retrieval task without access to ground truth dialogue data. Experiments on MSR-VTT, MSVD, and AVSD show that our framework using question-based interaction significantly improves the performance of text-based video retrieval systems.
DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues
User Simulators play a pivotal role in training and evaluating task-oriented dialogue systems. Traditional user simulators typically rely on human-engineered agendas, resulting in generated responses that often lack diversity and spontaneity. Although large language models (LLMs) exhibit a remarkable capacity for generating coherent and contextually appropriate utterances, they may fall short when tasked with generating responses that effectively guide users towards their goals, particularly in dialogues with intricate constraints and requirements. This paper introduces DuetSim, a novel framework designed to address the intricate demands of task-oriented dialogues by leveraging LLMs. DuetSim stands apart from conventional approaches by employing two LLMs in tandem: one dedicated to response generation and the other focused on verification. This dual LLM approach empowers DuetSim to produce responses that not only exhibit diversity but also demonstrate accuracy and are preferred by human users. We validate the efficacy of our method through extensive experiments conducted on the MultiWOZ dataset, highlighting improvements in response quality and correctness, largely attributed to the incorporation of the second LLM. Our code is accessible at: https://github.com/suntea233/DuetSim.
LLAMAPIE: Proactive In-Ear Conversation Assistants
We introduce LlamaPIE, the first real-time proactive assistant designed to enhance human conversations through discreet, concise guidance delivered via hearable devices. Unlike traditional language models that require explicit user invocation, this assistant operates in the background, anticipating user needs without interrupting conversations. We address several challenges, including determining when to respond, crafting concise responses that enhance conversations, leveraging knowledge of the user for context-aware assistance, and real-time, on-device processing. To achieve this, we construct a semi-synthetic dialogue dataset and propose a two-model pipeline: a small model that decides when to respond and a larger model that generates the response. We evaluate our approach on real-world datasets, demonstrating its effectiveness in providing helpful, unobtrusive assistance. User studies with our assistant, implemented on Apple Silicon M2 hardware, show a strong preference for the proactive assistant over both a baseline with no assistance and a reactive model, highlighting the potential of LlamaPie to enhance live conversations.
IntrinsicVoice: Empowering LLMs with Intrinsic Real-time Voice Interaction Abilities
Current methods of building LLMs with voice interaction capabilities rely heavily on explicit text autoregressive generation before or during speech response generation to maintain content quality, which unfortunately brings computational overhead and increases latency in multi-turn interactions. To address this, we introduce IntrinsicVoic,e an LLM designed with intrinsic real-time voice interaction capabilities. IntrinsicVoice aims to facilitate the transfer of textual capabilities of pre-trained LLMs to the speech modality by mitigating the modality gap between text and speech. Our novelty architecture, GroupFormer, can reduce speech sequences to lengths comparable to text sequences while generating high-quality audio, significantly reducing the length difference between speech and text, speeding up inference, and alleviating long-text modeling issues. Additionally, we construct a multi-turn speech-to-speech dialogue dataset named \method-500k which includes nearly 500k turns of speech-to-speech dialogues, and a cross-modality training strategy to enhance the semantic alignment between speech and text. Experimental results demonstrate that IntrinsicVoice can generate high-quality speech response with latency lower than 100ms in multi-turn dialogue scenarios. Demos are available at https://instrinsicvoice.github.io/.
ProactiveBench: A Comprehensive Benchmark Evaluating Proactive Interactions in Video Large Language Models
With the growing research focus on multimodal dialogue systems, the capability for proactive interaction is gradually gaining recognition. As an alternative to conventional turn-by-turn dialogue, users increasingly expect multimodal systems to be more initiative, for example, by autonomously determining the timing of multi-turn responses in real time during video playback. To facilitate progress in this emerging area, we introduce ProactiveBench, the first comprehensive benchmark to evaluate a system's ability to engage in proactive interaction. Since model responses are generated at varying timestamps, we further propose PAUC, the first metric that accounts for the temporal dynamics of model responses. This enables a more accurate evaluation of systems operating in proactive settings. Through extensive benchmarking of various baseline systems on ProactiveBench and a user study of human preferences, we show that PAUC is in better agreement with human preferences than traditional evaluation metrics, which typically only consider the textual content of responses. These findings demonstrate that PAUC provides a more faithful assessment of user experience in proactive interaction scenarios. Project homepage: https://github.com/yellow-binary-tree/ProactiveBench
Interactive Natural Language Processing
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing
The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ .
Meet Your Favorite Character: Open-domain Chatbot Mimicking Fictional Characters with only a Few Utterances
In this paper, we consider mimicking fictional characters as a promising direction for building engaging conversation models. To this end, we present a new practical task where only a few utterances of each fictional character are available to generate responses mimicking them. Furthermore, we propose a new method named Pseudo Dialog Prompting (PDP) that generates responses by leveraging the power of large-scale language models with prompts containing the target character's utterances. To better reflect the style of the character, PDP builds the prompts in the form of dialog that includes the character's utterances as dialog history. Since only utterances of the characters are available in the proposed task, PDP matches each utterance with an appropriate pseudo-context from a predefined set of context candidates using a retrieval model. Through human and automatic evaluation, we show that PDP generates responses that better reflect the style of fictional characters than baseline methods.
Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue Systems
Open-domain dialogue systems aim to generate relevant, informative and engaging responses. Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response, and frequently result in uninformative utterances. In this paper, we propose using a dialogue policy to plan the content and style of target responses in the form of an action plan, which includes knowledge sentences related to the dialogue context, targeted dialogue acts, topic information, etc. The attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialogue policy models to predict an action plan given the dialogue context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialogue policy has the added effect of controllability.
Jewelry Shop Conversational Chatbot
Since the advent of chatbots in the commercial sector, they have been widely employed in the customer service department. Typically, these commercial chatbots are retrieval-based, so they are unable to respond to queries absent in the provided dataset. On the contrary, generative chatbots try to create the most appropriate response, but are mostly unable to create a smooth flow in the customer-bot dialog. Since the client has few options left for continuing after receiving a response, the dialog becomes short. Through our work, we try to maximize the intelligence of a simple conversational agent so it can answer unseen queries, and generate follow-up questions or remarks. We have built a chatbot for a jewelry shop that finds the underlying objective of the customer's query by finding similarity of the input to patterns in the corpus. Our system features an audio input interface for clients, so they may speak to it in natural language. After converting the audio to text, we trained the model to extract the intent of the query, to find an appropriate response and to speak to the client in a natural human voice. To gauge the system's performance, we used performance metrics such as Recall, Precision and F1 score.
Duplex Conversation: Towards Human-like Interaction in Spoken Dialogue Systems
In this paper, we present Duplex Conversation, a multi-turn, multimodal spoken dialogue system that enables telephone-based agents to interact with customers like a human. We use the concept of full-duplex in telecommunication to demonstrate what a human-like interactive experience should be and how to achieve smooth turn-taking through three subtasks: user state detection, backchannel selection, and barge-in detection. Besides, we propose semi-supervised learning with multimodal data augmentation to leverage unlabeled data to increase model generalization. Experimental results on three sub-tasks show that the proposed method achieves consistent improvements compared with baselines. We deploy the Duplex Conversation to Alibaba intelligent customer service and share lessons learned in production. Online A/B experiments show that the proposed system can significantly reduce response latency by 50%.
Audio Dialogues: Dialogues dataset for audio and music understanding
Existing datasets for audio understanding primarily focus on single-turn interactions (i.e. audio captioning, audio question answering) for describing audio in natural language, thus limiting understanding audio via interactive dialogue. To address this gap, we introduce Audio Dialogues: a multi-turn dialogue dataset containing 163.8k samples for general audio sounds and music. In addition to dialogues, Audio Dialogues also has question-answer pairs to understand and compare multiple input audios together. Audio Dialogues leverages a prompting-based approach and caption annotations from existing datasets to generate multi-turn dialogues using a Large Language Model (LLM). We evaluate existing audio-augmented large language models on our proposed dataset to demonstrate the complexity and applicability of Audio Dialogues. Our code for generating the dataset will be made publicly available. Detailed prompts and generated dialogues can be found on the demo website https://audiodialogues.github.io/.
VoiceLDM: Text-to-Speech with Environmental Context
This paper presents VoiceLDM, a model designed to produce audio that accurately follows two distinct natural language text prompts: the description prompt and the content prompt. The former provides information about the overall environmental context of the audio, while the latter conveys the linguistic content. To achieve this, we adopt a text-to-audio (TTA) model based on latent diffusion models and extend its functionality to incorporate an additional content prompt as a conditional input. By utilizing pretrained contrastive language-audio pretraining (CLAP) and Whisper, VoiceLDM is trained on large amounts of real-world audio without manual annotations or transcriptions. Additionally, we employ dual classifier-free guidance to further enhance the controllability of VoiceLDM. Experimental results demonstrate that VoiceLDM is capable of generating plausible audio that aligns well with both input conditions, even surpassing the speech intelligibility of the ground truth audio on the AudioCaps test set. Furthermore, we explore the text-to-speech (TTS) and zero-shot text-to-audio capabilities of VoiceLDM and show that it achieves competitive results. Demos and code are available at https://voiceldm.github.io.
InfoQuest: Evaluating Multi-Turn Dialogue Agents for Open-Ended Conversations with Hidden Context
While large language models excel at following explicit instructions, they often struggle with ambiguous or incomplete user requests, defaulting to verbose, generic responses rather than seeking clarification. We introduce InfoQuest, a multi-turn chat benchmark designed to evaluate how dialogue agents handle hidden context in open-ended user requests. The benchmark presents intentionally ambiguous scenarios that require models to engage in information-seeking dialogue through clarifying questions before providing appropriate responses. Our evaluation of both open and closed-source models reveals that while proprietary models generally perform better, all current assistants struggle with effectively gathering critical information, often requiring multiple turns to infer user intent and frequently defaulting to generic responses without proper clarification. We provide a systematic methodology for generating diverse scenarios and evaluating models' information-seeking capabilities, offering insights into the current limitations of language models in handling ambiguous requests through multi-turn interactions.
PSLM: Parallel Generation of Text and Speech with LLMs for Low-Latency Spoken Dialogue Systems
Multimodal language models that process both text and speech have a potential for applications in spoken dialogue systems. However, current models face two major challenges in response generation latency: (1) generating a spoken response requires the prior generation of a written response, and (2) speech sequences are significantly longer than text sequences. This study addresses these issues by extending the input and output sequences of the language model to support the parallel generation of text and speech. Our experiments on spoken question answering tasks demonstrate that our approach improves latency while maintaining the quality of response content. Additionally, we show that latency can be further reduced by generating speech in multiple sequences. Demo samples are available at https://rinnakk.github.io/research/publications/PSLM.
VideoLLM Knows When to Speak: Enhancing Time-Sensitive Video Comprehension with Video-Text Duet Interaction Format
Recent researches on video large language models (VideoLLM) predominantly focus on model architectures and training datasets, leaving the interaction format between the user and the model under-explored. In existing works, users often interact with VideoLLMs by using the entire video and a query as input, after which the model generates a response. This interaction format constrains the application of VideoLLMs in scenarios such as live-streaming comprehension where videos do not end and responses are required in a real-time manner, and also results in unsatisfactory performance on time-sensitive tasks that requires localizing video segments. In this paper, we focus on a video-text duet interaction format. This interaction format is characterized by the continuous playback of the video, and both the user and the model can insert their text messages at any position during the video playback. When a text message ends, the video continues to play, akin to the alternative of two performers in a duet. We construct MMDuetIT, a video-text training dataset designed to adapt VideoLLMs to video-text duet interaction format. We also introduce the Multi-Answer Grounded Video Question Answering (MAGQA) task to benchmark the real-time response ability of VideoLLMs. Trained on MMDuetIT, MMDuet demonstrates that adopting the video-text duet interaction format enables the model to achieve significant improvements in various time-sensitive tasks (76% CIDEr on YouCook2 dense video captioning, 90\% mAP on QVHighlights highlight detection and 25% R@0.5 on Charades-STA temporal video grounding) with minimal training efforts, and also enable VideoLLMs to reply in a real-time manner as the video plays. Code, data and demo are available at: https://github.com/yellow-binary-tree/MMDuet.
Making Task-Oriented Dialogue Datasets More Natural by Synthetically Generating Indirect User Requests
Indirect User Requests (IURs), such as "It's cold in here" instead of "Could you please increase the temperature?" are common in human-human task-oriented dialogue and require world knowledge and pragmatic reasoning from the listener. While large language models (LLMs) can handle these requests effectively, smaller models deployed on virtual assistants often struggle due to resource constraints. Moreover, existing task-oriented dialogue benchmarks lack sufficient examples of complex discourse phenomena such as indirectness. To address this, we propose a set of linguistic criteria along with an LLM-based pipeline for generating realistic IURs to test natural language understanding (NLU) and dialogue state tracking (DST) models before deployment in a new domain. We also release IndirectRequests, a dataset of IURs based on the Schema Guided Dialog (SGD) corpus, as a comparative testbed for evaluating the performance of smaller models in handling indirect requests.
AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension
Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as Automatic Speech Recognition (ASR), and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement. In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research.
On the Effectiveness of Integration Methods for Multimodal Dialogue Response Retrieval
Multimodal chatbots have become one of the major topics for dialogue systems in both research community and industry. Recently, researchers have shed light on the multimodality of responses as well as dialogue contexts. This work explores how a dialogue system can output responses in various modalities such as text and image. To this end, we first formulate a multimodal dialogue response retrieval task for retrieval-based systems as the combination of three subtasks. We then propose three integration methods based on a two-step approach and an end-to-end approach, and compare the merits and demerits of each method. Experimental results on two datasets demonstrate that the end-to-end approach achieves comparable performance without an intermediate step in the two-step approach. In addition, a parameter sharing strategy not only reduces the number of parameters but also boosts performance by transferring knowledge across the subtasks and the modalities.
Does Your Voice Assistant Remember? Analyzing Conversational Context Recall and Utilization in Voice Interaction Models
Recent advancements in multi-turn voice interaction models have improved user-model communication. However, while closed-source models effectively retain and recall past utterances, whether open-source models share this ability remains unexplored. To fill this gap, we systematically evaluate how well open-source interaction models utilize past utterances using ContextDialog, a benchmark we proposed for this purpose. Our findings show that speech-based models have more difficulty than text-based ones, especially when recalling information conveyed in speech, and even with retrieval-augmented generation, models still struggle with questions about past utterances. These insights highlight key limitations in open-source models and suggest ways to improve memory retention and retrieval robustness.
Beamforming-LLM: What, Where and When Did I Miss?
We present Beamforming-LLM, a system that enables users to semantically recall conversations they may have missed in multi-speaker environments. The system combines spatial audio capture using a microphone array with retrieval-augmented generation (RAG) to support natural language queries such as, "What did I miss when I was following the conversation on dogs?" Directional audio streams are separated using beamforming, transcribed with Whisper, and embedded into a vector database using sentence encoders. Upon receiving a user query, semantically relevant segments are retrieved, temporally aligned with non-attended segments, and summarized using a lightweight large language model (GPT-4o-mini). The result is a user-friendly interface that provides contrastive summaries, spatial context, and timestamped audio playback. This work lays the foundation for intelligent auditory memory systems and has broad applications in assistive technology, meeting summarization, and context-aware personal spatial computing.
Voice Evaluation of Reasoning Ability: Diagnosing the Modality-Induced Performance Gap
We present Voice Evaluation of Reasoning Ability (VERA), a benchmark for evaluating reasoning ability in voice-interactive systems under real-time conversational constraints. VERA comprises 2,931 voice-native episodes derived from established text benchmarks and organized into five tracks (Math, Web, Science, Long-Context, Factual). Each item is adapted for speech interaction while preserving reasoning difficulty. VERA enables direct text-voice comparison within model families and supports analysis of how architectural choices affect reliability. We assess 12 contemporary voice systems alongside strong text baselines and observe large, consistent modality gaps: on competition mathematics a leading text model attains 74.8% accuracy while its voice counterpart reaches 6.1%; macro-averaged across tracks the best text models achieve 54.0% versus 11.3% for voice. Latency-accuracy analyses reveal a low-latency plateau, where fast voice systems cluster around ~10% accuracy, while approaching text performance requires sacrificing real-time interaction. Diagnostic experiments indicate that common mitigations are insufficient. Increasing "thinking time" yields negligible gains; a decoupled cascade that separates reasoning from narration improves accuracy but still falls well short of text and introduces characteristic grounding/consistency errors. Failure analyses further show distinct error signatures across native streaming, end-to-end, and cascade designs. VERA provides a reproducible testbed and targeted diagnostics for architectures that decouple thinking from speaking, offering a principled way to measure progress toward real-time voice assistants that are both fluent and reliably reasoned.
A Multimodal Approach to Device-Directed Speech Detection with Large Language Models
Interactions with virtual assistants typically start with a predefined trigger phrase followed by the user command. To make interactions with the assistant more intuitive, we explore whether it is feasible to drop the requirement that users must begin each command with a trigger phrase. We explore this task in three ways: First, we train classifiers using only acoustic information obtained from the audio waveform. Second, we take the decoder outputs of an automatic speech recognition (ASR) system, such as 1-best hypotheses, as input features to a large language model (LLM). Finally, we explore a multimodal system that combines acoustic and lexical features, as well as ASR decoder signals in an LLM. Using multimodal information yields relative equal-error-rate improvements over text-only and audio-only models of up to 39% and 61%. Increasing the size of the LLM and training with low-rank adaption leads to further relative EER reductions of up to 18% on our dataset.
MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to better facilitate multi-modal conversation. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open-domain. To build engaging dialogue system with this dataset, we propose and normalize two response producing tasks based on retrieval and generative scenarios. In addition, we build two baselines for above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset and scripts are available in https://github.com/victorsungo/MMDialog.
Real-time and Continuous Turn-taking Prediction Using Voice Activity Projection
A demonstration of a real-time and continuous turn-taking prediction system is presented. The system is based on a voice activity projection (VAP) model, which directly maps dialogue stereo audio to future voice activities. The VAP model includes contrastive predictive coding (CPC) and self-attention transformers, followed by a cross-attention transformer. We examine the effect of the input context audio length and demonstrate that the proposed system can operate in real-time with CPU settings, with minimal performance degradation.
Towards Joint Modeling of Dialogue Response and Speech Synthesis based on Large Language Model
This paper explores the potential of constructing an AI spoken dialogue system that "thinks how to respond" and "thinks how to speak" simultaneously, which more closely aligns with the human speech production process compared to the current cascade pipeline of independent chatbot and Text-to-Speech (TTS) modules. We hypothesize that Large Language Models (LLMs) with billions of parameters possess significant speech understanding capabilities and can jointly model dialogue responses and linguistic features. We conduct two sets of experiments: 1) Prosodic structure prediction, a typical front-end task in TTS, demonstrating the speech understanding ability of LLMs, and 2) Further integrating dialogue response and a wide array of linguistic features using a unified encoding format. Our results indicate that the LLM-based approach is a promising direction for building unified spoken dialogue systems.
Generative Interfaces for Language Models
Large language models (LLMs) are increasingly seen as assistants, copilots, and consultants, capable of supporting a wide range of tasks through natural conversation. However, most systems remain constrained by a linear request-response format that often makes interactions inefficient in multi-turn, information-dense, and exploratory tasks. To address these limitations, we propose Generative Interfaces for Language Models, a paradigm in which LLMs respond to user queries by proactively generating user interfaces (UIs) that enable more adaptive and interactive engagement. Our framework leverages structured interface-specific representations and iterative refinements to translate user queries into task-specific UIs. For systematic evaluation, we introduce a multidimensional assessment framework that compares generative interfaces with traditional chat-based ones across diverse tasks, interaction patterns, and query types, capturing functional, interactive, and emotional aspects of user experience. Results show that generative interfaces consistently outperform conversational ones, with humans preferring them in over 70% of cases. These findings clarify when and why users favor generative interfaces, paving the way for future advancements in human-AI interaction.
Task-oriented Document-Grounded Dialog Systems by HLTPR@RWTH for DSTC9 and DSTC10
This paper summarizes our contributions to the document-grounded dialog tasks at the 9th and 10th Dialog System Technology Challenges (DSTC9 and DSTC10). In both iterations the task consists of three subtasks: first detect whether the current turn is knowledge seeking, second select a relevant knowledge document, and third generate a response grounded on the selected document. For DSTC9 we proposed different approaches to make the selection task more efficient. The best method, Hierarchical Selection, actually improves the results compared to the original baseline and gives a speedup of 24x. In the DSTC10 iteration of the task, the challenge was to adapt systems trained on written dialogs to perform well on noisy automatic speech recognition transcripts. Therefore, we proposed data augmentation techniques to increase the robustness of the models as well as methods to adapt the style of generated responses to fit well into the proceeding dialog. Additionally, we proposed a noisy channel model that allows for increasing the factuality of the generated responses. In addition to summarizing our previous contributions, in this work, we also report on a few small improvements and reconsider the automatic evaluation metrics for the generation task which have shown a low correlation to human judgments.
Investigation of Error Simulation Techniques for Learning Dialog Policies for Conversational Error Recovery
Training dialog policies for speech-based virtual assistants requires a plethora of conversational data. The data collection phase is often expensive and time consuming due to human involvement. To address this issue, a common solution is to build user simulators for data generation. For the successful deployment of the trained policies into real world domains, it is vital that the user simulator mimics realistic conditions. In particular, speech-based assistants are heavily affected by automatic speech recognition and language understanding errors, hence the user simulator should be able to simulate similar errors. In this paper, we review the existing error simulation methods that induce errors at audio, phoneme, text, or semantic level; and conduct detailed comparisons between the audio-level and text-level methods. In the process, we improve the existing text-level method by introducing confidence score prediction and out-of-vocabulary word mapping. We also explore the impact of audio-level and text-level methods on learning a simple clarification dialog policy to recover from errors to provide insight on future improvement for both approaches.
Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task
The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.
Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue Systems
Users interacting with voice assistants today need to phrase their requests in a very specific manner to elicit an appropriate response. This limits the user experience, and is partly due to the lack of reasoning capabilities of dialogue platforms and the hand-crafted rules that require extensive labor. One possible way to improve user experience and relieve the manual efforts of designers is to build an end-to-end dialogue system that can do reasoning itself while perceiving user's utterances. In this work, we propose a novel method to incorporate the knowledge reasoning capability into dialogue systems in a more scalable and generalizable manner. Our proposed method allows a single transformer model to directly walk on a large-scale knowledge graph to generate responses. To the best of our knowledge, this is the first work to have transformer models generate responses by reasoning over differentiable knowledge graphs. We investigate the reasoning abilities of the proposed method on both task-oriented and domain-specific chit-chat dialogues. Empirical results show that this method can effectively and efficiently incorporate a knowledge graph into a dialogue system with fully-interpretable reasoning paths.
Mini-Omni2: Towards Open-source GPT-4o with Vision, Speech and Duplex Capabilities
GPT-4o, an all-encompassing model, represents a milestone in the development of large multi-modal language models. It can understand visual, auditory, and textual modalities, directly output audio, and support flexible duplex interaction. Models from the open-source community often achieve some functionalities of GPT-4o, such as visual understanding and voice chat. Nevertheless, training a unified model that incorporates all modalities is challenging due to the complexities of multi-modal data, intricate model architectures, and training processes. In this paper, we introduce Mini-Omni2, a visual-audio assistant capable of providing real-time, end-to-end voice responses to visoin and audio queries. By integrating pretrained visual and auditory encoders, Mini-Omni2 maintains performance in individual modalities. We propose a three-stage training process to align modalities, allowing the language model to handle multi-modal inputs and outputs after training on a limited dataset. For interaction, we introduce a command-based interruption mechanism, enabling more flexible interaction with users. To the best of our knowledge, Mini-Omni2 is one of the closest reproductions of GPT-4o, which have similar form of functionality, and we hope it can offer valuable insights for subsequent research.
FireRedChat: A Pluggable, Full-Duplex Voice Interaction System with Cascaded and Semi-Cascaded Implementations
Full-duplex voice interaction allows users and agents to speak simultaneously with controllable barge-in, enabling lifelike assistants and customer service. Existing solutions are either end-to-end, difficult to design and hard to control, or modular pipelines governed by turn-taking controllers that ease upgrades and per-module optimization; however, prior modular frameworks depend on non-open components and external providers, limiting holistic optimization. In this work, we present a complete, practical full-duplex voice interaction system comprising a turn-taking controller, an interaction module, and a dialogue manager. The controller integrates streaming personalized VAD (pVAD) to suppress false barge-ins from noise and non-primary speakers, precisely timestamp primary-speaker segments, and explicitly enable primary-speaker barge-ins; a semantic end-of-turn detector improves stop decisions. It upgrades heterogeneous half-duplex pipelines, cascaded, semi-cascaded, and speech-to-speech, to full duplex. Using internal models, we implement cascaded and semi-cascaded variants; the semi-cascaded one captures emotional and paralinguistic cues, yields more coherent responses, lowers latency and error propagation, and improves robustness. A dialogue manager extends capabilities via tool invocation and context management. We also propose three system-level metrics, barge-in, end-of-turn detection accuracy, and end-to-end latency, to assess naturalness, control accuracy, and efficiency. Experiments show fewer false interruptions, more accurate semantic ends, and lower latency approaching industrial systems, enabling robust, natural, real-time full-duplex interaction. Demos: https://fireredteam.github.io/demos/firered_chat.
Exploiting Simulated User Feedback for Conversational Search: Ranking, Rewriting, and Beyond
This research aims to explore various methods for assessing user feedback in mixed-initiative conversational search (CS) systems. While CS systems enjoy profuse advancements across multiple aspects, recent research fails to successfully incorporate feedback from the users. One of the main reasons for that is the lack of system-user conversational interaction data. To this end, we propose a user simulator-based framework for multi-turn interactions with a variety of mixed-initiative CS systems. Specifically, we develop a user simulator, dubbed ConvSim, that, once initialized with an information need description, is capable of providing feedback to a system's responses, as well as answering potential clarifying questions. Our experiments on a wide variety of state-of-the-art passage retrieval and neural re-ranking models show that effective utilization of user feedback can lead to 16% retrieval performance increase in terms of nDCG@3. Moreover, we observe consistent improvements as the number of feedback rounds increases (35% relative improvement in terms of nDCG@3 after three rounds). This points to a research gap in the development of specific feedback processing modules and opens a potential for significant advancements in CS. To support further research in the topic, we release over 30,000 transcripts of system-simulator interactions based on well-established CS datasets.
Toward Human Centered Interactive Clinical Question Answering System
Unstructured clinical notes contain essential patient information but are challenging for physicians to search and interpret efficiently. Although large language models (LLMs) have shown promise in question answering (QA), most existing systems lack transparency, usability, and alignment with clinical workflows. This work introduces an interactive QA system that enables physicians to query clinical notes via text or voice and receive extractive answers highlighted directly in the note for traceability. The system was built using OpenAI models with zero-shot prompting and evaluated across multiple metrics, including exact string match, word overlap, SentenceTransformer similarity, and BERTScore. Results show that while exact match scores ranged from 47 to 62 percent, semantic similarity scores exceeded 87 percent, indicating strong contextual alignment even when wording varied. To assess usability, the system was also evaluated using simulated clinical personas. Seven diverse physician and nurse personas interacted with the system across scenario-based tasks and provided structured feedback. The evaluations highlighted strengths in intuitive design and answer accessibility, alongside opportunities for enhancing explanation clarity.
CleanS2S: Single-file Framework for Proactive Speech-to-Speech Interaction
CleanS2S is a framework for human-like speech-to-speech interaction that advances conversational AI through single-file implementation and proactive dialogue capabilities. Our system integrates automatic speech recognition, large language models, and text-to-speech synthesis into a unified pipeline with real-time interruption handling, achieving low transition latency through full-duplex websocket connections and non-blocking I/O. Beyond conventional chatbot paradigms, we pioneer a proactive interaction mechanism, which combines memory systems with Subjective Action Judgement module, enabling five human-like response strategies: interruption, refusal, deflection, silence, and standard response. The memory module dynamically aggregates historical, and contextual data to inform interaction decisions. This approach breaks the rigid turn-based convention by allowing system-initiated dialog control and context-aware response selection. And we propose Action Judgement SFT that assesses input streams for responses strategies. The framework's single-file implementation with atomic configurations offers researchers unprecedented transparency and extensibility for interaction agents. The code of CleanS2S is released at \https://github.com/opendilab/CleanS2S.
Comparative Analysis of Audio Feature Extraction for Real-Time Talking Portrait Synthesis
This paper examines the integration of real-time talking-head generation for interviewer training, focusing on overcoming challenges in Audio Feature Extraction (AFE), which often introduces latency and limits responsiveness in real-time applications. To address these issues, we propose and implement a fully integrated system that replaces conventional AFE models with Open AI's Whisper, leveraging its encoder to optimize processing and improve overall system efficiency. Our evaluation of two open-source real-time models across three different datasets shows that Whisper not only accelerates processing but also improves specific aspects of rendering quality, resulting in more realistic and responsive talking-head interactions. These advancements make the system a more effective tool for immersive, interactive training applications, expanding the potential of AI-driven avatars in interviewer training.
VoiceBench: Benchmarking LLM-Based Voice Assistants
Building on the success of large language models (LLMs), recent advancements such as GPT-4o have enabled real-time speech interactions through LLM-based voice assistants, offering a significantly improved user experience compared to traditional text-based interactions. However, the absence of benchmarks designed to evaluate these speech interaction capabilities has hindered progress of LLM-based voice assistants development. Current evaluations focus primarily on automatic speech recognition (ASR) or general knowledge evaluation with clean speeches, neglecting the more intricate, real-world scenarios that involve diverse speaker characteristics, environmental and content factors. To address this, we introduce VoiceBench, the first benchmark designed to provide a multi-faceted evaluation of LLM-based voice assistants. VoiceBench also includes both real and synthetic spoken instructions that incorporate the above three key real-world variations. Extensive experiments reveal the limitations of current LLM-based voice assistant models and offer valuable insights for future research and development in this field.
Voila: Voice-Language Foundation Models for Real-Time Autonomous Interaction and Voice Role-Play
A voice AI agent that blends seamlessly into daily life would interact with humans in an autonomous, real-time, and emotionally expressive manner. Rather than merely reacting to commands, it would continuously listen, reason, and respond proactively, fostering fluid, dynamic, and emotionally resonant interactions. We introduce Voila, a family of large voice-language foundation models that make a step towards this vision. Voila moves beyond traditional pipeline systems by adopting a new end-to-end architecture that enables full-duplex, low-latency conversations while preserving rich vocal nuances such as tone, rhythm, and emotion. It achieves a response latency of just 195 milliseconds, surpassing the average human response time. Its hierarchical multi-scale Transformer integrates the reasoning capabilities of large language models (LLMs) with powerful acoustic modeling, enabling natural, persona-aware voice generation -- where users can simply write text instructions to define the speaker's identity, tone, and other characteristics. Moreover, Voila supports over one million pre-built voices and efficient customization of new ones from brief audio samples as short as 10 seconds. Beyond spoken dialogue, Voila is designed as a unified model for a wide range of voice-based applications, including automatic speech recognition (ASR), Text-to-Speech (TTS), and, with minimal adaptation, multilingual speech translation. Voila is fully open-sourced to support open research and accelerate progress toward next-generation human-machine interactions.
RADE: Reference-Assisted Dialogue Evaluation for Open-Domain Dialogue
Evaluating open-domain dialogue systems is challenging for reasons such as the one-to-many problem, i.e., many appropriate responses other than just the golden response. As of now, automatic evaluation methods need better consistency with humans, while reliable human evaluation can be time- and cost-intensive. To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem. Specifically, RADE explicitly compares reference and the candidate response to predict their overall scores. Moreover, an auxiliary response generation task enhances prediction via a shared encoder. To support RADE, we extend three datasets with additional rated responses other than just a golden response by human annotation. Experiments on our three datasets and two existing benchmarks demonstrate the effectiveness of our method, where Pearson, Spearman, and Kendall correlations with human evaluation outperform state-of-the-art baselines.
AV-Dialog: Spoken Dialogue Models with Audio-Visual Input
Dialogue models falter in noisy, multi-speaker environments, often producing irrelevant responses and awkward turn-taking. We present AV-Dialog, the first multimodal dialog framework that uses both audio and visual cues to track the target speaker, predict turn-taking, and generate coherent responses. By combining acoustic tokenization with multi-task, multi-stage training on monadic, synthetic, and real audio-visual dialogue datasets, AV-Dialog achieves robust streaming transcription, semantically grounded turn-boundary detection and accurate responses, resulting in a natural conversational flow. Experiments show that AV-Dialog outperforms audio-only models under interference, reducing transcription errors, improving turn-taking prediction, and enhancing human-rated dialogue quality. These results highlight the power of seeing as well as hearing for speaker-aware interaction, paving the way for {spoken} dialogue agents that perform {robustly} in real-world, noisy environments.
P5: Plug-and-Play Persona Prompting for Personalized Response Selection
The use of persona-grounded retrieval-based chatbots is crucial for personalized conversations, but there are several challenges that need to be addressed. 1) In general, collecting persona-grounded corpus is very expensive. 2) The chatbot system does not always respond in consideration of persona at real applications. To address these challenges, we propose a plug-and-play persona prompting method. Our system can function as a standard open-domain chatbot if persona information is not available. We demonstrate that this approach performs well in the zero-shot setting, which reduces the dependence on persona-ground training data. This makes it easier to expand the system to other languages without the need to build a persona-grounded corpus. Additionally, our model can be fine-tuned for even better performance. In our experiments, the zero-shot model improved the standard model by 7.71 and 1.04 points in the original persona and revised persona, respectively. The fine-tuned model improved the previous state-of-the-art system by 1.95 and 3.39 points in the original persona and revised persona, respectively. To the best of our knowledge, this is the first attempt to solve the problem of personalized response selection using prompt sequences. Our code is available on github~https://github.com/rungjoo/plug-and-play-prompt-persona.
Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction
Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
Recent advances in language models have achieved significant progress. GPT-4o, as a new milestone, has enabled real-time conversations with humans, demonstrating near-human natural fluency. Such human-computer interaction necessitates models with the capability to perform reasoning directly with the audio modality and generate output in streaming. However, this remains beyond the reach of current academic models, as they typically depend on extra TTS systems for speech synthesis, resulting in undesirable latency. This paper introduces the Mini-Omni, an audio-based end-to-end conversational model, capable of real-time speech interaction. To achieve this capability, we propose a text-instructed speech generation method, along with batch-parallel strategies during inference to further boost the performance. Our method also helps to retain the original model's language capabilities with minimal degradation, enabling other works to establish real-time interaction capabilities. We call this training method "Any Model Can Talk". We also introduce the VoiceAssistant-400K dataset to fine-tune models optimized for speech output. To our best knowledge, Mini-Omni is the first fully end-to-end, open-source model for real-time speech interaction, offering valuable potential for future research.
Frozen Large Language Models Can Perceive Paralinguistic Aspects of Speech
This work studies the capabilities of a large language model (LLM) to understand paralinguistic aspects of speech without fine-tuning its weights. We utilize an end-to-end system with a speech encoder, which is trained to produce token embeddings such that the LLM's response to an expressive speech prompt is aligned with its response to a semantically matching text prompt that has also been conditioned on the user's speaking style. This framework enables the encoder to generate tokens that capture both linguistic and paralinguistic information and effectively convey them to the LLM, even when the LLM's weights remain completely frozen. To the best of our knowledge, our work is the first to explore how to induce a frozen LLM to understand more than just linguistic content from speech inputs in a general interaction setting. Experiments demonstrate that our system is able to produce higher quality and more empathetic responses to expressive speech prompts compared to several baselines.
OmniResponse: Online Multimodal Conversational Response Generation in Dyadic Interactions
In this paper, we introduce Online Multimodal Conversational Response Generation (OMCRG), a novel task that aims to online generate synchronized verbal and non-verbal listener feedback, conditioned on the speaker's multimodal input. OMCRG reflects natural dyadic interactions and poses new challenges in achieving synchronization between the generated audio and facial responses of the listener. To address these challenges, we innovatively introduce text as an intermediate modality to bridge the audio and facial responses. We hence propose OmniResponse, a Multimodal Large Language Model (MLLM) that autoregressively generates high-quality multi-modal listener responses. OmniResponse leverages a pretrained LLM enhanced with two novel components: Chrono-Text, which temporally anchors generated text tokens, and TempoVoice, a controllable online TTS module that produces speech synchronized with facial reactions. To support further OMCRG research, we present ResponseNet, a new dataset comprising 696 high-quality dyadic interactions featuring synchronized split-screen videos, multichannel audio, transcripts, and facial behavior annotations. Comprehensive evaluations conducted on ResponseNet demonstrate that OmniResponse significantly outperforms baseline models in terms of semantic speech content, audio-visual synchronization, and generation quality.
AsyncMLD: Asynchronous Multi-LLM Framework for Dialogue Recommendation System
We have reached a practical and realistic phase in human-support dialogue agents by developing a large language model (LLM). However, when requiring expert knowledge or anticipating the utterance content using the massive size of the dialogue database, we still need help with the utterance content's effectiveness and the efficiency of its output speed, even if using LLM. Therefore, we propose a framework that uses LLM asynchronously in the part of the system that returns an appropriate response and in the part that understands the user's intention and searches the database. In particular, noting that it takes time for the robot to speak, threading related to database searches is performed while the robot is speaking.
Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs), which rely on natural language conversations to satisfy user needs. In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol. It might over-emphasize the matching with the ground-truth items or utterances generated by human annotators, while neglecting the interactive nature of being a capable CRS. To overcome the limitation, we further propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators. Our evaluation approach can simulate various interaction scenarios between users and systems. Through the experiments on two publicly available CRS datasets, we demonstrate notable improvements compared to the prevailing evaluation protocol. Furthermore, we emphasize the evaluation of explainability, and ChatGPT showcases persuasive explanation generation for its recommendations. Our study contributes to a deeper comprehension of the untapped potential of LLMs for CRSs and provides a more flexible and easy-to-use evaluation framework for future research endeavors. The codes and data are publicly available at https://github.com/RUCAIBox/iEvaLM-CRS.
DialGuide: Aligning Dialogue Model Behavior with Developer Guidelines
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer's expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
ARIG: Autoregressive Interactive Head Generation for Real-time Conversations
Face-to-face communication, as a common human activity, motivates the research on interactive head generation. A virtual agent can generate motion responses with both listening and speaking capabilities based on the audio or motion signals of the other user and itself. However, previous clip-wise generation paradigm or explicit listener/speaker generator-switching methods have limitations in future signal acquisition, contextual behavioral understanding, and switching smoothness, making it challenging to be real-time and realistic. In this paper, we propose an autoregressive (AR) based frame-wise framework called ARIG to realize the real-time generation with better interaction realism. To achieve real-time generation, we model motion prediction as a non-vector-quantized AR process. Unlike discrete codebook-index prediction, we represent motion distribution using diffusion procedure, achieving more accurate predictions in continuous space. To improve interaction realism, we emphasize interactive behavior understanding (IBU) and detailed conversational state understanding (CSU). In IBU, based on dual-track dual-modal signals, we summarize short-range behaviors through bidirectional-integrated learning and perform contextual understanding over long ranges. In CSU, we use voice activity signals and context features of IBU to understand the various states (interruption, feedback, pause, etc.) that exist in actual conversations. These serve as conditions for the final progressive motion prediction. Extensive experiments have verified the effectiveness of our model.
Can Language Models Learn to Listen?
We present a framework for generating appropriate facial responses from a listener in dyadic social interactions based on the speaker's words. Given an input transcription of the speaker's words with their timestamps, our approach autoregressively predicts a response of a listener: a sequence of listener facial gestures, quantized using a VQ-VAE. Since gesture is a language component, we propose treating the quantized atomic motion elements as additional language token inputs to a transformer-based large language model. Initializing our transformer with the weights of a language model pre-trained only on text results in significantly higher quality listener responses than training a transformer from scratch. We show that our generated listener motion is fluent and reflective of language semantics through quantitative metrics and a qualitative user study. In our evaluation, we analyze the model's ability to utilize temporal and semantic aspects of spoken text. Project page: https://people.eecs.berkeley.edu/~evonne_ng/projects/text2listen/
AsyncVoice Agent: Real-Time Explanation for LLM Planning and Reasoning
Effective human-AI collaboration on complex reasoning tasks requires that users understand and interact with the model's process, not just receive an output. However, the monolithic text from methods like Chain-of-Thought (CoT) prevents this, as current interfaces lack real-time verbalization and robust user barge-in. We present AsyncVoice Agent, a system whose asynchronous architecture decouples a streaming LLM backend from a conversational voice frontend. This design allows narration and inference to run in parallel, empowering users to interrupt, query, and steer the model's reasoning process at any time. Objective benchmarks show this approach reduces interaction latency by more than 600x compared to monolithic baselines while ensuring high fidelity and competitive task accuracy. By enabling a two-way dialogue with a model's thought process, AsyncVoice Agent offers a new paradigm for building more effective, steerable, and trustworthy human-AI systems for high-stakes tasks.
Voicing Personas: Rewriting Persona Descriptions into Style Prompts for Controllable Text-to-Speech
In this paper, we propose a novel framework to control voice style in prompt-based, controllable text-to-speech systems by leveraging textual personas as voice style prompts. We present two persona rewriting strategies to transform generic persona descriptions into speech-oriented prompts, enabling fine-grained manipulation of prosodic attributes such as pitch, emotion, and speaking rate. Experimental results demonstrate that our methods enhance the naturalness, clarity, and consistency of synthesized speech. Finally, we analyze implicit social biases introduced by LLM-based rewriting, with a focus on gender. We underscore voice style as a crucial factor for persona-driven AI dialogue systems.
Unified Speech-Text Pretraining for Spoken Dialog Modeling
While recent work shows promising results in expanding the capabilities of large language models (LLM) to directly understand and synthesize speech, an LLM-based strategy for modeling spoken dialogs remains elusive and calls for further investigation. This work proposes an extensive speech-text LLM framework, named the Unified Spoken Dialog Model (USDM), to generate coherent spoken responses with organic prosodic features relevant to the given input speech without relying on automatic speech recognition (ASR) or text-to-speech (TTS) solutions. Our approach employs a multi-step speech-text inference scheme that leverages chain-of-reasoning capabilities exhibited by the underlying LLM. We also propose a generalized speech-text pretraining scheme that helps with capturing cross-modal semantics. Automatic and human evaluations show that the proposed approach is effective in generating natural-sounding spoken responses, outperforming both prior and cascaded baselines. Detailed comparative studies reveal that, despite the cascaded approach being stronger in individual components, the joint speech-text modeling improves robustness against recognition errors and speech quality. Demo is available at https://unifiedsdm.github.io.
OmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction
Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/OmniCharacter.
Code Soliloquies for Accurate Calculations in Large Language Models
High-quality conversational datasets are integral to the successful development of Intelligent Tutoring Systems (ITS) that employ a Large Language Model (LLM) backend. These datasets, when used to fine-tune the LLM backend, significantly enhance the quality of interactions between students and ITS. A common strategy for developing these datasets involves generating synthetic student-teacher dialogues using advanced GPT-4 models. However, challenges arise when these dialogues demand complex calculations, common in subjects like physics. Despite its advanced capabilities, GPT-4's performance falls short in reliably handling even simple multiplication tasks, marking a significant limitation in its utility for these subjects. To address these challenges, this paper introduces an innovative stateful prompt design. Our approach generates a mock conversation between a student and a tutorbot, both roles simulated by GPT-4. Each student response triggers a soliloquy (an inner monologue) in the GPT-tutorbot, which assesses whether its response would necessitate calculations. If so, it proceeds to script the required code in Python and then uses the resulting output to construct its response to the student. Our approach notably enhances the quality of synthetic conversation datasets, especially for subjects that are calculation-intensive. Our findings show that our Higgs model -- a LLaMA finetuned with datasets generated through our novel stateful prompt design -- proficiently utilizes Python for computations. Consequently, finetuning with our datasets enriched with code soliloquies enhances not just the accuracy but also the computational reliability of Higgs' responses.
ConvFill: Model Collaboration for Responsive Conversational Voice Agents
Deploying conversational voice agents with large language models faces a critical challenge: cloud-based foundation models provide deep reasoning and domain knowledge but introduce latency that disrupts natural conversation, while on-device models respond immediately but lack sophistication. We propose conversational infill, a task where a lightweight on-device model generates contextually appropriate dialogue while seamlessly incorporating streaming knowledge from a powerful backend model. This approach decouples response latency from model capability, enabling systems that feel responsive while accessing the full power of large-scale models. We present ConvFill, a 360M parameter model trained on synthetic multi-domain conversations. Evaluation across multiple backend models shows that conversational infill can be successfully learned, with ConvFill achieving accuracy improvements of 36-42% over standalone small models of the same size while consistently retaining sub-200ms response latencies. Our results demonstrate the promise of this approach for building on-device conversational agents that are both immediately responsive and knowledgeable.
LLaVA-Interactive: An All-in-One Demo for Image Chat, Segmentation, Generation and Editing
LLaVA-Interactive is a research prototype for multimodal human-AI interaction. The system can have multi-turn dialogues with human users by taking multimodal user inputs and generating multimodal responses. Importantly, LLaVA-Interactive goes beyond language prompt, where visual prompt is enabled to align human intents in the interaction. The development of LLaVA-Interactive is extremely cost-efficient as the system combines three multimodal skills of pre-built AI models without additional model training: visual chat of LLaVA, image segmentation from SEEM, as well as image generation and editing from GLIGEN. A diverse set of application scenarios is presented to demonstrate the promises of LLaVA-Interactive and to inspire future research in multimodal interactive systems.
Adapting Document-Grounded Dialog Systems to Spoken Conversations using Data Augmentation and a Noisy Channel Model
This paper summarizes our submission to Task 2 of the second track of the 10th Dialog System Technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations". Similar to the previous year's iteration, the task consists of three subtasks: detecting whether a turn is knowledge seeking, selecting the relevant knowledge document and finally generating a grounded response. This year, the focus lies on adapting the system to noisy ASR transcripts. We explore different approaches to make the models more robust to this type of input and to adapt the generated responses to the style of spoken conversations. For the latter, we get the best results with a noisy channel model that additionally reduces the number of short and generic responses. Our best system achieved the 1st rank in the automatic and the 3rd rank in the human evaluation of the challenge.
Toward Interactive Dictation
Voice dictation is an increasingly important text input modality. Existing systems that allow both dictation and editing-by-voice restrict their command language to flat templates invoked by trigger words. In this work, we study the feasibility of allowing users to interrupt their dictation with spoken editing commands in open-ended natural language. We introduce a new task and dataset, TERTiUS, to experiment with such systems. To support this flexibility in real-time, a system must incrementally segment and classify spans of speech as either dictation or command, and interpret the spans that are commands. We experiment with using large pre-trained language models to predict the edited text, or alternatively, to predict a small text-editing program. Experiments show a natural trade-off between model accuracy and latency: a smaller model achieves 30% end-state accuracy with 1.3 seconds of latency, while a larger model achieves 55% end-state accuracy with 7 seconds of latency.
A Noise-Robust Turn-Taking System for Real-World Dialogue Robots: A Field Experiment
Turn-taking is a crucial aspect of human-robot interaction, directly influencing conversational fluidity and user engagement. While previous research has explored turn-taking models in controlled environments, their robustness in real-world settings remains underexplored. In this study, we propose a noise-robust voice activity projection (VAP) model, based on a Transformer architecture, to enhance real-time turn-taking in dialogue robots. To evaluate the effectiveness of the proposed system, we conducted a field experiment in a shopping mall, comparing the VAP system with a conventional cloud-based speech recognition system. Our analysis covered both subjective user evaluations and objective behavioral analysis. The results showed that the proposed system significantly reduced response latency, leading to a more natural conversation where both the robot and users responded faster. The subjective evaluations suggested that faster responses contribute to a better interaction experience.
WildSpeech-Bench: Benchmarking Audio LLMs in Natural Speech Conversation
Recent multi-modal Large Language Models (LLMs) such as GPT-4o have demonstrated strong capabilities of direct speech interaction. However, the lack of specialized and comprehensive benchmarks for end-to-end speech LLM evaluation hinders optimizing the user experience of Audio LLMs in real-world applications. Existing evaluation methods often adapt text-based benchmarks, overlooking speech's unique characteristics and challenges, including prosody, homophones, stuttering, and differing user expectations. Here, we present a novel approach to thoroughly evaluate LLMs in practical speech conversations. We systematically curate real-world chat data relevant to spoken scenarios, introduce diversity in speaker attributes and acoustic conditions, and augment the dataset with speech-specific phenomena. We further design a query-aware evaluation method to use customized evaluation checklists and prompts to enhance the accuracy of automatic evaluation. We conduct comprehensive testing and detailed analysis of various mainstream speech models, revealing significant differences in model performance across different speech scenarios. The use of query-aware evaluation further enables a finer-grained assessment under various speech-specific scenarios. Our benchmark can provide valuable insights for speech model development and evaluation.
Qwen2-Audio Technical Report
We introduce the latest progress of Qwen-Audio, a large-scale audio-language model called Qwen2-Audio, which is capable of accepting various audio signal inputs and performing audio analysis or direct textual responses with regard to speech instructions. In contrast to complex hierarchical tags, we have simplified the pre-training process by utilizing natural language prompts for different data and tasks, and have further expanded the data volume. We have boosted the instruction-following capability of Qwen2-Audio and implemented two distinct audio interaction modes for voice chat and audio analysis. In the voice chat mode, users can freely engage in voice interactions with Qwen2-Audio without text input. In the audio analysis mode, users could provide audio and text instructions for analysis during the interaction. Note that we do not use any system prompts to switch between voice chat and audio analysis modes. Qwen2-Audio is capable of intelligently comprehending the content within audio and following voice commands to respond appropriately. For instance, in an audio segment that simultaneously contains sounds, multi-speaker conversations, and a voice command, Qwen2-Audio can directly understand the command and provide an interpretation and response to the audio. Additionally, DPO has optimized the model's performance in terms of factuality and adherence to desired behavior. According to the evaluation results from AIR-Bench, Qwen2-Audio outperformed previous SOTAs, such as Gemini-1.5-pro, in tests focused on audio-centric instruction-following capabilities. Qwen2-Audio is open-sourced with the aim of fostering the advancement of the multi-modal language community.
Style-Talker: Finetuning Audio Language Model and Style-Based Text-to-Speech Model for Fast Spoken Dialogue Generation
The rapid advancement of large language models (LLMs) has significantly propelled the development of text-based chatbots, demonstrating their capability to engage in coherent and contextually relevant dialogues. However, extending these advancements to enable end-to-end speech-to-speech conversation bots remains a formidable challenge, primarily due to the extensive dataset and computational resources required. The conventional approach of cascading automatic speech recognition (ASR), LLM, and text-to-speech (TTS) models in a pipeline, while effective, suffers from unnatural prosody because it lacks direct interactions between the input audio and its transcribed text and the output audio. These systems are also limited by their inherent latency from the ASR process for real-time applications. This paper introduces Style-Talker, an innovative framework that fine-tunes an audio LLM alongside a style-based TTS model for fast spoken dialog generation. Style-Talker takes user input audio and uses transcribed chat history and speech styles to generate both the speaking style and text for the response. Subsequently, the TTS model synthesizes the speech, which is then played back to the user. While the response speech is being played, the input speech undergoes ASR processing to extract the transcription and speaking style, serving as the context for the ensuing dialogue turn. This novel pipeline accelerates the traditional cascade ASR-LLM-TTS systems while integrating rich paralinguistic information from input speech. Our experimental results show that Style-Talker significantly outperforms the conventional cascade and speech-to-speech baselines in terms of both dialogue naturalness and coherence while being more than 50% faster.
Stream RAG: Instant and Accurate Spoken Dialogue Systems with Streaming Tool Usage
End-to-end speech-in speech-out dialogue systems are emerging as a powerful alternative to traditional ASR-LLM-TTS pipelines, generating more natural, expressive responses with significantly lower latency. However, these systems remain prone to hallucinations due to limited factual grounding. While text-based dialogue systems address this challenge by integrating tools such as web search and knowledge graph APIs, we introduce the first approach to extend tool use directly into speech-in speech-out systems. A key challenge is that tool integration substantially increases response latency, disrupting conversational flow. To mitigate this, we propose Streaming Retrieval-Augmented Generation (Streaming RAG), a novel framework that reduces user-perceived latency by predicting tool queries in parallel with user speech, even before the user finishes speaking. Specifically, we develop a post-training pipeline that teaches the model when to issue tool calls during ongoing speech and how to generate spoken summaries that fuse audio queries with retrieved text results, thereby improving both accuracy and responsiveness. To evaluate our approach, we construct AudioCRAG, a benchmark created by converting queries from the publicly available CRAG dataset into speech form. Experimental results demonstrate that our streaming RAG approach increases QA accuracy by up to 200% relative (from 11.1% to 34.2% absolute) and further enhances user experience by reducing tool use latency by 20%. Importantly, our streaming RAG approach is modality-agnostic and can be applied equally to typed input, paving the way for more agentic, real-time AI assistants.
Supporting Sensemaking of Large Language Model Outputs at Scale
Large language models (LLMs) are capable of generating multiple responses to a single prompt, yet little effort has been expended to help end-users or system designers make use of this capability. In this paper, we explore how to present many LLM responses at once. We design five features, which include both pre-existing and novel methods for computing similarities and differences across textual documents, as well as how to render their outputs. We report on a controlled user study (n=24) and eight case studies evaluating these features and how they support users in different tasks. We find that the features support a wide variety of sensemaking tasks and even make tasks previously considered to be too difficult by our participants now tractable. Finally, we present design guidelines to inform future explorations of new LLM interfaces.
MediQ: Question-Asking LLMs and a Benchmark for Reliable Interactive Clinical Reasoning
Users typically engage with LLMs interactively, yet most existing benchmarks evaluate them in a static, single-turn format, posing reliability concerns in interactive scenarios. We identify a key obstacle towards reliability: LLMs are trained to answer any question, even with incomplete context or insufficient knowledge. In this paper, we propose to change the static paradigm to an interactive one, develop systems that proactively ask questions to gather more information and respond reliably, and introduce an benchmark - MediQ - to evaluate question-asking ability in LLMs. MediQ simulates clinical interactions consisting of a Patient System and an adaptive Expert System; with potentially incomplete initial information, the Expert refrains from making diagnostic decisions when unconfident, and instead elicits missing details via follow-up questions. We provide a pipeline to convert single-turn medical benchmarks into an interactive format. Our results show that directly prompting state-of-the-art LLMs to ask questions degrades performance, indicating that adapting LLMs to proactive information-seeking settings is nontrivial. We experiment with abstention strategies to better estimate model confidence and decide when to ask questions, improving diagnostic accuracy by 22.3%; however, performance still lags compared to an (unrealistic in practice) upper bound with complete information upfront. Further analyses show improved interactive performance with filtering irrelevant contexts and reformatting conversations. Overall, we introduce a novel problem towards LLM reliability, an interactive MediQ benchmark and a novel question-asking system, and highlight directions to extend LLMs' information-seeking abilities in critical domains.
A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects
Proactive dialogue systems, related to a wide range of real-world conversational applications, equip the conversational agent with the capability of leading the conversation direction towards achieving pre-defined targets or fulfilling certain goals from the system side. It is empowered by advanced techniques to progress to more complicated tasks that require strategical and motivational interactions. In this survey, we provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues. Furthermore, we discuss challenges that meet the real-world application needs but require a greater research focus in the future. We hope that this first survey of proactive dialogue systems can provide the community with a quick access and an overall picture to this practical problem, and stimulate more progresses on conversational AI to the next level.
Building a Personalized Dialogue System with Prompt-Tuning
Dialogue systems without consistent responses are not fascinating. In this study, we build a dialogue system that can respond based on a given character setting (persona) to bring consistency. Considering the trend of the rapidly increasing scale of language models, we propose an approach that uses prompt-tuning, which has low learning costs, on pre-trained large-scale language models. The results of automatic and manual evaluations in English and Japanese show that it is possible to build a dialogue system with more natural and personalized responses using less computational resources than fine-tuning.
Adaptive Multi-Agent Response Refinement in Conversational Systems
Large Language Models (LLMs) have demonstrated remarkable success in conversational systems by generating human-like responses. However, they can fall short, especially when required to account for personalization or specific knowledge. In real-life settings, it is impractical to rely on users to detect these errors and request a new response. One way to address this problem is to refine the response before returning it to the user. While existing approaches focus on refining responses within a single LLM, this method struggles to consider diverse aspects needed for effective conversations. In this work, we propose refining responses through a multi-agent framework, where each agent is assigned a specific role for each aspect. We focus on three key aspects crucial to conversational quality: factuality, personalization, and coherence. Each agent is responsible for reviewing and refining one of these aspects, and their feedback is then merged to improve the overall response. To enhance collaboration among them, we introduce a dynamic communication strategy. Instead of following a fixed sequence of agents, our approach adaptively selects and coordinates the most relevant agents based on the specific requirements of each query. We validate our framework on challenging conversational datasets, demonstrating that ours significantly outperforms relevant baselines, particularly in tasks involving knowledge or user's persona, or both.
Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations
Recent progress on large language models (LLMs) has enabled dialogue agents to generate highly naturalistic and plausible text. However, current LLM language generation focuses on responding accurately to questions and requests with a single effective response. In reality, many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion. Accounting for how an agent can effectively steer a conversation is a crucial ability in many dialogue tasks, from healthcare to preference elicitation. Existing methods for fine-tuning dialogue agents to accomplish such tasks would rely on curating some amount of expert data. However, doing so often requires understanding the underlying cognitive processes of the conversational partner, which is a skill neither humans nor LLMs trained on human data can reliably do. Our key insight is that while LLMs may not be adept at identifying effective strategies for steering conversations a priori, or in the middle of an ongoing conversation, they can do so post-hoc, or in hindsight, after seeing how their conversational partner responds. We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations. We apply our approach to two domains that require understanding human mental state, intelligent interaction, and persuasion: mental health support, and soliciting charitable donations. Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
Will AI shape the way we speak? The emerging sociolinguistic influence of synthetic voices
The growing prevalence of conversational voice interfaces, powered by developments in both speech and language technologies, raises important questions about their influence on human communication. While written communication can signal identity through lexical and stylistic choices, voice-based interactions inherently amplify socioindexical elements - such as accent, intonation, and speech style - which more prominently convey social identity and group affiliation. There is evidence that even passive media such as television is likely to influence the audience's linguistic patterns. Unlike passive media, conversational AI is interactive, creating a more immersive and reciprocal dynamic that holds a greater potential to impact how individuals speak in everyday interactions. Such heightened influence can be expected to arise from phenomena such as acoustic-prosodic entrainment and linguistic accommodation, which occur naturally during interaction and enable users to adapt their speech patterns in response to the system. While this phenomenon is still emerging, its potential societal impact could provide organisations, movements, and brands with a subtle yet powerful avenue for shaping and controlling public perception and social identity. We argue that the socioindexical influence of AI-generated speech warrants attention and should become a focus of interdisciplinary research, leveraging new and existing methodologies and technologies to better understand its implications.
Evaluating Speech-to-Text x LLM x Text-to-Speech Combinations for AI Interview Systems
Voice-based conversational AI systems increasingly rely on cascaded architectures that combine speech-to-text (STT), large language models (LLMs), and text-to-speech (TTS) components. We present a large-scale empirical comparison of STT x LLM x TTS stacks using data sampled from over 300,000 AI-conducted job interviews. We used an LLM-as-a-Judge automated evaluation framework to assess conversational quality, technical accuracy, and skill assessment capabilities. Our analysis of five production configurations reveals that a stack combining Google's STT, GPT-4.1, and Cartesia's TTS outperforms alternatives in both objective quality metrics and user satisfaction scores. Surprisingly, we find that objective quality metrics correlate weakly with user satisfaction scores, suggesting that user experience in voice-based AI systems depends on factors beyond technical performance. Our findings provide practical guidance for selecting components in multimodal conversations and contribute a validated evaluation methodology for human-AI interactions.
PromptTTS 2: Describing and Generating Voices with Text Prompt
Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2.
Just ASR + LLM? A Study on Speech Large Language Models' Ability to Identify and Understand Speaker in Spoken Dialogue
In recent years, we have observed a rapid advancement in speech language models (SpeechLLMs), catching up with humans' listening and reasoning abilities. SpeechLLMs have demonstrated impressive spoken dialog question-answering (SQA) performance in benchmarks like Gaokao, the English listening test of the college entrance exam in China, which seemingly requires understanding both the spoken content and voice characteristics of speakers in a conversation. However, after carefully examining Gaokao's questions, we find the correct answers to many questions can be inferred from the conversation transcript alone, i.e.\ without speaker segmentation and identification. Our evaluation of state-of-the-art models Qwen-Audio and WavLLM on both Gaokao and our proposed "What Do You Like?" dataset shows a significantly higher accuracy in these context-based questions than in identity-critical questions, which can only be answered reliably with correct speaker identification. The results and analysis suggest that when solving SQA, the current SpeechLLMs exhibit limited speaker awareness from the audio and behave similarly to an LLM reasoning from the conversation transcription without sound. We propose that tasks focused on identity-critical questions could offer a more accurate evaluation framework of SpeechLLMs in SQA.
InteractComp: Evaluating Search Agents With Ambiguous Queries
Language agents have demonstrated remarkable potential in web search and information retrieval. However, these search agents assume user queries are complete and unambiguous, an assumption that diverges from reality where users begin with incomplete queries requiring clarification through interaction. Yet most agents lack interactive mechanisms during the search process, and existing benchmarks cannot assess this capability. To address this gap, we introduce InteractComp, a benchmark designed to evaluate whether search agents can recognize query ambiguity and actively interact to resolve it during search. Following the principle of easy to verify, interact to disambiguate, we construct 210 expert-curated questions across 9 domains through a target-distractor methodology that creates genuine ambiguity resolvable only through interaction. Evaluation of 17 models reveals striking failure: the best model achieves only 13.73% accuracy despite 71.50% with complete context, exposing systematic overconfidence rather than reasoning deficits. Forced interaction produces dramatic gains, demonstrating latent capability current strategies fail to engage. Longitudinal analysis shows interaction capabilities stagnated over 15 months while search performance improved seven-fold, revealing a critical blind spot. This stagnation, coupled with the immediate feedback inherent to search tasks, makes InteractComp a valuable resource for both evaluating and training interaction capabilities in search agents. The code is available at https://github.com/FoundationAgents/InteractComp.
"Ask Me Anything": How Comcast Uses LLMs to Assist Agents in Real Time
Customer service is how companies interface with their customers. It can contribute heavily towards the overall customer satisfaction. However, high-quality service can become expensive, creating an incentive to make it as cost efficient as possible and prompting most companies to utilize AI-powered assistants, or "chat bots". On the other hand, human-to-human interaction is still desired by customers, especially when it comes to complex scenarios such as disputes and sensitive topics like bill payment. This raises the bar for customer service agents. They need to accurately understand the customer's question or concern, identify a solution that is acceptable yet feasible (and within the company's policy), all while handling multiple conversations at once. In this work, we introduce "Ask Me Anything" (AMA) as an add-on feature to an agent-facing customer service interface. AMA allows agents to ask questions to a large language model (LLM) on demand, as they are handling customer conversations -- the LLM provides accurate responses in real-time, reducing the amount of context switching the agent needs. In our internal experiments, we find that agents using AMA versus a traditional search experience spend approximately 10% fewer seconds per conversation containing a search, translating to millions of dollars of savings annually. Agents that used the AMA feature provided positive feedback nearly 80% of the time, demonstrating its usefulness as an AI-assisted feature for customer care.
Extracting user needs with Chat-GPT for dialogue recommendation
Large-scale language models (LLMs), such as ChatGPT, are becoming increasingly sophisticated and exhibit human-like capabilities, playing an essential role in assisting humans in a variety of everyday tasks. An important application of AI is interactive recommendation systems that respond to human inquiries and make recommendations tailored to the user. In most conventional interactive recommendation systems, the language model is used only as a dialogue model, and there is a separate recommendation system. This is due to the fact that the language model used as a dialogue system does not have the capability to serve as a recommendation system. Therefore, we will realize the construction of a dialogue system with recommendation capability by using OpenAI's Chat-GPT, which has a very high inference capability as a dialogue system and the ability to generate high-quality sentences, and verify the effectiveness of the system.
Advancing Large Language Models to Capture Varied Speaking Styles and Respond Properly in Spoken Conversations
In spoken dialogue, even if two current turns are the same sentence, their responses might still differ when they are spoken in different styles. The spoken styles, containing paralinguistic and prosodic information, mark the most significant difference between text and speech modality. When using text-only LLMs to model spoken dialogue, text-only LLMs cannot give different responses based on the speaking style of the current turn. In this paper, we focus on enabling LLMs to listen to the speaking styles and respond properly. Our goal is to teach the LLM that "even if the sentences are identical if they are spoken in different styles, their corresponding responses might be different". Since there is no suitable dataset for achieving this goal, we collect a speech-to-speech dataset, StyleTalk, with the following desired characteristics: when two current speeches have the same content but are spoken in different styles, their responses will be different. To teach LLMs to understand and respond properly to the speaking styles, we propose the Spoken-LLM framework that can model the linguistic content and the speaking styles. We train Spoken-LLM using the StyleTalk dataset and devise a two-stage training pipeline to help the Spoken-LLM better learn the speaking styles. Based on extensive experiments, we show that Spoken-LLM outperforms text-only baselines and prior speech LLMs methods.
Interpreting User Requests in the Context of Natural Language Standing Instructions
Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.
Interacting with Non-Cooperative User: A New Paradigm for Proactive Dialogue Policy
Proactive dialogue system is able to lead the conversation to a goal topic and has advantaged potential in bargain, persuasion and negotiation. Current corpus-based learning manner limits its practical application in real-world scenarios. To this end, we contribute to advance the study of the proactive dialogue policy to a more natural and challenging setting, i.e., interacting dynamically with users. Further, we call attention to the non-cooperative user behavior -- the user talks about off-path topics when he/she is not satisfied with the previous topics introduced by the agent. We argue that the targets of reaching the goal topic quickly and maintaining a high user satisfaction are not always converge, because the topics close to the goal and the topics user preferred may not be the same. Towards this issue, we propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting. Specifically, we learn the trade-off via a learned goal weight, which consists of four factors (dialogue turn, goal completion difficulty, user satisfaction estimation, and cooperative degree). The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.
InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue
We introduce InteractiveOmni, a unified and open-source omni-modal large language model for audio-visual multi-turn interaction, ranging from 4B to 8B parameters, designed to lead the field of lightweight models by offering comprehensive omni-modal understanding and speech generation capabilities. To achieve this, we integrate the vision encoder, audio encoder, large language model, and speech decoder into a unified model for understanding and generation tasks. We design a multi-stage training strategy to ensure robust cross-modal capabilities, including pre-training for omni-modal understanding, followed by post-training with speech conversation and audio-visual interaction. To enable human-like long-term conversational ability, we meticulously curate a multi-turn training dataset that enhances the model's ability to handle complex and multi-turn interactions. To effectively evaluate the multi-turn memory and speech interaction capabilities, we construct the multi-modal multi-turn memory benchmark and the multi-turn speech interaction benchmark. Experiments demonstrate that InteractiveOmni significantly outperforms leading open-source models and provides a more intelligent multi-turn audio-visual experience, particularly in its long-term memory capabilities. Notably, InteractiveOmni-4B is comparable to the much larger model like Qwen2.5-Omni-7B on general benchmarks, and it can retain 97% of the performance of the InteractiveOmni-8B while utilizing only 50% of the model size. Achieving state-of-the-art results against similarly sized models across image, audio, video understanding, and speech generation tasks, InteractiveOmni is an accessible, open-source foundation for next-generation intelligent interactive systems.
Fun-Audio-Chat Technical Report
Recent advancements in joint speech-text models show great potential for seamless voice interactions. However, existing models face critical challenges: temporal resolution mismatch between speech tokens (25Hz) and text tokens (~3Hz) dilutes semantic information, incurs high computational costs, and causes catastrophic forgetting of text LLM knowledge. We introduce Fun-Audio-Chat, a Large Audio Language Model addressing these limitations via two innovations from our previous work DrVoice. First, Dual-Resolution Speech Representations (DRSR): the Shared LLM processes audio at efficient 5Hz (via token grouping), while the Speech Refined Head generates high-quality tokens at 25Hz, balancing efficiency (~50% GPU reduction) and quality. Second, Core-Cocktail Training, a two-stage fine-tuning with intermediate merging that mitigates catastrophic forgetting. We then apply Multi-Task DPO Training to enhance robustness, audio understanding, instruction-following and voice empathy. This multi-stage post-training enables Fun-Audio-Chat to retain text LLM knowledge while gaining powerful audio understanding, reasoning, and generation. Unlike recent LALMs requiring large-scale audio-text pre-training, Fun-Audio-Chat leverages pre-trained models and extensive post-training. Fun-Audio-Chat 8B and MoE 30B-A3B achieve competitive performance on Speech-to-Text and Speech-to-Speech tasks, ranking top among similar-scale models on Spoken QA benchmarks. They also achieve competitive to superior performance on Audio Understanding, Speech Function Calling, Instruction-Following and Voice Empathy. We develop Fun-Audio-Chat-Duplex, a full-duplex variant with strong performance on Spoken QA and full-duplex interactions. We open-source Fun-Audio-Chat-8B with training and inference code, and provide an interactive demo.
VR-GPT: Visual Language Model for Intelligent Virtual Reality Applications
The advent of immersive Virtual Reality applications has transformed various domains, yet their integration with advanced artificial intelligence technologies like Visual Language Models remains underexplored. This study introduces a pioneering approach utilizing VLMs within VR environments to enhance user interaction and task efficiency. Leveraging the Unity engine and a custom-developed VLM, our system facilitates real-time, intuitive user interactions through natural language processing, without relying on visual text instructions. The incorporation of speech-to-text and text-to-speech technologies allows for seamless communication between the user and the VLM, enabling the system to guide users through complex tasks effectively. Preliminary experimental results indicate that utilizing VLMs not only reduces task completion times but also improves user comfort and task engagement compared to traditional VR interaction methods.
Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA
Augmenting Large Language Models (LLMs) with information retrieval capabilities (i.e., Retrieval-Augmented Generation (RAG)) has proven beneficial for knowledge-intensive tasks. However, understanding users' contextual search intent when generating responses is an understudied topic for conversational question answering (QA). This conversational extension leads to additional concerns when compared to single-turn QA as it is more challenging for systems to comprehend conversational context and manage retrieved passages over multiple turns. In this work, we propose a method for enabling LLMs to decide when to retrieve in RAG settings given a conversational context. When retrieval is deemed necessary, the LLM then rewrites the conversation for passage retrieval and judges the relevance of returned passages before response generation. Operationally, we build on the single-turn SELF-RAG framework (Asai et al., 2023) and propose SELF-multi-RAG for conversational settings. SELF-multi-RAG demonstrates improved capabilities over single-turn variants with respect to retrieving relevant passages (by using summarized conversational context) and assessing the quality of generated responses. Experiments on three conversational QA datasets validate the enhanced response generation capabilities of SELF-multi-RAG, with improvements of ~13% measured by human annotation.
Aligning LLM Agents by Learning Latent Preference from User Edits
We study interactive learning of language agents based on user edits made to the agent's output. In a typical setting such as writing assistants, the user interacts with a language agent to generate a response given a context, and may optionally edit the agent response to personalize it based on their latent preference, in addition to improving the correctness. The edit feedback is naturally generated, making it a suitable candidate for improving the agent's alignment with the user's preference, and for reducing the cost of user edits over time. We propose a learning framework, PRELUDE that infers a description of the user's latent preference based on historic edit data and using it to define a prompt policy that drives future response generation. This avoids fine-tuning the agent, which is costly, challenging to scale with the number of users, and may even degrade its performance on other tasks. Furthermore, learning descriptive preference improves interpretability, allowing the user to view and modify the learned preference. However, user preference can be complex and vary based on context, making it challenging to learn. To address this, we propose a simple yet effective algorithm named CIPHER that leverages a large language model (LLM) to infer the user preference for a given context based on user edits. In the future, CIPHER retrieves inferred preferences from the k-closest contexts in the history, and forms an aggregate preference for response generation. We introduce two interactive environments -- summarization and email writing, for evaluation using a GPT-4 simulated user. We compare with algorithms that directly retrieve user edits but do not learn descriptive preference, and algorithms that learn context-agnostic preference. On both tasks, CIPHER achieves the lowest edit distance cost and learns preferences that show significant similarity to the ground truth preferences
Chatbot is Not All You Need: Information-rich Prompting for More Realistic Responses
Recent Large Language Models (LLMs) have shown remarkable capabilities in mimicking fictional characters or real humans in conversational settings. However, the realism and consistency of these responses can be further enhanced by providing richer information of the agent being mimicked. In this paper, we propose a novel approach to generate more realistic and consistent responses from LLMs, leveraging five senses, attributes, emotional states, relationship with the interlocutor, and memories. By incorporating these factors, we aim to increase the LLM's capacity for generating natural and realistic reactions in conversational exchanges. Through our research, we expect to contribute to the development of LLMs that demonstrate improved capabilities in mimicking fictional characters. We release a new benchmark dataset and all our codes, prompts, and sample results on our Github: https://github.com/srafsasm/InfoRichBot
Interactive Reasoning: Visualizing and Controlling Chain-of-Thought Reasoning in Large Language Models
The output quality of large language models (LLMs) can be improved via "reasoning": generating segments of chain-of-thought (CoT) content to further condition the model prior to producing user-facing output. While these chains contain valuable information, they are verbose and lack explicit organization, making them tedious to review. Moreover, they lack opportunities for user feedback, such as to remove unwanted considerations, add desired ones, or clarify unclear assumptions. We introduce Interactive Reasoning, an interaction design that visualizes chain-of-thought outputs as a hierarchy of topics and enables user review and modification. We implement interactive reasoning in Hippo, a prototype for AI-assisted decision making in the face of uncertain trade-offs. In a user study with 16 participants, we find that interactive reasoning in Hippo allows users to quickly identify and interrupt erroneous generations, efficiently steer the model towards customized responses, and better understand both model reasoning and model outputs. Our work contributes to a new paradigm that incorporates user oversight into LLM reasoning processes.
Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback
Large language models (LLMs), such as ChatGPT, are able to generate human-like, fluent responses for many downstream tasks, e.g., task-oriented dialog and question answering. However, applying LLMs to real-world, mission-critical applications remains challenging mainly due to their tendency to generate hallucinations and their inability to use external knowledge. This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules. Our system makes the LLM generate responses grounded in external knowledge, e.g., stored in task-specific databases. It also iteratively revises LLM prompts to improve model responses using feedback generated by utility functions, e.g., the factuality score of a LLM-generated response. The effectiveness of LLM-Augmenter is empirically validated on two types of scenarios, task-oriented dialog and open-domain question answering. LLM-Augmenter significantly reduces ChatGPT's hallucinations without sacrificing the fluency and informativeness of its responses. We make the source code and models publicly available.
Situated and Interactive Multimodal Conversations
Next generation virtual assistants are envisioned to handle multimodal inputs (e.g., vision, memories of previous interactions, in addition to the user's utterances), and perform multimodal actions (e.g., displaying a route in addition to generating the system's utterance). We introduce Situated Interactive MultiModal Conversations (SIMMC) as a new direction aimed at training agents that take multimodal actions grounded in a co-evolving multimodal input context in addition to the dialog history. We provide two SIMMC datasets totalling ~13K human-human dialogs (~169K utterances) using a multimodal Wizard-of-Oz (WoZ) setup, on two shopping domains: (a) furniture (grounded in a shared virtual environment) and, (b) fashion (grounded in an evolving set of images). We also provide logs of the items appearing in each scene, and contextual NLU and coreference annotations, using a novel and unified framework of SIMMC conversational acts for both user and assistant utterances. Finally, we present several tasks within SIMMC as objective evaluation protocols, such as Structural API Prediction and Response Generation. We benchmark a collection of existing models on these SIMMC tasks as strong baselines, and demonstrate rich multimodal conversational interactions. Our data, annotations, code, and models are publicly available.
Synthetic Query Generation using Large Language Models for Virtual Assistants
Virtual Assistants (VAs) are important Information Retrieval platforms that help users accomplish various tasks through spoken commands. The speech recognition system (speech-to-text) uses query priors, trained solely on text, to distinguish between phonetically confusing alternatives. Hence, the generation of synthetic queries that are similar to existing VA usage can greatly improve upon the VA's abilities -- especially for use-cases that do not (yet) occur in paired audio/text data. In this paper, we provide a preliminary exploration of the use of Large Language Models (LLMs) to generate synthetic queries that are complementary to template-based methods. We investigate whether the methods (a) generate queries that are similar to randomly sampled, representative, and anonymized user queries from a popular VA, and (b) whether the generated queries are specific. We find that LLMs generate more verbose queries, compared to template-based methods, and reference aspects specific to the entity. The generated queries are similar to VA user queries, and are specific enough to retrieve the relevant entity. We conclude that queries generated by LLMs and templates are complementary.
Language Model Can Listen While Speaking
Dialogue serves as the most natural manner of human-computer interaction (HCI). Recent advancements in speech language models (SLM) have significantly enhanced speech-based conversational AI. However, these models are limited to turn-based conversation, lacking the ability to interact with humans in real-time spoken scenarios, for example, being interrupted when the generated content is not satisfactory. To address these limitations, we explore full duplex modeling (FDM) in interactive speech language models (iSLM), focusing on enhancing real-time interaction and, more explicitly, exploring the quintessential ability of interruption. We introduce a novel model design, namely listening-while-speaking language model (LSLM), an end-to-end system equipped with both listening and speaking channels. Our LSLM employs a token-based decoder-only TTS for speech generation and a streaming self-supervised learning (SSL) encoder for real-time audio input. LSLM fuses both channels for autoregressive generation and detects turn-taking in real time. Three fusion strategies -- early fusion, middle fusion, and late fusion -- are explored, with middle fusion achieving an optimal balance between speech generation and real-time interaction. Two experimental settings, command-based FDM and voice-based FDM, demonstrate LSLM's robustness to noise and sensitivity to diverse instructions. Our results highlight LSLM's capability to achieve duplex communication with minimal impact on existing systems. This study aims to advance the development of interactive speech dialogue systems, enhancing their applicability in real-world contexts.
SpeakRL: Synergizing Reasoning, Speaking, and Acting in Language Models with Reinforcement Learning
Effective human-agent collaboration is increasingly prevalent in real-world applications. Current trends in such collaborations are predominantly unidirectional, with users providing instructions or posing questions to agents, where agents respond directly without seeking necessary clarifications or confirmations. However, the evolving capabilities of these agents require more proactive engagement, where agents should dynamically participate in conversations to clarify user intents, resolve ambiguities, and adapt to changing circumstances. Existing prior work under-utilize the conversational capabilities of language models (LMs), thereby optimizing agents as better followers rather than effective speakers. In this work, we introduce SpeakRL, a reinforcement learning (RL) method that enhances agents' conversational capabilities by rewarding proactive interactions with users, such as asking right clarification questions when necessary. To support this, we curate SpeakER, a synthetic dataset that includes diverse scenarios from task-oriented dialogues, where tasks are resolved through interactive clarification questions. We present a systematic analysis of reward design for conversational proactivity and propose a principled reward formulation for teaching agents to balance asking with acting. Empirical evaluations demonstrate that our approach achieves a 20.14% absolute improvement in task completion over base models without increasing conversation turns even surpassing even much larger proprietary models, demonstrating the promise of clarification-centric user-agent interactions.
Target-Guided Dialogue Response Generation Using Commonsense and Data Augmentation
Target-guided response generation enables dialogue systems to smoothly transition a conversation from a dialogue context toward a target sentence. Such control is useful for designing dialogue systems that direct a conversation toward specific goals, such as creating non-obtrusive recommendations or introducing new topics in the conversation. In this paper, we introduce a new technique for target-guided response generation, which first finds a bridging path of commonsense knowledge concepts between the source and the target, and then uses the identified bridging path to generate transition responses. Additionally, we propose techniques to re-purpose existing dialogue datasets for target-guided generation. Experiments reveal that the proposed techniques outperform various baselines on this task. Finally, we observe that the existing automated metrics for this task correlate poorly with human judgement ratings. We propose a novel evaluation metric that we demonstrate is more reliable for target-guided response evaluation. Our work generally enables dialogue system designers to exercise more control over the conversations that their systems produce.
TALKPLAY: Multimodal Music Recommendation with Large Language Models
We present TalkPlay, a multimodal music recommendation system that reformulates the recommendation task as large language model token generation. TalkPlay represents music through an expanded token vocabulary that encodes multiple modalities - audio, lyrics, metadata, semantic tags, and playlist co-occurrence. Using these rich representations, the model learns to generate recommendations through next-token prediction on music recommendation conversations, that requires learning the associations natural language query and response, as well as music items. In other words, the formulation transforms music recommendation into a natural language understanding task, where the model's ability to predict conversation tokens directly optimizes query-item relevance. Our approach eliminates traditional recommendation-dialogue pipeline complexity, enabling end-to-end learning of query-aware music recommendations. In the experiment, TalkPlay is successfully trained and outperforms baseline methods in various aspects, demonstrating strong context understanding as a conversational music recommender.
BERT-CoQAC: BERT-based Conversational Question Answering in Context
As one promising way to inquire about any particular information through a dialog with the bot, question answering dialog systems have gained increasing research interests recently. Designing interactive QA systems has always been a challenging task in natural language processing and used as a benchmark to evaluate a machine's ability of natural language understanding. However, such systems often struggle when the question answering is carried out in multiple turns by the users to seek more information based on what they have already learned, thus, giving rise to another complicated form called Conversational Question Answering (CQA). CQA systems are often criticized for not understanding or utilizing the previous context of the conversation when answering the questions. To address the research gap, in this paper, we explore how to integrate conversational history into the neural machine comprehension system. On one hand, we introduce a framework based on a publically available pre-trained language model called BERT for incorporating history turns into the system. On the other hand, we propose a history selection mechanism that selects the turns that are relevant and contributes the most to answer the current question. Experimentation results revealed that our framework is comparable in performance with the state-of-the-art models on the QuAC leader board. We also conduct a number of experiments to show the side effects of using entire context information which brings unnecessary information and noise signals resulting in a decline in the model's performance.
LMEye: An Interactive Perception Network for Large Language Models
Training a Large Visual Language Model (LVLM) from scratch, like GPT-4, is resource-intensive. Our paper presents a play-and-plug module for Large Language Models (LLMs), namely Interactive Perception Network (IPN), aiming to achieve a LVLM by incorporating the image understanding capability into LLMs. Previous methods incorporate visual information into LLMs with a simple visual mapping network, where the image feature is projected into the embedding space of LLMs via a linear layer. Such mapping network projects the image feature once yet does not consider the interaction between the image and the human input query. Hence, the obtained visual information with no connections with human intention may be inadequate for LLMs to make intention-following responses, which we term as static visual information. IPN addresses this issue by allowing the LLM to request the desired visual information aligned with various human instructions, which we term as the dynamic interaction between the LLM and visual information. Specifically, IPN consists of a simple visual mapping network to provide the basic perception of an image for LLMs. It also contains additional modules responsible for acquiring requests from LLMs, performing request-based visual information interaction, and transmitting the resulting interacted visual information to LLMs, respectively. In this way, LLMs act to understand the human query, deliver the corresponding request to the request-based visual information interaction module, and generate the response based on the interleaved multimodal information. We evaluate IPN through extensive experiments on multimodal question answering, reasoning, and so on, demonstrating that it significantly improves the zero-shot performance of LVLMs on various multimodal tasks compared to previous methods.
Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search
In this paper, we present a prompting framework called LLMCS that leverages large language models, such as code-davinci-002 of GPT-3, to perform few-shot conversational query rewriting for conversational search. We explore three prompting methods to generate multiple query rewrites and hypothetical responses, and propose aggregating them into an integrated representation that can robustly represent the user's real contextual search intent. Experimental results on two conversational search datasets, including CAst-19 and CAsT-20, show that our approach achieves significant improvements in search effectiveness over existing baselines and manual rewrites. Notably, LLMCS can significantly outperform the state-of-the-art baselines by up to +5.9\% and +32.9\% w.r.t. NDCG@3 on CAsT-19 and CAsT-20, highlighting the vast potential of large language models for conversational search. Our code will be released at https://github.com/kyriemao/LLMCS.
Multi-interaction TTS toward professional recording reproduction
Voice directors often iteratively refine voice actors' performances by providing feedback to achieve the desired outcome. While this iterative feedback-based refinement process is important in actual recordings, it has been overlooked in text-to-speech synthesis (TTS). As a result, fine-grained style refinement after the initial synthesis is not possible, even though the synthesized speech often deviates from the user's intended style. To address this issue, we propose a TTS method with multi-step interaction that allows users to intuitively and rapidly refine synthesized speech. Our approach models the interaction between the TTS model and its user to emulate the relationship between voice actors and voice directors. Experiments show that the proposed model with its corresponding dataset enables iterative style refinements in accordance with users' directions, thus demonstrating its multi-interaction capability. Sample audios are available: https://ntt-hilab-gensp.github.io/ssw13multiinteractiontts/
C3: A Bilingual Benchmark for Spoken Dialogue Models Exploring Challenges in Complex Conversations
Spoken Dialogue Models (SDMs) have recently attracted significant attention for their ability to generate voice responses directly to users' spoken queries. Despite their increasing popularity, there exists a gap in research focused on comprehensively understanding their practical effectiveness in comprehending and emulating human conversations. This is especially true compared to text-based Large Language Models (LLMs), which benefit from extensive benchmarking. Human voice interactions are inherently more complex than text due to characteristics unique to spoken dialogue. Ambiguity poses one challenge, stemming from semantic factors like polysemy, as well as phonological aspects such as heterograph, heteronyms, and stress patterns. Additionally, context-dependency, like omission, coreference, and multi-turn interaction, adds further complexity to human conversational dynamics. To illuminate the current state of SDM development and to address these challenges, we present a benchmark dataset in this paper, which comprises 1,079 instances in English and Chinese. Accompanied by an LLM-based evaluation method that closely aligns with human judgment, this dataset facilitates a comprehensive exploration of the performance of SDMs in tackling these practical challenges.
Howl: A Deployed, Open-Source Wake Word Detection System
We describe Howl, an open-source wake word detection toolkit with native support for open speech datasets, like Mozilla Common Voice and Google Speech Commands. We report benchmark results on Speech Commands and our own freely available wake word detection dataset, built from MCV. We operationalize our system for Firefox Voice, a plugin enabling speech interactivity for the Firefox web browser. Howl represents, to the best of our knowledge, the first fully productionized yet open-source wake word detection toolkit with a web browser deployment target. Our codebase is at https://github.com/castorini/howl.
Look Once to Hear: Target Speech Hearing with Noisy Examples
In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear.
Local Knowledge Powered Conversational Agents
State-of-the-art conversational agents have advanced significantly in conjunction with the use of large transformer-based language models. However, even with these advancements, conversational agents still lack the ability to produce responses that are informative and coherent with the local context. In this work, we propose a dialog framework that incorporates both local knowledge as well as users' past dialogues to generate high quality conversations. We introduce an approach to build a dataset based on Reddit conversations, where outbound URL links are widely available in the conversations and the hyperlinked documents can be naturally included as local external knowledge. Using our framework and dataset, we demonstrate that incorporating local knowledge can largely improve informativeness, coherency and realisticness measures using human evaluations. In particular, our approach consistently outperforms the state-of-the-art conversational model on the Reddit dataset across all three measures. We also find that scaling the size of our models from 117M to 8.3B parameters yields consistent improvement of validation perplexity as well as human evaluated metrics. Our model with 8.3B parameters can generate human-like responses as rated by various human evaluations in a single-turn dialog setting.
From What to Respond to When to Respond: Timely Response Generation for Open-domain Dialogue Agents
While research on dialogue response generation has primarily focused on generating coherent responses conditioning on textual context, the critical question of when to respond grounded on the temporal context remains underexplored. To bridge this gap, we propose a novel task called timely dialogue response generation and introduce the TimelyChat benchmark, which evaluates the capabilities of language models to predict appropriate time intervals and generate time-conditioned responses. Additionally, we construct a large-scale training dataset by leveraging unlabeled event knowledge from a temporal commonsense knowledge graph and employing a large language model (LLM) to synthesize 55K event-driven dialogues. We then train Timer, a dialogue agent designed to proactively predict time intervals and generate timely responses that align with those intervals. Experimental results show that Timer outperforms prompting-based LLMs and other fine-tuned baselines in both turn-level and dialogue-level evaluations. We publicly release our data, model, and code.
IDAT: A Multi-Modal Dataset and Toolkit for Building and Evaluating Interactive Task-Solving Agents
Seamless interaction between AI agents and humans using natural language remains a key goal in AI research. This paper addresses the challenges of developing interactive agents capable of understanding and executing grounded natural language instructions through the IGLU competition at NeurIPS. Despite advancements, challenges such as a scarcity of appropriate datasets and the need for effective evaluation platforms persist. We introduce a scalable data collection tool for gathering interactive grounded language instructions within a Minecraft-like environment, resulting in a Multi-Modal dataset with around 9,000 utterances and over 1,000 clarification questions. Additionally, we present a Human-in-the-Loop interactive evaluation platform for qualitative analysis and comparison of agent performance through multi-turn communication with human annotators. We offer to the community these assets referred to as IDAT (IGLU Dataset And Toolkit) which aim to advance the development of intelligent, interactive AI agents and provide essential resources for further research.
Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.
ConvAI3: Generating Clarifying Questions for Open-Domain Dialogue Systems (ClariQ)
This document presents a detailed description of the challenge on clarifying questions for dialogue systems (ClariQ). The challenge is organized as part of the Conversational AI challenge series (ConvAI3) at Search Oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In IR settings such a situation is handled mainly thought the diversification of the search result page. It is however much more challenging in dialogue settings with limited bandwidth. Therefore, in this challenge, we provide a common evaluation framework to evaluate mixed-initiative conversations. Participants are asked to rank clarifying questions in an information-seeking conversations. The challenge is organized in two stages where in Stage 1 we evaluate the submissions in an offline setting and single-turn conversations. Top participants of Stage 1 get the chance to have their model tested by human annotators.
