new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

KaSA: Knowledge-Aware Singular-Value Adaptation of Large Language Models

The increasing sizes of large language models (LLMs) result in significant computational overhead and memory usage when adapting these models to specific tasks or domains. Various parameter-efficient fine-tuning (PEFT) methods have been devised to mitigate these challenges by training a small set of parameters for the task-specific updates of the model weights. Among PEFT methods, LoRA stands out for its simplicity and efficiency, inspiring the development of a series of variants. However, LoRA and its successors disregard the knowledge that is noisy or irrelevant to the targeted task, detrimentally impacting model performance and leading to suboptimality. To address this limitation, we introduce Knowledge-aware Singular-value Adaptation (KaSA), a PEFT method that leverages singular value decomposition (SVD) with knowledge-aware singular values to dynamically activate knowledge based on its relevance to the task at hand. We conduct extensive experiments across a range of LLMs on tasks spanning natural language understanding (NLU), generation (NLG), instruction following, and commonsense reasoning. The experimental results demonstrate that KaSA consistently outperforms FFT and 14 popular PEFT baselines across 16 benchmarks and 4 synthetic datasets, underscoring our method's efficacy and adaptability. The source code of our method is available at https://github.com/juyongjiang/KaSA.

  • 5 authors
·
Dec 8, 2024 2

Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models

Pre-trained vision-language models, e.g., CLIP, working with manually designed prompts have demonstrated great capacity of transfer learning. Recently, learnable prompts achieve state-of-the-art performance, which however are prone to overfit to seen classes, failing to generalize to unseen classes. In this paper, we propose a Knowledge-Aware Prompt Tuning (KAPT) framework for vision-language models. Our approach takes inspiration from human intelligence in which external knowledge is usually incorporated into recognizing novel categories of objects. Specifically, we design two complementary types of knowledge-aware prompts for the text encoder to leverage the distinctive characteristics of category-related external knowledge. The discrete prompt extracts the key information from descriptions of an object category, and the learned continuous prompt captures overall contexts. We further design an adaptation head for the visual encoder to aggregate salient attentive visual cues, which establishes discriminative and task-aware visual representations. We conduct extensive experiments on 11 widely-used benchmark datasets and the results verify the effectiveness in few-shot image classification, especially in generalizing to unseen categories. Compared with the state-of-the-art CoCoOp method, KAPT exhibits favorable performance and achieves an absolute gain of 3.22% on new classes and 2.57% in terms of harmonic mean.

  • 6 authors
·
Aug 22, 2023

Knowledge-Aware Iterative Retrieval for Multi-Agent Systems

We introduce a novel large language model (LLM)-driven agent framework, which iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge. A defining feature of the system is its decoupling of external sources from an internal knowledge cache that is progressively updated to guide both query generation and evidence selection. This design mitigates bias-reinforcement loops and enables dynamic, trackable search exploration paths, thereby optimizing the trade-off between exploring diverse information and maintaining accuracy through autonomous agent decision-making. Our approach is evaluated on a broad range of open-domain question answering benchmarks, including multi-step tasks that mirror real-world scenarios where integrating information from multiple sources is critical, especially given the vulnerabilities of LLMs that lack explicit reasoning or planning capabilities. The results show that the proposed system not only outperforms single-step baselines regardless of task difficulty but also, compared to conventional iterative retrieval methods, demonstrates pronounced advantages in complex tasks through precise evidence-based reasoning and enhanced efficiency. The proposed system supports both competitive and collaborative sharing of updated context, enabling multi-agent extension. The benefits of multi-agent configurations become especially prominent as task difficulty increases. The number of convergence steps scales with task difficulty, suggesting cost-effective scalability.

  • 1 authors
·
Mar 17

Knowledge-Aware Artifact Image Synthesis with LLM-Enhanced Prompting and Multi-Source Supervision

Ancient artifacts are an important medium for cultural preservation and restoration. However, many physical copies of artifacts are either damaged or lost, leaving a blank space in archaeological and historical studies that calls for artifact image generation techniques. Despite the significant advancements in open-domain text-to-image synthesis, existing approaches fail to capture the important domain knowledge presented in the textual description, resulting in errors in recreated images such as incorrect shapes and patterns. In this paper, we propose a novel knowledge-aware artifact image synthesis approach that brings lost historical objects accurately into their visual forms. We use a pretrained diffusion model as backbone and introduce three key techniques to enhance the text-to-image generation framework: 1) we construct prompts with explicit archaeological knowledge elicited from large language models (LLMs); 2) we incorporate additional textual guidance to correlated historical expertise in a contrastive manner; 3) we introduce further visual-semantic constraints on edge and perceptual features that enable our model to learn more intricate visual details of the artifacts. Compared to existing approaches, our proposed model produces higher-quality artifact images that align better with the implicit details and historical knowledge contained within written documents, thus achieving significant improvements across automatic metrics and in human evaluation. Our code and data are available at https://github.com/danielwusg/artifact_diffusion.

  • 3 authors
·
Dec 13, 2023

Knowledge-Aware Federated Active Learning with Non-IID Data

Federated learning enables multiple decentralized clients to learn collaboratively without sharing the local training data. However, the expensive annotation cost to acquire data labels on local clients remains an obstacle in utilizing local data. In this paper, we propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget while protecting data privacy in a decentralized learning way. The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the asynchronous local clients. This becomes even more significant when data is distributed non-IID across local clients. To address the aforementioned challenge, we propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU). KSAS is a novel active sampling method tailored for the federated active learning problem. It deals with the mismatch challenge by sampling actively based on the discrepancies between local and global models. KSAS intensifies specialized knowledge in local clients, ensuring the sampled data to be informative for both the local clients and the global model. KCFU, in the meantime, deals with the client heterogeneity caused by limited data and non-IID data distributions. It compensates for each client's ability in weak classes by the assistance of the global model. Extensive experiments and analyses are conducted to show the superiority of KSAS over the state-of-the-art active learning methods and the efficiency of KCFU under the federated active learning framework.

  • 5 authors
·
Nov 24, 2022

KnowPO: Knowledge-aware Preference Optimization for Controllable Knowledge Selection in Retrieval-Augmented Language Models

By integrating external knowledge, Retrieval-Augmented Generation (RAG) has become an effective strategy for mitigating the hallucination problems that large language models (LLMs) encounter when dealing with knowledge-intensive tasks. However, in the process of integrating external non-parametric supporting evidence with internal parametric knowledge, inevitable knowledge conflicts may arise, leading to confusion in the model's responses. To enhance the knowledge selection of LLMs in various contexts, some research has focused on refining their behavior patterns through instruction-tuning. Nonetheless, due to the absence of explicit negative signals and comparative objectives, models fine-tuned in this manner may still exhibit undesirable behaviors such as contextual ignorance and contextual overinclusion. To this end, we propose a Knowledge-aware Preference Optimization strategy, dubbed KnowPO, aimed at achieving adaptive knowledge selection based on contextual relevance in real retrieval scenarios. Concretely, we proposed a general paradigm for constructing knowledge conflict datasets, which comprehensively cover various error types and learn how to avoid these negative signals through preference optimization methods. Simultaneously, we proposed a rewriting strategy and data ratio optimization strategy to address preference imbalances. Experimental results show that KnowPO outperforms previous methods for handling knowledge conflicts by over 37\%, while also exhibiting robust generalization across various out-of-distribution datasets.

  • 8 authors
·
Aug 6, 2024

KADEL: Knowledge-Aware Denoising Learning for Commit Message Generation

Commit messages are natural language descriptions of code changes, which are important for software evolution such as code understanding and maintenance. However, previous methods are trained on the entire dataset without considering the fact that a portion of commit messages adhere to good practice (i.e., good-practice commits), while the rest do not. On the basis of our empirical study, we discover that training on good-practice commits significantly contributes to the commit message generation. Motivated by this finding, we propose a novel knowledge-aware denoising learning method called KADEL. Considering that good-practice commits constitute only a small proportion of the dataset, we align the remaining training samples with these good-practice commits. To achieve this, we propose a model that learns the commit knowledge by training on good-practice commits. This knowledge model enables supplementing more information for training samples that do not conform to good practice. However, since the supplementary information may contain noise or prediction errors, we propose a dynamic denoising training method. This method composes a distribution-aware confidence function and a dynamic distribution list, which enhances the effectiveness of the training process. Experimental results on the whole MCMD dataset demonstrate that our method overall achieves state-of-the-art performance compared with previous methods. Our source code and data are available at https://github.com/DeepSoftwareAnalytics/KADEL

  • 6 authors
·
Jan 16, 2024

DiffKG: Knowledge Graph Diffusion Model for Recommendation

Knowledge Graphs (KGs) have emerged as invaluable resources for enriching recommendation systems by providing a wealth of factual information and capturing semantic relationships among items. Leveraging KGs can significantly enhance recommendation performance. However, not all relations within a KG are equally relevant or beneficial for the target recommendation task. In fact, certain item-entity connections may introduce noise or lack informative value, thus potentially misleading our understanding of user preferences. To bridge this research gap, we propose a novel knowledge graph diffusion model for recommendation, referred to as DiffKG. Our framework integrates a generative diffusion model with a data augmentation paradigm, enabling robust knowledge graph representation learning. This integration facilitates a better alignment between knowledge-aware item semantics and collaborative relation modeling. Moreover, we introduce a collaborative knowledge graph convolution mechanism that incorporates collaborative signals reflecting user-item interaction patterns, guiding the knowledge graph diffusion process. We conduct extensive experiments on three publicly available datasets, consistently demonstrating the superiority of our DiffKG compared to various competitive baselines. We provide the source code repository of our proposed DiffKG model at the following link: https://github.com/HKUDS/DiffKG.

  • 4 authors
·
Dec 28, 2023

DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for Natural Language Understanding

Knowledge-Enhanced Pre-trained Language Models (KEPLMs) are pre-trained models with relation triples injecting from knowledge graphs to improve language understanding abilities. To guarantee effective knowledge injection, previous studies integrate models with knowledge encoders for representing knowledge retrieved from knowledge graphs. The operations for knowledge retrieval and encoding bring significant computational burdens, restricting the usage of such models in real-world applications that require high inference speed. In this paper, we propose a novel KEPLM named DKPLM that Decomposes Knowledge injection process of the Pre-trained Language Models in pre-training, fine-tuning and inference stages, which facilitates the applications of KEPLMs in real-world scenarios. Specifically, we first detect knowledge-aware long-tail entities as the target for knowledge injection, enhancing the KEPLMs' semantic understanding abilities and avoiding injecting redundant information. The embeddings of long-tail entities are replaced by "pseudo token representations" formed by relevant knowledge triples. We further design the relational knowledge decoding task for pre-training to force the models to truly understand the injected knowledge by relation triple reconstruction. Experiments show that our model outperforms other KEPLMs significantly over zero-shot knowledge probing tasks and multiple knowledge-aware language understanding tasks. We further show that DKPLM has a higher inference speed than other competing models due to the decomposing mechanism.

  • 7 authors
·
Dec 2, 2021

PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation

Despite notable advancements in Retrieval-Augmented Generation (RAG) systems that expand large language model (LLM) capabilities through external retrieval, these systems often struggle to meet the complex and diverse needs of real-world industrial applications. The reliance on retrieval alone proves insufficient for extracting deep, domain-specific knowledge performing in logical reasoning from specialized corpora. To address this, we introduce sPecIalized KnowledgE and Rationale Augmentation Generation (PIKE-RAG), focusing on extracting, understanding, and applying specialized knowledge, while constructing coherent rationale to incrementally steer LLMs toward accurate responses. Recognizing the diverse challenges of industrial tasks, we introduce a new paradigm that classifies tasks based on their complexity in knowledge extraction and application, allowing for a systematic evaluation of RAG systems' problem-solving capabilities. This strategic approach offers a roadmap for the phased development and enhancement of RAG systems, tailored to meet the evolving demands of industrial applications. Furthermore, we propose knowledge atomizing and knowledge-aware task decomposition to effectively extract multifaceted knowledge from the data chunks and iteratively construct the rationale based on original query and the accumulated knowledge, respectively, showcasing exceptional performance across various benchmarks.

  • 5 authors
·
Jan 20

Knowledge Infused Decoding

Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence, they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications. We present Knowledge Infused Decoding (KID) -- a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates exposure bias and provides stable generation quality when generating longer sequences. Code for KID is available at https://github.com/microsoft/KID.

  • 8 authors
·
Apr 6, 2022

Molecular Contrastive Learning with Chemical Element Knowledge Graph

Molecular representation learning contributes to multiple downstream tasks such as molecular property prediction and drug design. To properly represent molecules, graph contrastive learning is a promising paradigm as it utilizes self-supervision signals and has no requirements for human annotations. However, prior works fail to incorporate fundamental domain knowledge into graph semantics and thus ignore the correlations between atoms that have common attributes but are not directly connected by bonds. To address these issues, we construct a Chemical Element Knowledge Graph (KG) to summarize microscopic associations between elements and propose a novel Knowledge-enhanced Contrastive Learning (KCL) framework for molecular representation learning. KCL framework consists of three modules. The first module, knowledge-guided graph augmentation, augments the original molecular graph based on the Chemical Element KG. The second module, knowledge-aware graph representation, extracts molecular representations with a common graph encoder for the original molecular graph and a Knowledge-aware Message Passing Neural Network (KMPNN) to encode complex information in the augmented molecular graph. The final module is a contrastive objective, where we maximize agreement between these two views of molecular graphs. Extensive experiments demonstrated that KCL obtained superior performances against state-of-the-art baselines on eight molecular datasets. Visualization experiments properly interpret what KCL has learned from atoms and attributes in the augmented molecular graphs. Our codes and data are available at https://github.com/ZJU-Fangyin/KCL.

  • 10 authors
·
Dec 1, 2021

Conditional Attention Networks for Distilling Knowledge Graphs in Recommendation

Knowledge graph is generally incorporated into recommender systems to improve overall performance. Due to the generalization and scale of the knowledge graph, most knowledge relationships are not helpful for a target user-item prediction. To exploit the knowledge graph to capture target-specific knowledge relationships in recommender systems, we need to distill the knowledge graph to reserve the useful information and refine the knowledge to capture the users' preferences. To address the issues, we propose Knowledge-aware Conditional Attention Networks (KCAN), which is an end-to-end model to incorporate knowledge graph into a recommender system. Specifically, we use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph. Then given a target, i.e., a user-item pair, we automatically distill the knowledge graph into the target-specific subgraph based on the knowledge-aware attention. Afterward, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations. Therefore, we can gain both representability and personalization to achieve overall performance. Experimental results on real-world datasets demonstrate the effectiveness of our framework over the state-of-the-art algorithms.

  • 7 authors
·
Nov 3, 2021

Can LLMs be Good Graph Judger for Knowledge Graph Construction?

In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.

  • 6 authors
·
Nov 26, 2024

AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science

Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems.

  • 15 authors
·
May 25

MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning

Recent growth and proliferation of malware has tested practitioners' ability to promptly classify new samples according to malware families. In contrast to labor-intensive reverse engineering efforts, machine learning approaches have demonstrated increased speed and accuracy. However, most existing deep-learning malware family classifiers must be calibrated using a large number of samples that are painstakingly manually analyzed before training. Furthermore, as novel malware samples arise that are beyond the scope of the training set, additional reverse engineering effort must be employed to update the training set. The sheer volume of new samples found in the wild creates substantial pressure on practitioners' ability to reverse engineer enough malware to adequately train modern classifiers. In this paper, we present MalMixer, a malware family classifier using semi-supervised learning that achieves high accuracy with sparse training data. We present a novel domain-knowledge-aware technique for augmenting malware feature representations, enhancing few-shot performance of semi-supervised malware family classification. We show that MalMixer achieves state-of-the-art performance in few-shot malware family classification settings. Our research confirms the feasibility and effectiveness of lightweight, domain-knowledge-aware feature augmentation methods and highlights the capabilities of similar semi-supervised classifiers in addressing malware classification issues.

  • 4 authors
·
Sep 20, 2024

KnowRL: Teaching Language Models to Know What They Know

Truly reliable AI requires more than simply scaling up knowledge; it demands the ability to know what it knows and when it does not. Yet recent research shows that even the best LLMs misjudge their own competence in more than one in five cases, making any response born of such internal uncertainty impossible to fully trust. Inspired by self-improvement reinforcement learning techniques that require minimal data, we present a simple but powerful framework KnowRL that strengthens a model's internal understanding of its own feasibility boundaries, enabling safer and more responsible behaviour. Our framework combines two components: (i) introspection, where the model generates and classifies tasks it judges feasible or infeasible, and (ii) consensus-based rewarding, where stability of self-knowledge assessment is reinforced through internal agreement. By using internally generated data, this design strengthens consistency in self-knowledge and entirely avoids costly external supervision. In experiments on LLaMA-3.1-8B and Qwen-2.5-7B, KnowRL steadily improved self-knowledge, validated by both intrinsic self-consistency and extrinsic benchmarking. With nothing more than a small seed set and no external supervision, our method drove gains as high as 28% in accuracy and 12% in F1, outperforming baselines in just a few iterations. Our framework essentially unlocks the untapped capacity of LLMs to self-improve their knowledge awareness, opening the door to reliable, more accountable AI and safer deployment in critical applications. Owing to its simplicity and independence from external effort, we encourage applying this reliability-enhancing process to all future models.

  • 2 authors
·
Oct 13

Large Language Models with Controllable Working Memory

Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP), owing to their excellent understanding and generation abilities. Remarkably, what further sets these models apart is the massive amounts of world knowledge they internalize during pretraining. While many downstream applications provide the model with an informational context to aid its performance on the underlying task, how the model's world knowledge interacts with the factual information presented in the context remains under explored. As a desirable behavior, an LLM should give precedence to the context whenever it contains task-relevant information that conflicts with the model's memorized knowledge. This enables model predictions to be grounded in the context, which can then be used to update or correct specific model predictions without frequent retraining. By contrast, when the context is irrelevant to the task, the model should ignore it and fall back on its internal knowledge. In this paper, we undertake a first joint study of the aforementioned two properties, namely controllability and robustness, in the context of LLMs. We demonstrate that state-of-the-art T5 and PaLM (both pretrained and finetuned) could exhibit poor controllability and robustness, which do not scale with increasing model size. As a solution, we propose a novel method - Knowledge Aware FineTuning (KAFT) - to strengthen both controllability and robustness by incorporating counterfactual and irrelevant contexts to standard supervised datasets. Our comprehensive evaluation showcases the utility of KAFT across model architectures and sizes.

  • 8 authors
·
Nov 9, 2022

Benchmarking Spatiotemporal Reasoning in LLMs and Reasoning Models: Capabilities and Challenges

Spatiotemporal reasoning plays a key role in Cyber-Physical Systems (CPS). Despite advances in Large Language Models (LLMs) and Large Reasoning Models (LRMs), their capacity to reason about complex spatiotemporal signals remains underexplored. This paper proposes a hierarchical SpatioTemporal reAsoning benchmaRK, STARK, to systematically evaluate LLMs across three levels of reasoning complexity: state estimation (e.g., predicting field variables, localizing and tracking events in space and time), spatiotemporal reasoning over states (e.g., inferring spatial-temporal relationships), and world-knowledge-aware reasoning that integrates contextual and domain knowledge (e.g., intent prediction, landmark-aware navigation). We curate 26 distinct spatiotemporal tasks with diverse sensor modalities, comprising 14,552 challenges where models answer directly or by Python Code Interpreter. Evaluating 3 LRMs and 8 LLMs, we find LLMs achieve limited success in tasks requiring geometric reasoning (e.g., multilateration or triangulation), particularly as complexity increases. Surprisingly, LRMs show robust performance across tasks with various levels of difficulty, often competing or surpassing traditional first-principle-based methods. Our results show that in reasoning tasks requiring world knowledge, the performance gap between LLMs and LRMs narrows, with some LLMs even surpassing LRMs. However, the LRM o3 model continues to achieve leading performance across all evaluated tasks, a result attributed primarily to the larger size of the reasoning models. STARK motivates future innovations in model architectures and reasoning paradigms for intelligent CPS by providing a structured framework to identify limitations in the spatiotemporal reasoning of LLMs and LRMs.

  • 5 authors
·
May 16

RecInDial: A Unified Framework for Conversational Recommendation with Pretrained Language Models

Conversational Recommender System (CRS), which aims to recommend high-quality items to users through interactive conversations, has gained great research interest recently. A CRS is usually composed of a recommendation module and a generation module. In the previous work, these two modules are loosely connected in the model training and are shallowly integrated during inference, where a simple switching or copy mechanism is adopted to incorporate recommended items into generated responses. Moreover, the current end-to-end neural models trained on small crowd-sourcing datasets (e.g., 10K dialogs in the ReDial dataset) tend to overfit and have poor chit-chat ability. In this work, we propose a novel unified framework that integrates recommendation into the dialog (RecInDial) generation by introducing a vocabulary pointer. To tackle the low-resource issue in CRS, we finetune the large-scale pretrained language models to generate fluent and diverse responses, and introduce a knowledge-aware bias learned from an entity-oriented knowledge graph to enhance the recommendation performance. Furthermore, we propose to evaluate the CRS models in an end-to-end manner, which can reflect the overall performance of the entire system rather than the performance of individual modules, compared to the separate evaluations of the two modules used in previous work. Experiments on the benchmark dataset ReDial show our RecInDial model significantly surpasses the state-of-the-art methods. More extensive analyses show the effectiveness of our model.

  • 6 authors
·
Oct 14, 2021

MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration

In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.

  • 6 authors
·
May 29

Reinforced Internal-External Knowledge Synergistic Reasoning for Efficient Adaptive Search Agent

Retrieval-augmented generation (RAG) is a common strategy to reduce hallucinations in Large Language Models (LLMs). While reinforcement learning (RL) can enable LLMs to act as search agents by activating retrieval capabilities, existing ones often underutilize their internal knowledge. This can lead to redundant retrievals, potential harmful knowledge conflicts, and increased inference latency. To address these limitations, an efficient and adaptive search agent capable of discerning optimal retrieval timing and synergistically integrating parametric (internal) and retrieved (external) knowledge is in urgent need. This paper introduces the Reinforced Internal-External Knowledge Synergistic Reasoning Agent (IKEA), which could indentify its own knowledge boundary and prioritize the utilization of internal knowledge, resorting to external search only when internal knowledge is deemed insufficient. This is achieved using a novel knowledge-boundary aware reward function and a knowledge-boundary aware training dataset. These are designed for internal-external knowledge synergy oriented RL, incentivizing the model to deliver accurate answers, minimize unnecessary retrievals, and encourage appropriate external searches when its own knowledge is lacking. Evaluations across multiple knowledge reasoning tasks demonstrate that IKEA significantly outperforms baseline methods, reduces retrieval frequency significantly, and exhibits robust generalization capabilities.

  • 5 authors
·
May 12 2

Zep: A Temporal Knowledge Graph Architecture for Agent Memory

We introduce Zep, a novel memory layer service for AI agents that outperforms the current state-of-the-art system, MemGPT, in the Deep Memory Retrieval (DMR) benchmark. Additionally, Zep excels in more comprehensive and challenging evaluations than DMR that better reflect real-world enterprise use cases. While existing retrieval-augmented generation (RAG) frameworks for large language model (LLM)-based agents are limited to static document retrieval, enterprise applications demand dynamic knowledge integration from diverse sources including ongoing conversations and business data. Zep addresses this fundamental limitation through its core component Graphiti -- a temporally-aware knowledge graph engine that dynamically synthesizes both unstructured conversational data and structured business data while maintaining historical relationships. In the DMR benchmark, which the MemGPT team established as their primary evaluation metric, Zep demonstrates superior performance (94.8% vs 93.4%). Beyond DMR, Zep's capabilities are further validated through the more challenging LongMemEval benchmark, which better reflects enterprise use cases through complex temporal reasoning tasks. In this evaluation, Zep achieves substantial results with accuracy improvements of up to 18.5% while simultaneously reducing response latency by 90% compared to baseline implementations. These results are particularly pronounced in enterprise-critical tasks such as cross-session information synthesis and long-term context maintenance, demonstrating Zep's effectiveness for deployment in real-world applications.

  • 5 authors
·
Jan 20

Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection

Open-vocabulary object detection aims to provide object detectors trained on a fixed set of object categories with the generalizability to detect objects described by arbitrary text queries. Previous methods adopt knowledge distillation to extract knowledge from Pretrained Vision-and-Language Models (PVLMs) and transfer it to detectors. However, due to the non-adaptive proposal cropping and single-level feature mimicking processes, they suffer from information destruction during knowledge extraction and inefficient knowledge transfer. To remedy these limitations, we propose an Object-Aware Distillation Pyramid (OADP) framework, including an Object-Aware Knowledge Extraction (OAKE) module and a Distillation Pyramid (DP) mechanism. When extracting object knowledge from PVLMs, the former adaptively transforms object proposals and adopts object-aware mask attention to obtain precise and complete knowledge of objects. The latter introduces global and block distillation for more comprehensive knowledge transfer to compensate for the missing relation information in object distillation. Extensive experiments show that our method achieves significant improvement compared to current methods. Especially on the MS-COCO dataset, our OADP framework reaches 35.6 mAP^{N}_{50}, surpassing the current state-of-the-art method by 3.3 mAP^{N}_{50}. Code is released at https://github.com/LutingWang/OADP.

  • 8 authors
·
Mar 10, 2023

A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models

Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks, yet their application to specialized domains remains challenging due to the need for deep expertise. Retrieval-augmented generation (RAG) has emerged as a promising solution to customize LLMs for professional fields by seamlessly integrating external knowledge bases, enabling real-time access to domain-specific expertise during inference. Despite its potential, traditional RAG systems, based on flat text retrieval, face three critical challenges: (i) complex query understanding in professional contexts, (ii) difficulties in knowledge integration across distributed sources, and (iii) system efficiency bottlenecks at scale. This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG), a new paradigm that revolutionizes domain-specific LLM applications. GraphRAG addresses traditional RAG limitations through three key innovations: (i) graph-structured knowledge representation that explicitly captures entity relationships and domain hierarchies, (ii) efficient graph-based retrieval techniques that enable context-preserving knowledge retrieval with multihop reasoning ability, and (iii) structure-aware knowledge integration algorithms that leverage retrieved knowledge for accurate and logical coherent generation of LLMs. In this survey, we systematically analyze the technical foundations of GraphRAG and examine current implementations across various professional domains, identifying key technical challenges and promising research directions. All the related resources of GraphRAG, including research papers, open-source data, and projects, are collected for the community in blue{https://github.com/DEEP-PolyU/Awesome-GraphRAG}.

  • 10 authors
·
Jan 21

A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions

Retrieval-Augmented Generation (RAG) represents a major advancement in natural language processing (NLP), combining large language models (LLMs) with information retrieval systems to enhance factual grounding, accuracy, and contextual relevance. This paper presents a comprehensive systematic review of RAG, tracing its evolution from early developments in open domain question answering to recent state-of-the-art implementations across diverse applications. The review begins by outlining the motivations behind RAG, particularly its ability to mitigate hallucinations and outdated knowledge in parametric models. Core technical components-retrieval mechanisms, sequence-to-sequence generation models, and fusion strategies are examined in detail. A year-by-year analysis highlights key milestones and research trends, providing insight into RAG's rapid growth. The paper further explores the deployment of RAG in enterprise systems, addressing practical challenges related to retrieval of proprietary data, security, and scalability. A comparative evaluation of RAG implementations is conducted, benchmarking performance on retrieval accuracy, generation fluency, latency, and computational efficiency. Persistent challenges such as retrieval quality, privacy concerns, and integration overhead are critically assessed. Finally, the review highlights emerging solutions, including hybrid retrieval approaches, privacy-preserving techniques, optimized fusion strategies, and agentic RAG architectures. These innovations point toward a future of more reliable, efficient, and context-aware knowledge-intensive NLP systems.

  • 4 authors
·
Jul 24

Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation

Real-world live retrieval-augmented generation (RAG) systems face significant challenges when processing user queries that are often noisy, ambiguous, and contain multiple intents. While RAG enhances large language models (LLMs) with external knowledge, current systems typically struggle with such complex inputs, as they are often trained or evaluated on cleaner data. This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings. Omni-RAG employs LLM-assisted query understanding to preprocess user inputs through three key modules: (1) Deep Query Understanding and Decomposition, which utilizes LLMs with tailored prompts to denoise queries (e.g., correcting spelling errors) and decompose multi-intent queries into structured sub-queries; (2) Intent-Aware Knowledge Retrieval, which performs retrieval for each sub-query from a corpus (i.e., FineWeb using OpenSearch) and aggregates the results; and (3) Reranking and Generation, where a reranker (i.e., BGE) refines document selection before a final response is generated by an LLM (i.e., Falcon-10B) using a chain-of-thought prompt. Omni-RAG aims to bridge the gap between current RAG capabilities and the demands of real-world applications, such as those highlighted by the SIGIR 2025 LiveRAG Challenge, by robustly handling complex and noisy queries.

  • 4 authors
·
Jun 26

UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers

Existing information retrieval (IR) models often assume a homogeneous structure for knowledge sources and user queries, limiting their applicability in real-world settings where retrieval is inherently heterogeneous and diverse. In this paper, we introduce UniHGKR, a unified instruction-aware heterogeneous knowledge retriever that (1) builds a unified retrieval space for heterogeneous knowledge and (2) follows diverse user instructions to retrieve knowledge of specified types. UniHGKR consists of three principal stages: heterogeneous self-supervised pretraining, text-anchored embedding alignment, and instruction-aware retriever fine-tuning, enabling it to generalize across varied retrieval contexts. This framework is highly scalable, with a BERT-based version and a UniHGKR-7B version trained on large language models. Also, we introduce CompMix-IR, the first native heterogeneous knowledge retrieval benchmark. It includes two retrieval scenarios with various instructions, over 9,400 question-answer (QA) pairs, and a corpus of 10 million entries, covering four different types of data. Extensive experiments show that UniHGKR consistently outperforms state-of-the-art methods on CompMix-IR, achieving up to 6.36% and 54.23% relative improvements in two scenarios, respectively. Finally, by equipping our retriever for open-domain heterogeneous QA systems, we achieve a new state-of-the-art result on the popular ConvMix task, with an absolute improvement of up to 4.80 points.

  • 5 authors
·
Oct 26, 2024

Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation

Knowledge-intensive tasks (e.g., open-domain question answering (QA)) require a substantial amount of factual knowledge and often rely on external information for assistance. Recently, large language models (LLMs) (e.g., ChatGPT), have demonstrated impressive prowess in solving a wide range of tasks with world knowledge, including knowledge-intensive tasks. However, it remains unclear how well LLMs are able to perceive their factual knowledge boundaries, particularly how they behave when incorporating retrieval augmentation. In this study, we present an initial analysis of the factual knowledge boundaries of LLMs and how retrieval augmentation affects LLMs on open-domain QA. Specially, we focus on three primary research questions and analyze them by examining QA performance, priori judgement and posteriori judgement of LLMs. We show evidence that LLMs possess unwavering confidence in their capabilities to respond to questions and the accuracy of their responses. Furthermore, retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries, thereby improving their judgemental abilities. Additionally, we also find that LLMs have a propensity to rely on the provided retrieval results when formulating answers, while the quality of these results significantly impacts their reliance. The code to reproduce this work is available at https://github.com/RUCAIBox/LLM-Knowledge-Boundary.

  • 9 authors
·
Jul 20, 2023

Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding

The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). However, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at: https://github.com/TyroneLi/CUA_O3D.

  • 4 authors
·
Mar 20

Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models

Retrieval-Augmented Generation (RAG), while effective in integrating external knowledge to address the limitations of large language models (LLMs), can be undermined by imperfect retrieval, which may introduce irrelevant, misleading, or even malicious information. Despite its importance, previous studies have rarely explored the behavior of RAG through joint analysis on how errors from imperfect retrieval attribute and propagate, and how potential conflicts arise between the LLMs' internal knowledge and external sources. We find that imperfect retrieval augmentation might be inevitable and quite harmful, through controlled analysis under realistic conditions. We identify the knowledge conflicts between LLM-internal and external knowledge from retrieval as a bottleneck to overcome in the post-retrieval stage of RAG. To render LLMs resilient to imperfect retrieval, we propose Astute RAG, a novel RAG approach that adaptively elicits essential information from LLMs' internal knowledge, iteratively consolidates internal and external knowledge with source-awareness, and finalizes the answer according to information reliability. Our experiments using Gemini and Claude demonstrate that Astute RAG significantly outperforms previous robustness-enhanced RAG methods. Notably, Astute RAG is the only approach that matches or exceeds the performance of LLMs without RAG under worst-case scenarios. Further analysis reveals that Astute RAG effectively resolves knowledge conflicts, improving the reliability and trustworthiness of RAG systems.

  • 5 authors
·
Oct 9, 2024

Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment

Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.

  • 6 authors
·
Jul 15, 2024

BeHonest: Benchmarking Honesty of Large Language Models

Previous works on Large Language Models (LLMs) have mainly focused on evaluating their helpfulness or harmlessness. However, honesty, another crucial alignment criterion, has received relatively less attention. Dishonest behaviors in LLMs, such as spreading misinformation and defrauding users, eroding user trust, and causing real-world harm, present severe risks that intensify as these models approach superintelligence levels. Enhancing honesty in LLMs addresses critical deficiencies and helps uncover latent capabilities that are not readily expressed. This underscores the urgent need for reliable methods and benchmarks to effectively ensure and evaluate the honesty of LLMs. In this paper, we introduce BeHonest, a pioneering benchmark specifically designed to assess honesty in LLMs comprehensively. BeHonest evaluates three essential aspects of honesty: awareness of knowledge boundaries, avoidance of deceit, and consistency in responses. Building on this foundation, we designed 10 scenarios to evaluate and analyze 9 popular LLMs on the market, including both closed-source and open-source models from different model families with varied model sizes. Our findings indicate that there is still significant room for improvement in the honesty of LLMs. We also encourage the AI community to prioritize honesty alignment in LLMs. Our benchmark and code can be found at: https://github.com/GAIR-NLP/BeHonest.

  • 8 authors
·
Jun 19, 2024

EvolvTrip: Enhancing Literary Character Understanding with Temporal Theory-of-Mind Graphs

A compelling portrayal of characters is essential to the success of narrative writing. For readers, appreciating a character's traits requires the ability to infer their evolving beliefs, desires, and intentions over the course of a complex storyline, a cognitive skill known as Theory-of-Mind (ToM). Performing ToM reasoning in prolonged narratives requires readers to integrate historical context with current narrative information, a task at which humans excel but Large Language Models (LLMs) often struggle. To systematically evaluate LLMs' ToM reasoning capability in long narratives, we construct LitCharToM, a benchmark of character-centric questions across four ToM dimensions from classic literature. Further, we introduce EvolvTrip, a perspective-aware temporal knowledge graph that tracks psychological development throughout narratives. Our experiments demonstrate that EvolvTrip consistently enhances performance of LLMs across varying scales, even in challenging extended-context scenarios. EvolvTrip proves to be particularly valuable for smaller models, partially bridging the performance gap with larger LLMs and showing great compatibility with lengthy narratives. Our findings highlight the importance of explicit representation of temporal character mental states in narrative comprehension and offer a foundation for more sophisticated character understanding. Our data and code are publicly available at https://github.com/Bernard-Yang/EvolvTrip.

  • 6 authors
·
Jun 16

Anatomy-VLM: A Fine-grained Vision-Language Model for Medical Interpretation

Accurate disease interpretation from radiology remains challenging due to imaging heterogeneity. Achieving expert-level diagnostic decisions requires integration of subtle image features with clinical knowledge. Yet major vision-language models (VLMs) treat images as holistic entities and overlook fine-grained image details that are vital for disease diagnosis. Clinicians analyze images by utilizing their prior medical knowledge and identify anatomical structures as important region of interests (ROIs). Inspired from this human-centric workflow, we introduce Anatomy-VLM, a fine-grained, vision-language model that incorporates multi-scale information. First, we design a model encoder to localize key anatomical features from entire medical images. Second, these regions are enriched with structured knowledge for contextually-aware interpretation. Finally, the model encoder aligns multi-scale medical information to generate clinically-interpretable disease prediction. Anatomy-VLM achieves outstanding performance on both in- and out-of-distribution datasets. We also validate the performance of Anatomy-VLM on downstream image segmentation tasks, suggesting that its fine-grained alignment captures anatomical and pathology-related knowledge. Furthermore, the Anatomy-VLM's encoder facilitates zero-shot anatomy-wise interpretation, providing its strong expert-level clinical interpretation capabilities.

  • 4 authors
·
Nov 11

Recognize Any Regions

Understanding the semantics of individual regions or patches within unconstrained images, such as in open-world object detection, represents a critical yet challenging task in computer vision. Building on the success of powerful image-level vision-language (ViL) foundation models like CLIP, recent efforts have sought to harness their capabilities by either training a contrastive model from scratch with an extensive collection of region-label pairs or aligning the outputs of a detection model with image-level representations of region proposals. Despite notable progress, these approaches are plagued by computationally intensive training requirements, susceptibility to data noise, and deficiency in contextual information. To address these limitations, we explore the synergistic potential of off-the-shelf foundation models, leveraging their respective strengths in localization and semantics. We introduce a novel, generic, and efficient region recognition architecture, named RegionSpot, designed to integrate position-aware localization knowledge from a localization foundation model (e.g., SAM) with semantic information extracted from a ViL model (e.g., CLIP). To fully exploit pretrained knowledge while minimizing training overhead, we keep both foundation models frozen, focusing optimization efforts solely on a lightweight attention-based knowledge integration module. Through extensive experiments in the context of open-world object recognition, our RegionSpot demonstrates significant performance improvements over prior alternatives, while also providing substantial computational savings. For instance, training our model with 3 million data in a single day using 8 V100 GPUs. Our model outperforms GLIP by 6.5 % in mean average precision (mAP), with an even larger margin by 14.8 % for more challenging and rare categories.

  • 6 authors
·
Nov 2, 2023

Harnessing RLHF for Robust Unanswerability Recognition and Trustworthy Response Generation in LLMs

Conversational Information Retrieval (CIR) systems, while offering intuitive access to information, face a significant challenge: reliably handling unanswerable questions to prevent the generation of misleading or hallucinated content. Traditional approaches often rely on external classifiers, which can introduce inconsistencies with the core generative Large Language Models (LLMs). This paper introduces Self-Aware LLM for Unanswerability (SALU), a novel approach that deeply integrates unanswerability detection directly within the LLM's generative process. SALU is trained using a multi-task learning framework for both standard Question Answering (QA) and explicit abstention generation for unanswerable queries. Crucially, it incorporates a confidence-score-guided reinforcement learning with human feedback (RLHF) phase, which explicitly penalizes hallucinated responses and rewards appropriate abstentions, fostering intrinsic self-awareness of knowledge boundaries. Through extensive experiments on our custom-built C-IR_Answerability dataset, SALU consistently outperforms strong baselines, including hybrid LLM-classifier systems, in overall accuracy for correctly answering or abstaining from questions. Human evaluation further confirms SALU's superior reliability, achieving high scores in factuality, appropriate abstention, and, most importantly, a dramatic reduction in hallucination, demonstrating its ability to robustly "know when to say 'I don't know'."

  • 4 authors
·
Jul 22

Zebra-Llama: A Context-Aware Large Language Model for Democratizing Rare Disease Knowledge

Rare diseases present unique challenges in healthcare, often suffering from delayed diagnosis and fragmented information landscapes. The scarcity of reliable knowledge in these conditions poses a distinct challenge for Large Language Models (LLMs) in supporting clinical management and delivering precise patient information underscoring the need for focused training on these 'zebra' cases. We present Zebra-Llama, a specialized context-aware language model with high precision Retrieval Augmented Generation (RAG) capability, focusing on Ehlers-Danlos Syndrome (EDS) as our case study. EDS, affecting 1 in 5,000 individuals, exemplifies the complexities of rare diseases with its diverse symptoms, multiple subtypes, and evolving diagnostic criteria. By implementing a novel context-aware fine-tuning methodology trained on questions derived from medical literature, patient experiences, and clinical resources, along with expertly curated responses, Zebra-Llama demonstrates unprecedented capabilities in handling EDS-related queries. On a test set of real-world questions collected from EDS patients and clinicians, medical experts evaluated the responses generated by both models, revealing Zebra-Llama's substantial improvements over base model (Llama 3.1-8B-Instruct) in thoroughness (77.5% vs. 70.1%), accuracy (83.0% vs. 78.8%), clarity (74.7% vs. 72.0%) and citation reliability (70.6% vs. 52.3%). Released as an open-source resource, Zebra-Llama not only provides more accessible and reliable EDS information but also establishes a framework for developing specialized AI solutions for other rare conditions. This work represents a crucial step towards democratizing expert-level knowledge in rare disease management, potentially transforming how healthcare providers and patients navigate the complex landscape of rare diseases.

  • 8 authors
·
Nov 4, 2024 1

Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts

Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.

  • 3 authors
·
Jan 26

Emo Pillars: Knowledge Distillation to Support Fine-Grained Context-Aware and Context-Less Emotion Classification

Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.

  • 1 authors
·
Apr 23

Educating LLMs like Human Students: Structure-aware Injection of Domain Knowledge

This paper presents a pioneering methodology, termed StructTuning, to efficiently transform foundation Large Language Models (LLMs) into domain specialists. It significantly minimizes the training corpus requirement to a mere 0.3% while achieving an impressive 50% of traditional knowledge injection performance. Our method is inspired by the educational processes for human students, particularly how structured domain knowledge from textbooks is absorbed and then applied to tackle real-world challenges through specific exercises. Based on this, we propose a novel two-stage knowledge injection strategy: Structure-aware Continual Pre-Training (SCPT) and Structure-aware Supervised Fine-Tuning (SSFT). In the SCPT phase, we organize the training data into an auto-generated taxonomy of domain knowledge, enabling LLMs to effectively memorize textual segments linked to specific expertise within the taxonomy's architecture. Subsequently, in the SSFT phase, we explicitly prompt models to reveal the underlying knowledge structure in their outputs, leveraging this structured domain insight to address practical problems adeptly. Our ultimate method has undergone extensive evaluations across model architectures and scales, using closed-book question-answering tasks on LongBench and MMedBench datasets. Remarkably, our method matches 50% of the improvement displayed by the state-of-the-art MMedLM2 on MMedBench, but with only 0.3% quantity of the training corpus. This breakthrough showcases the potential to scale up our StructTuning for stronger domain-specific LLMs. Code will be made public soon.

  • 8 authors
·
Jul 23, 2024

Context-Aware Academic Emotion Dataset and Benchmark

Academic emotion analysis plays a crucial role in evaluating students' engagement and cognitive states during the learning process. This paper addresses the challenge of automatically recognizing academic emotions through facial expressions in real-world learning environments. While significant progress has been made in facial expression recognition for basic emotions, academic emotion recognition remains underexplored, largely due to the scarcity of publicly available datasets. To bridge this gap, we introduce RAER, a novel dataset comprising approximately 2,700 video clips collected from around 140 students in diverse, natural learning contexts such as classrooms, libraries, laboratories, and dormitories, covering both classroom sessions and individual study. Each clip was annotated independently by approximately ten annotators using two distinct sets of academic emotion labels with varying granularity, enhancing annotation consistency and reliability. To our knowledge, RAER is the first dataset capturing diverse natural learning scenarios. Observing that annotators naturally consider context cues-such as whether a student is looking at a phone or reading a book-alongside facial expressions, we propose CLIP-CAER (CLIP-based Context-aware Academic Emotion Recognition). Our method utilizes learnable text prompts within the vision-language model CLIP to effectively integrate facial expression and context cues from videos. Experimental results demonstrate that CLIP-CAER substantially outperforms state-of-the-art video-based facial expression recognition methods, which are primarily designed for basic emotions, emphasizing the crucial role of context in accurately recognizing academic emotions. Project page: https://zgsfer.github.io/CAER

  • 5 authors
·
Jul 1 1

Knowledge Grafting of Large Language Models

Cross-capability transfer is a key challenge in large language model (LLM) research, with applications in multi-task integration, model compression, and continual learning. Recent works like FuseLLM and FuseChat have demonstrated the potential of transferring multiple model capabilities to lightweight models, enhancing adaptability and efficiency, which motivates our investigation into more efficient cross-capability transfer methods. However, existing approaches primarily focus on small, homogeneous models, limiting their applicability. For large, heterogeneous models, knowledge distillation with full-parameter fine-tuning often overlooks the student model's intrinsic capacity and risks catastrophic forgetting, while PEFT methods struggle to effectively absorb knowledge from source LLMs. To address these issues, we introduce GraftLLM, a novel method that stores source model capabilities in a target model with SkillPack format. This approach preserves general capabilities, reduces parameter conflicts, and supports forget-free continual learning and model fusion. We employ a module-aware adaptive compression strategy to compress parameter updates, ensuring efficient storage while maintaining task-specific knowledge. The resulting SkillPack serves as a compact and transferable knowledge carrier, ideal for heterogeneous model fusion and continual learning. Experiments across various scenarios demonstrate that GraftLLM outperforms existing techniques in knowledge transfer, knowledge fusion, and forget-free learning, providing a scalable and efficient solution for cross-capability transfer. The code is publicly available at: https://github.com/duguodong7/GraftLLM.

  • 12 authors
·
May 24

SwS: Self-aware Weakness-driven Problem Synthesis in Reinforcement Learning for LLM Reasoning

Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for training large language models (LLMs) on complex reasoning tasks, such as mathematical problem solving. A prerequisite for the scalability of RLVR is a high-quality problem set with precise and verifiable answers. However, the scarcity of well-crafted human-labeled math problems and limited-verification answers in existing distillation-oriented synthetic datasets limit their effectiveness in RL. Additionally, most problem synthesis strategies indiscriminately expand the problem set without considering the model's capabilities, leading to low efficiency in generating useful questions. To mitigate this issue, we introduce a Self-aware Weakness-driven problem Synthesis framework (SwS) that systematically identifies model deficiencies and leverages them for problem augmentation. Specifically, we define weaknesses as questions that the model consistently fails to learn through its iterative sampling during RL training. We then extract the core concepts from these failure cases and synthesize new problems to strengthen the model's weak areas in subsequent augmented training, enabling it to focus on and gradually overcome its weaknesses. Without relying on external knowledge distillation, our framework enables robust generalization byempowering the model to self-identify and address its weaknesses in RL, yielding average performance gains of 10.0% and 7.7% on 7B and 32B models across eight mainstream reasoning benchmarks.

  • 8 authors
·
Jun 10 2

NAICS-Aware Graph Neural Networks for Large-Scale POI Co-visitation Prediction: A Multi-Modal Dataset and Methodology

Understanding where people go after visiting one business is crucial for urban planning, retail analytics, and location-based services. However, predicting these co-visitation patterns across millions of venues remains challenging due to extreme data sparsity and the complex interplay between spatial proximity and business relationships. Traditional approaches using only geographic distance fail to capture why coffee shops attract different customer flows than fine dining restaurants, even when co-located. We introduce NAICS-aware GraphSAGE, a novel graph neural network that integrates business taxonomy knowledge through learnable embeddings to predict population-scale co-visitation patterns. Our key insight is that business semantics, captured through detailed industry codes, provide crucial signals that pure spatial models cannot explain. The approach scales to massive datasets (4.2 billion potential venue pairs) through efficient state-wise decomposition while combining spatial, temporal, and socioeconomic features in an end-to-end framework. Evaluated on our POI-Graph dataset comprising 94.9 million co-visitation records across 92,486 brands and 48 US states, our method achieves significant improvements over state-of-the-art baselines: the R-squared value increases from 0.243 to 0.625 (a 157 percent improvement), with strong gains in ranking quality (32 percent improvement in NDCG at 10).

  • 6 authors
·
Jul 25

Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch

Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, traditional SSL suffers severe performance damage due to the harmful invasion of the instances with unknown categories into the target classifier. In this study, by strict mathematical reasoning, we reveal that the SSL error under class distribution mismatch is composed of pseudo-labeling error and invasion error, both of which jointly bound the SSL population risk. To alleviate the SSL error, we propose a robust SSL framework called Weight-Aware Distillation (WAD) that, by weights, selectively transfers knowledge beneficial to the target task from unsupervised contrastive representation to the target classifier. Specifically, WAD captures adaptive weights and high-quality pseudo labels to target instances by exploring point mutual information (PMI) in representation space to maximize the role of unlabeled data and filter unknown categories. Theoretically, we prove that WAD has a tight upper bound of population risk under class distribution mismatch. Experimentally, extensive results demonstrate that WAD outperforms five state-of-the-art SSL approaches and one standard baseline on two benchmark datasets, CIFAR10 and CIFAR100, and an artificial cross-dataset. The code is available at https://github.com/RUC-DWBI-ML/research/tree/main/WAD-master.

  • 5 authors
·
Aug 22, 2023

PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360$^{\circ}$

Synthesis and reconstruction of 3D human head has gained increasing interests in computer vision and computer graphics recently. Existing state-of-the-art 3D generative adversarial networks (GANs) for 3D human head synthesis are either limited to near-frontal views or hard to preserve 3D consistency in large view angles. We propose PanoHead, the first 3D-aware generative model that enables high-quality view-consistent image synthesis of full heads in 360^circ with diverse appearance and detailed geometry using only in-the-wild unstructured images for training. At its core, we lift up the representation power of recent 3D GANs and bridge the data alignment gap when training from in-the-wild images with widely distributed views. Specifically, we propose a novel two-stage self-adaptive image alignment for robust 3D GAN training. We further introduce a tri-grid neural volume representation that effectively addresses front-face and back-head feature entanglement rooted in the widely-adopted tri-plane formulation. Our method instills prior knowledge of 2D image segmentation in adversarial learning of 3D neural scene structures, enabling compositable head synthesis in diverse backgrounds. Benefiting from these designs, our method significantly outperforms previous 3D GANs, generating high-quality 3D heads with accurate geometry and diverse appearances, even with long wavy and afro hairstyles, renderable from arbitrary poses. Furthermore, we show that our system can reconstruct full 3D heads from single input images for personalized realistic 3D avatars.

  • 6 authors
·
Mar 23, 2023

SADM: Sequence-Aware Diffusion Model for Longitudinal Medical Image Generation

Human organs constantly undergo anatomical changes due to a complex mix of short-term (e.g., heartbeat) and long-term (e.g., aging) factors. Evidently, prior knowledge of these factors will be beneficial when modeling their future state, i.e., via image generation. However, most of the medical image generation tasks only rely on the input from a single image, thus ignoring the sequential dependency even when longitudinal data is available. Sequence-aware deep generative models, where model input is a sequence of ordered and timestamped images, are still underexplored in the medical imaging domain that is featured by several unique challenges: 1) Sequences with various lengths; 2) Missing data or frame, and 3) High dimensionality. To this end, we propose a sequence-aware diffusion model (SADM) for the generation of longitudinal medical images. Recently, diffusion models have shown promising results in high-fidelity image generation. Our method extends this new technique by introducing a sequence-aware transformer as the conditional module in a diffusion model. The novel design enables learning longitudinal dependency even with missing data during training and allows autoregressive generation of a sequence of images during inference. Our extensive experiments on 3D longitudinal medical images demonstrate the effectiveness of SADM compared with baselines and alternative methods. The code is available at https://github.com/ubc-tea/SADM-Longitudinal-Medical-Image-Generation.

  • 5 authors
·
Dec 15, 2022

Text2Place: Affordance-aware Text Guided Human Placement

For a given scene, humans can easily reason for the locations and pose to place objects. Designing a computational model to reason about these affordances poses a significant challenge, mirroring the intuitive reasoning abilities of humans. This work tackles the problem of realistic human insertion in a given background scene termed as Semantic Human Placement. This task is extremely challenging given the diverse backgrounds, scale, and pose of the generated person and, finally, the identity preservation of the person. We divide the problem into the following two stages i) learning semantic masks using text guidance for localizing regions in the image to place humans and ii) subject-conditioned inpainting to place a given subject adhering to the scene affordance within the semantic masks. For learning semantic masks, we leverage rich object-scene priors learned from the text-to-image generative models and optimize a novel parameterization of the semantic mask, eliminating the need for large-scale training. To the best of our knowledge, we are the first ones to provide an effective solution for realistic human placements in diverse real-world scenes. The proposed method can generate highly realistic scene compositions while preserving the background and subject identity. Further, we present results for several downstream tasks - scene hallucination from a single or multiple generated persons and text-based attribute editing. With extensive comparisons against strong baselines, we show the superiority of our method in realistic human placement.

  • 4 authors
·
Jul 22, 2024 1

LACIE: Listener-Aware Finetuning for Confidence Calibration in Large Language Models

When answering questions, LLMs can convey not only an answer, but a level of confidence about the answer being correct. This includes explicit confidence markers (e.g. giving a numeric score) as well as implicit markers, like an authoritative tone or elaborating with additional knowledge. For LLMs to be trustworthy knowledge sources, the confidence they convey should match their actual expertise; however, most current models tend towards overconfidence. To calibrate both implicit and explicit confidence markers, we introduce a pragmatic, listener-aware finetuning method (LACIE) that models the listener, considering not only whether an answer is right, but whether it will be accepted by a listener. We cast calibration as preference optimization, creating data via a two-agent game, where a speaker model's outputs are judged by a simulated listener. We then finetune three LLMs (Mistral-7B, Llama3-8B, Llama3-70B) with LACIE, and show that the resulting models are better calibrated w.r.t. a simulated listener. Crucially, these trends transfer to human listeners, helping them correctly predict model correctness: we conduct a human evaluation where annotators accept or reject an LLM's answers, finding that training with LACIE results in 47% fewer incorrect answers being accepted while maintaining the same level of acceptance for correct answers. Furthermore, LACIE generalizes to another dataset, resulting in a large increase in truthfulness on TruthfulQA when trained on TriviaQA. Our analysis indicates that LACIE leads to a better confidence separation between correct and incorrect examples. Qualitatively, we find that a LACIE-trained model hedges more and implicitly signals certainty when it is correct by using an authoritative tone or including details. Finally, LACIE finetuning leads to an emergent increase in model abstention (e.g. saying "I don't know") for answers that are likely wrong.

  • 3 authors
·
May 31, 2024

User-Aware Prefix-Tuning is a Good Learner for Personalized Image Captioning

Image captioning bridges the gap between vision and language by automatically generating natural language descriptions for images. Traditional image captioning methods often overlook the preferences and characteristics of users. Personalized image captioning solves this problem by incorporating user prior knowledge into the model, such as writing styles and preferred vocabularies. Most existing methods emphasize the user context fusion process by memory networks or transformers. However, these methods ignore the distinct domains of each dataset. Therefore, they need to update the entire caption model parameters when meeting new samples, which is time-consuming and calculation-intensive. To address this challenge, we propose a novel personalized image captioning framework that leverages user context to consider personality factors. Additionally, our framework utilizes the prefix-tuning paradigm to extract knowledge from a frozen large language model, reducing the gap between different language domains. Specifically, we employ CLIP to extract the visual features of an image and align the semantic space using a query-guided mapping network. By incorporating the transformer layer, we merge the visual features with the user's contextual prior knowledge to generate informative prefixes. Moreover, we employ GPT-2 as the frozen large language model. With a small number of parameters to be trained, our model performs efficiently and effectively. Our model outperforms existing baseline models on Instagram and YFCC100M datasets across five evaluation metrics, demonstrating its superiority, including twofold improvements in metrics such as BLEU-4 and CIDEr.

  • 5 authors
·
Dec 7, 2023

Towards Personality-Aware Recommendation

In the last decade new ways of shopping online have increased the possibility of buying products and services more easily and faster than ever. In this new context, personality is a key determinant in the decision making of the consumer when shopping. The two main reasons are: firstly, a person's buying choices are influenced by psychological factors like impulsiveness, and secondly, some consumers may be more susceptible to making impulse purchases than others. To the best of our knowledge, the impact of personality factors on advertisements has been largely neglected at the level of recommender systems. This work proposes a highly innovative research which uses a personality perspective to determine the unique associations among the consumer's buying tendency and advert recommendations. As a matter of fact, the lack of a publicly available benchmark for computational advertising do not allow both the exploration of this intriguing research direction and the evaluation of state-of-the-art algorithms. We present the ADS Dataset, a publicly available benchmark for computational advertising enriched with Big-Five users' personality factors and 1,200 personal users' pictures. The proposed benchmark allows two main tasks: rating prediction over 300 real advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) and click-through rate prediction. Moreover, this work carries out experiments, reviews various evaluation criteria used in the literature, and provides a library for each one of them within one integrated toolbox.

  • 1 authors
·
Jul 18, 2016