34 OpenVision 2: A Family of Generative Pretrained Visual Encoders for Multimodal Learning This paper provides a simplification on OpenVision's architecture and loss design for enhancing its training efficiency. Following the prior vision-language pretraining works CapPa and AIMv2, as well as modern multimodal designs like LLaVA, our changes are straightforward: we remove the text encoder (and therefore the contrastive loss), retaining only the captioning loss as a purely generative training signal. We name this new version OpenVision 2. The initial results are promising: despite this simplification, OpenVision 2 competitively matches the original model's performance on a broad set of multimodal benchmarks while substantially cutting both training time and memory consumption. For example, with ViT-L/14, it reduces training time by about 1.5x (from 83h to 57h), and memory usage by about 1.8x (from 24.5GB to 13.8GB, equivalently allowing the maximum batch size to grow from 2k to 8k). This superior training efficiency also allows us to scale far beyond the largest vision encoder used in OpenVision, reaching more than 1 billion parameters. We hold a strong belief that this lightweight, generative-only paradigm is compelling for future vision encoder development in multimodal foundation models. 7 authors · Sep 1, 2025 2
29 OpenVision: A Fully-Open, Cost-Effective Family of Advanced Vision Encoders for Multimodal Learning OpenAI's CLIP, released in early 2021, have long been the go-to choice of vision encoder for building multimodal foundation models. Although recent alternatives such as SigLIP have begun to challenge this status quo, to our knowledge none are fully open: their training data remains proprietary and/or their training recipes are not released. This paper fills this gap with OpenVision, a fully-open, cost-effective family of vision encoders that match or surpass the performance of OpenAI's CLIP when integrated into multimodal frameworks like LLaVA. OpenVision builds on existing works -- e.g., CLIPS for training framework and Recap-DataComp-1B for training data -- while revealing multiple key insights in enhancing encoder quality and showcasing practical benefits in advancing multimodal models. By releasing vision encoders spanning from 5.9M to 632.1M parameters, OpenVision offers practitioners a flexible trade-off between capacity and efficiency in building multimodal models: larger models deliver enhanced multimodal performance, while smaller versions enable lightweight, edge-ready multimodal deployments. 5 authors · May 7, 2025 1
16 OpenVision 3: A Family of Unified Visual Encoder for Both Understanding and Generation This paper presents a family of advanced vision encoder, named OpenVision 3, that learns a single, unified visual representation that can serve both image understanding and image generation. Our core architecture is simple: we feed VAE-compressed image latents to a ViT encoder and train its output to support two complementary roles. First, the encoder output is passed to the ViT-VAE decoder to reconstruct the original image, encouraging the representation to capture generative structure. Second, the same representation is optimized with contrastive learning and image-captioning objectives, strengthening semantic features. By jointly optimizing reconstruction- and semantics-driven signals in a shared latent space, the encoder learns representations that synergize and generalize well across both regimes. We validate this unified design through extensive downstream evaluations with the encoder frozen. For multimodal understanding, we plug the encoder into the LLaVA-1.5 framework: it performs comparably with a standard CLIP vision encoder (e.g., 62.4 vs 62.2 on SeedBench, and 83.7 vs 82.9 on POPE). For generation, we test it under the RAE framework: ours substantially surpasses the standard CLIP-based encoder (e.g., gFID: 1.89 vs 2.54 on ImageNet). We hope this work can spur future research on unified modeling. UCSC-VLAA · Jan 21 3