new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Implementation of the rROF denoising method in the cWB pipeline for gravitational-wave data analysis

The data collected by the current network of gravitational-wave detectors are largely dominated by instrumental noise. Total variation methods based on L1-norm minimization have recently been proposed as a powerful technique for noise removal in gravitational-wave data. In particular, the regularized Rudin-Osher-Fatemi (rROF) model has proven effective to denoise signals embedded in either simulated Gaussian noise or actual detector noise. Importing the rROF model to existing search pipelines seems therefore worth considering. In this paper, we discuss the implementation of two variants of the rROF algorithm as two separate plug-ins of the coherent Wave Burst (cWB) pipeline designed to conduct searches of unmodelled gravitational-wave burst sources. The first approach is based on a single-step rROF method and the second one employs an iterative rROF procedure. Both approaches are calibrated using actual gravitational-wave events from the first three observing runs of the LIGO-Virgo-KAGRA collaboration, namely GW1501914, GW151226, GW170817, and GW190521, encompassing different types of compact binary coalescences. Our analysis shows that the iterative version of the rROF denoising algorithm implemented in the cWB pipeline effectively eliminates noise while preserving the waveform signals intact. Therefore, the combined approach yields higher signal-to-noise values than those computed by the cWB pipeline without the rROF denoising step. The incorporation of the iterative rROF algorithm in the cWB pipeline might hence impact the detectability capabilities of the pipeline along with the inference of source properties.

  • 6 authors
·
Feb 21, 2022

OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion

Surface wave dispersion curve inversion plays a critical role in both shallow resource exploration and deep geological studies, yet it remains hindered by sensitivity to initial models and low computational efficiency. Recently, data-driven deep learning methods, inspired by advances in computer vision, have shown promising potential to address these challenges. However, the lack of large-scale, diverse benchmark datasets remains a major obstacle to their development and evaluation. To bridge this gap, we present OpenSWI, a comprehensive benchmark dataset generated through the Surface Wave Inversion Dataset Preparation (SWIDP) pipeline. OpenSWI includes two synthetic datasets tailored to different research scales and scenarios, OpenSWI-shallow and OpenSWI-deep, and an AI-ready real-world dataset for generalization evaluation, OpenSWI-real. OpenSWI-shallow, derived from the 2-D OpenFWI geological model dataset, contains over 22 million 1-D velocity profiles paired with fundamental-mode phase and group velocity dispersion curves, spanning a wide range of shallow geological structures (e.g., flat layers, faults, folds, realistic stratigraphy). OpenSWI-deep, built from 14 global and regional 3-D geological models, comprises 1.26 million high-fidelity 1-D velocity-dispersion pairs for deep-Earth studies. OpenSWI-real, compiled from open-source projects, contains two sets of observed dispersion curves with corresponding reference models, serving as a benchmark for evaluating model generalization. To demonstrate utility, we trained models on OpenSWI-shallow and -deep and evaluated them on OpenSWI-real, demonstrating strong agreement between predictions and references, which confirms the diversity and representativeness of the dataset. To advance intelligent surface wave inversion, we release the SWIDP toolbox, OpenSWI datasets, and trained models for the research community.

  • 11 authors
·
Aug 14

ElasWave: An Elastic-Native System for Scalable Hybrid-Parallel Training

Large-scale LLM pretraining now runs across 10^5--10^6 accelerators, making failures routine and elasticity mandatory. We posit that an elastic-native training system must jointly deliver (i) parameter consistency, (ii) low mean time to recovery (MTTR), (iii) high post-change throughput, and (iv) computation consistency. No prior system achieves all four simultaneously. To achieve these goals, we present ElasWave, which delivers per-step fault tolerance via multi-dimensional scheduling across graph, dataflow, DVFS, and RNG. ElasWave reshapes and reshards micro-batches while preserving the global batch size and gradient scale. It performs online pipeline resharding with asynchronous parameter migration and interleaves ZeRO partitions, reducing parameter recovery processes to disjoint rank-to-rank transfers. It further leverages DVFS to absorb pipeline bubbles and reshards RNG to keep computation consistency. Together, a dynamic communicator enables in-place communication group edits, while per-step in-memory snapshots support online verification and redistribution. We evaluate ElasWave on 96 NPUs and benchmark it against state-of-the-art baselines: throughput improves by 1.35times over ReCycle and 1.60times over TorchFT; communicator recovery completes within one second (up to 82times/3.6times faster than full/partial rebuilds); migration MTTR drops by as much as 51%; and convergence deviation is reduced by approximately 78%.

  • 19 authors
·
Oct 1

Deep Synoptic Array Science: Searching for Long Duration Radio Transients with the DSA-110

We describe the design and commissioning tests for the DSA-110 Not-So-Fast Radio Burst (NSFRB) search pipeline, a 1.4 GHz image-plane single-pulse search sensitive to 134 ms-160.8 s radio bursts. Extending the pulse width range of the Fast Radio Burst (FRB) search by 3 orders of magnitude, the NSFRB search is sensitive to the recently-discovered Galactic Long Period Radio Transients (LPRTs). The NSFRB search operates in real-time, utilizing a custom GPU-accelerated search code, cerberus, implemented in Python with JAX. We summarize successful commissioning sensitivity tests with continuum sources and pulsar B0329+54, estimating the 6sigma flux (fluence) threshold to be ~290 mJy (~40 Jy ms). Future tests of recovery of longer timescale transients, e.g. CHIME J1634+44, are planned to supplement injection testing and B0329+54 observations. An offline DSA-110 NSFRB Galactic Plane Survey was conducted to search for LPRTs, covering -3.5^circ<b<5.7^circ and 141^circ<l<225^circ (~770 square degrees) in Galactic coordinates. We estimate an upper limit Poissonian burst rate ~1 hr^{-1} per square degree (~7 hr^{-1} per 3^circtimes3^circ survey grid cell) maximized across the inner |b|<0.25^circ of the surveyed region. By imposing the ~290 mJy flux limit on two representative models (the magnetar plastic flow model and the White Dwarf-M Dwarf binary model), we reject with 95% confidence the presence of White Dwarf-M Dwarf binary LPRTs with periods between ~10-70s within ~95% of the surveyed region. Combined with the prevalence of LPRTs in the Galactic Plane, our results motivate further consideration of both White Dwarf-M Dwarf binary models and isolated magnetar models. We will continue to explore novel LPRT search strategies during real-time operations, such as triggered periodicity searches and additional targeted surveys.

  • 13 authors
·
Oct 20

Towards High-Quality and Efficient Speech Bandwidth Extension with Parallel Amplitude and Phase Prediction

Speech bandwidth extension (BWE) refers to widening the frequency bandwidth range of speech signals, enhancing the speech quality towards brighter and fuller. This paper proposes a generative adversarial network (GAN) based BWE model with parallel prediction of Amplitude and Phase spectra, named AP-BWE, which achieves both high-quality and efficient wideband speech waveform generation. The proposed AP-BWE generator is entirely based on convolutional neural networks (CNNs). It features a dual-stream architecture with mutual interaction, where the amplitude stream and the phase stream communicate with each other and respectively extend the high-frequency components from the input narrowband amplitude and phase spectra. To improve the naturalness of the extended speech signals, we employ a multi-period discriminator at the waveform level and design a pair of multi-resolution amplitude and phase discriminators at the spectral level, respectively. Experimental results demonstrate that our proposed AP-BWE achieves state-of-the-art performance in terms of speech quality for BWE tasks targeting sampling rates of both 16 kHz and 48 kHz. In terms of generation efficiency, due to the all-convolutional architecture and all-frame-level operations, the proposed AP-BWE can generate 48 kHz waveform samples 292.3 times faster than real-time on a single RTX 4090 GPU and 18.1 times faster than real-time on a single CPU. Notably, to our knowledge, AP-BWE is the first to achieve the direct extension of the high-frequency phase spectrum, which is beneficial for improving the effectiveness of existing BWE methods.

  • 4 authors
·
Jan 12, 2024

Seismic Arrival-time Picking on Distributed Acoustic Sensing Data using Semi-supervised Learning

Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. The recorded seismic signals by DAS have several distinct characteristics, such as unknown coupling effects, strong anthropogenic noise, and ultra-dense spatial sampling. These aspects differ from conventional seismic data recorded by seismic networks, making it challenging to utilize DAS at present for seismic monitoring. New data analysis algorithms are needed to extract useful information from DAS data. Previous studies on conventional seismic data demonstrated that deep learning models could achieve performance close to human analysts in picking seismic phases. However, phase picking on DAS data is still a difficult problem due to the lack of manual labels. Further, the differences in mathematical structure between these two data formats, i.e., ultra-dense DAS arrays and sparse seismic networks, make model fine-tuning or transfer learning difficult to implement on DAS data. In this work, we design a new approach using semi-supervised learning to solve the phase-picking task on DAS arrays. We use a pre-trained PhaseNet model as a teacher network to generate noisy labels of P and S arrivals on DAS data and apply the Gaussian mixture model phase association (GaMMA) method to refine these noisy labels to build training datasets. We develop a new deep learning model, PhaseNet-DAS, to process the 2D spatial-temporal data of DAS arrays and train the model on DAS data. The new deep learning model achieves high picking accuracy and good earthquake detection performance. We then apply the model to process continuous data and build earthquake catalogs directly from DAS recording. Our approach using semi-supervised learning provides a way to build effective deep learning models for DAS, which have the potential to improve earthquake monitoring using large-scale fiber networks.

  • 6 authors
·
Feb 17, 2023