new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research

Advances in LLMs have produced agents with knowledge and operational capabilities comparable to human scientists, suggesting potential to assist, accelerate, and automate research. However, existing studies mainly evaluate such systems on well-defined benchmarks or general tasks like literature retrieval, limiting their end-to-end problem-solving ability in open scientific scenarios. This is particularly true in physics, which is abstract, mathematically intensive, and requires integrating analytical reasoning with code-based computation. To address this, we propose PhysMaster, an LLM-based agent functioning as an autonomous theoretical and computational physicist. PhysMaster couples absract reasoning with numerical computation and leverages LANDAU, the Layered Academic Data Universe, which preserves retrieved literature, curated prior knowledge, and validated methodological traces, enhancing decision reliability and stability. It also employs an adaptive exploration strategy balancing efficiency and open-ended exploration, enabling robust performance in ultra-long-horizon tasks. We evaluate PhysMaster on problems from high-energy theory, condensed matter theory to astrophysics, including: (i) acceleration, compressing labor-intensive research from months to hours; (ii) automation, autonomously executing hypothesis-driven loops ; and (iii) autonomous discovery, independently exploring open problems.

  • 21 authors
·
Dec 22, 2025

Can an Anti-de Sitter Vacuum in the Dark Energy Sector Explain JWST High-Redshift Galaxy and Reionization Observations?

The James Webb Space Telescope's (JWST) discovery of an unexpectedly high abundance of UV-bright galaxies at redshifts z > 10 poses a significant challenge to the standard LambdaCDM cosmology. This work tests whether this tension can be resolved solely by modifying the cosmological background, without invoking significant evolution in the astrophysical properties of early galaxies. We investigate an alternative framework featuring the presence of an anti-de Sitter vacuum in the dark energy sector, a model that naturally arises in quantum gravity models like string theory and can enhance early structure formation. Using a self-consistent semi-analytical model that couples galaxy evolution with reionization, we confront this scenario with a wide range of observations. We first show that while a model tailored to fit the high-z UV luminosity functions (UVLFs) shows promise, it is in strong tension with well-established cosmological constraints from the CMB and other low-redshift probes. Conversely, models within this framework that are consistent with these constraints provide only a modest boost to structure formation and fail to reproduce the observed JWST galaxy abundances at z > 10. While these models remain consistent with the cosmic reionization history, our primary result is that this class of cosmological modifications is insufficient on its own to explain the galaxy excess. Our study underscores the critical importance of holistic testing for any beyond-LambdaCDM proposal; apparent success in one observational regime does not guarantee overall viability. By demonstrating the limitations of a purely cosmological solution, our results strengthen the case that evolving astrophysical properties are a necessary ingredient for solving the challenge of early galaxy formation.

  • 4 authors
·
Sep 2, 2025

Efficient Implementation of Gaussian Process Regression Accelerated Saddle Point Searches with Application to Molecular Reactions

The task of locating first order saddle points on high-dimensional surfaces describing the variation of energy as a function of atomic coordinates is an essential step for identifying the mechanism and estimating the rate of thermally activated events within the harmonic approximation of transition state theory. When combined directly with electronic structure calculations, the number of energy and atomic force evaluations needed for convergence is a primary issue. Here, we describe an efficient implementation of Gaussian process regression (GPR) acceleration of the minimum mode following method where a dimer is used to estimate the lowest eigenmode of the Hessian. A surrogate energy surface is constructed and updated after each electronic structure calculation. The method is applied to a test set of 500 molecular reactions previously generated by Hermez and coworkers [J. Chem. Theory Comput. 18, 6974 (2022)]. An order of magnitude reduction in the number of electronic structure calculations needed to reach the saddle point configurations is obtained by using the GPR compared to the dimer method. Despite the wide range in stiffness of the molecular degrees of freedom, the calculations are carried out using Cartesian coordinates and are found to require similar number of electronic structure calculations as an elaborate internal coordinate method implemented in the Sella software package. The present implementation of the GPR surrogate model in C++ is efficient enough for the wall time of the saddle point searches to be reduced in 3 out of 4 cases even though the calculations are carried out at a low Hartree-Fock level.

  • 5 authors
·
May 18, 2025

Accurate generation of chemical reaction transition states by conditional flow matching

Transition state (TS) structures define the critical geometries and energy barriers underlying chemical reactivity, yet their fleeting nature renders them experimentally elusive and drives the reliance on costly, high-throughput density functional theory (DFT) calculations. Here, we introduce TS-GEN, a conditional flow-matching generative model that maps samples from a simple Gaussian prior directly to transition-state saddle-point geometries in a single, deterministic pass. By embedding both reactant and product conformations as conditioning information, TS-GEN learns to transport latent noise to true TS structures via an optimal-transport path, effectively replacing the iterative optimization common in nudged-elastic band or string-method algorithms. TS-GEN delivers unprecedented accuracy, achieving a root-mean-square deviation of 0.004 mathring{A} (vs. 0.103 mathring{A} for prior state-of-the-art) and a mean barrier-height error of 1.019 {rm kcal/mol} (vs. 2.864 {rm kcal/mol}), while requiring only 0.06 {rm s} GPU time per inference. Over 87% of generated TSs meet chemical-accuracy criteria (<1.58 {rm kcal/mol} error), substantially outpacing existing methods. TS-GEN also exhibits strong transferability to out-of-distribution reactions from a larger database. By uniting sub-angstrom precision, sub-second speed, and broad applicability, TS-GEN will be highly useful for high-throughput exploration of complex reaction networks, paving the way to the exploration of novel chemical reaction mechanisms.

  • 3 authors
·
Jul 14, 2025

High-energy neutrino emission from tidal disruption event outflow-cloud interactions

Tidal disruption events (TDEs), characterized by their luminous transients and high-velocity outflows, have emerged as plausible sources of high-energy neutrinos contributing to the diffuse neutrino. In this study, we calculate the contribution of TDEs to the diffuse neutrino by employing the outflow-cloud model within the TDE framework. Our analysis indicates that the contribution of TDEs becomes negligible when the redshift Z exceeds 2. Employing a set of fiducial values, which includes outflow energy E_{rm kin}=10^{51} erg, a proton spectrum cutoff energy E_{rm p,max}=100 PeV, a volume TDE rate N=8 times 10^{-7} rm Mpc^{-3} year^{-1}, covering fraction of clouds C_V=0.1, energy conversion efficiency in the shock eta =0.1, and a proton spectrum index Gamma=-1.7, we find that TDEs can account for approximately 80\% of the contribution at energies around 0.3 PeV. Additionally, TDEs still contribute around 18\% to the IceCube data below 0.1 PeV and the total contribution is sim 24^{+2}_{-15}%. In addition, we also discuss the potential influence of various parameter values on the results in detail. With the IceCube data, we impose constraints on the combination of the physical parameters, i.e., C_{f}=NE_{rm kin}C_{rm v}eta. Future observations or theoretical considerations would fix some physical parameters, which will help to constrain some individual parameters of TDEs.

  • 3 authors
·
Jul 16, 2024

Strain-Balanced Low-Temperature-Grown Beryllium-Doped InGaAs/InAlAs Superlattices for High-Performance Terahertz Photoconductors under 1550 nm Laser Excitation

This study systematically investigates the photoconductive properties of low-temperature-grown Beryllium (Be)-doped InGaAs/InAlAs strain-balanced superlattices (SLs) grown by molecular beam epitaxy under stationary growth conditions on semi-insulating InP:Fe substrates. The stationary growth approach enabled precise control over lateral gradients in layer strain, composition, and thickness across a single wafer, while strain-balancing facilitated pseudomorphic growth to explore a wide range of structural parameters, providing a robust platform to study their influence on photoconductive performance. Structural characterization confirmed high crystalline quality and smooth surface morphology in all samples. Time-resolved pump-probe spectroscopy revealed subpicosecond carrier lifetimes, validating the effectiveness of strain balancing and Be doping in tuning ultrafast recombination dynamics. Hall effect measurements supported by 8-band k.p modeling revealed enhanced carrier mobility in strain-balanced SLs compared to lattice-matched structures, primarily due to reduced electron and hole effective masses and stronger quantum confinement. Additionally, optical absorption under 1550 nm excitation showed improved absorption coefficients for the strain-balanced structure, consistent with the reduction in bandgap energy predicted by theoretical modeling, thereby enhancing photon-to-carrier conversion efficiency. Furthermore, transmission electron microscopy provided first-time evidence of significant Be-induced interdiffusion at the strained SL interfaces, an important factor influencing carrier transport and dynamics. These findings position low-temperature-grown Be-doped InGaAs/InAlAs strain-balanced SLs as promising materials for high-performance broadband THz photoconductive detectors operating at telecom-compatible wavelengths.

  • 6 authors
·
May 3, 2025

Theoretical Antineutrino Detection, Direction and Ranging at Long Distances

In this paper we introduce the concept of what we call "NUDAR" (NeUtrino Direction and Ranging), making the point that measurements of the observed energy and direction vectors can be employed to passively deduce the exact three-dimensional location and thermal power of geophysical and anthropogenic neutrino sources from even a single detector. We present the most precise background estimates to date, all handled in full three dimensions, as functions of depth and geographical location. For the present calculations, we consider a hypothetical 138 kiloton detector which can be transported to an ocean site and deployed to an operational depth. We present a Bayesian estimation framework to incorporate any a priori knowledge of the reactor that we are trying to detect, as well as the estimated uncertainty in the background and the oscillation parameters. Most importantly, we fully employ the knowledge of the reactor spectrum and the distance-dependent effects of neutrino oscillations on such spectra. The latter, in particular, makes possible determination of range from one location, given adequate signal statistics. Further, we explore the rich potential of improving detection with even modest improvements in individual neutrino direction determination. We conclude that a 300 MWth reactor can indeed be geolocated, and its operating power estimated with one or two detectors in the hundred kiloton class at ranges out to a few hundred kilometers. We note that such detectors would have natural and non-interfering utility for scientific studies of geo-neutrinos, neutrino oscillations, and astrophysical neutrinos. This motivates the development of cost effective methods of constructing and deploying such next generation detectors.

  • 8 authors
·
Jul 9, 2013

Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium φ^3 QFT

Our aim is to contribute to quantum field theory (QFT) formalisms useful for descriptions of short time phenomena, dominant especially in heavy ion collisions. We formulate out-of-equilibrium QFT within the finite-time-path formalism (FTP) and renormalization theory (RT). The potential conflict of FTP and RT is investigated in g phi^3 QFT, by using the retarded/advanced (R/A) basis of Green functions and dimensional renormalization (DR). For example, vertices immediately after (in time) divergent self-energy loops do not conserve energy, as integrals diverge. We "repair" them, while keeping d<4, to obtain energy conservation at those vertices. Already in the S-matrix theory, the renormalized, finite part of Feynman self-energy Sigma_{F}(p_0) does not vanish when |p_0|rightarrowinfty and cannot be split to retarded and advanced parts. In the Glaser--Epstein approach, the causality is repaired in the composite object G_F(p_0)Sigma_{F}(p_0). In the FTP approach, after repairing the vertices, the corresponding composite objects are G_R(p_0)Sigma_{R}(p_0) and Sigma_{A}(p_0)G_A(p_0). In the limit drightarrow 4, one obtains causal QFT. The tadpole contribution splits into diverging and finite parts. The diverging, constant component is eliminated by the renormalization condition langle 0|phi|0rangle =0 of the S-matrix theory. The finite, oscillating energy-nonconserving tadpole contributions vanish in the limit trightarrow infty .

  • 2 authors
·
Dec 31, 2019

Xiwu: A Basis Flexible and Learnable LLM for High Energy Physics

Large Language Models (LLMs) are undergoing a period of rapid updates and changes, with state-of-the-art (SOTA) model frequently being replaced. When applying LLMs to a specific scientific field, it's challenging to acquire unique domain knowledge while keeping the model itself advanced. To address this challenge, a sophisticated large language model system named as Xiwu has been developed, allowing you switch between the most advanced foundation models and quickly teach the model domain knowledge. In this work, we will report on the best practices for applying LLMs in the field of high-energy physics (HEP), including: a seed fission technology is proposed and some data collection and cleaning tools are developed to quickly obtain domain AI-Ready dataset; a just-in-time learning system is implemented based on the vector store technology; an on-the-fly fine-tuning system has been developed to facilitate rapid training under a specified foundation model. The results show that Xiwu can smoothly switch between foundation models such as LLaMA, Vicuna, ChatGLM and Grok-1. The trained Xiwu model is significantly outperformed the benchmark model on the HEP knowledge question-and-answering and code generation. This strategy significantly enhances the potential for growth of our model's performance, with the hope of surpassing GPT-4 as it evolves with the development of open-source models. This work provides a customized LLM for the field of HEP, while also offering references for applying LLM to other fields, the corresponding codes are available on Github.

  • 13 authors
·
Apr 8, 2024

Incomplete RG: Hawking-Page transition, C-theorem and relevant scalar deformations of global AdS

We discuss relevant scalar deformations of a holographic theory with a compact boundary. An example of such a theory would be the global AdS_4 with its spatially compact boundary S^2. To introduce a relevant deformation, we choose to turn on a time-independent and spatially homogeneous non-normalizable scalar operator with m^2 = -2. The finite size of a compact boundary cuts down the RG flow at a finite length scale leading to an incomplete RG flow to IR. We discuss a version of {\it incomplete} C-theorem and an {\it incomplete} attractor like mechanism. We discuss the implication of our results for entanglement entropy and geometric quantities like scalar curvature, volume and mass scale of fundamental excitation of the how these quantities increase or decrease (often monotonically) with the strength of the deformation. Thermal physics of a holographic theory defined on a compact boundary is more interesting than its non-compact counterpart. It is well known that with a compact boundary, there is a possibility of a first order Hawking-Page transition dual to a de-confinement phase transition. From a gravity perspective, a relevant deformation dumps negative energy inside the bulk, increasing the effective cosmological constant (Lambda) of the AdS. Dumping more negative energy in the bulk would make the HP transition harder and the corresponding HP transition temperature would increase. However, we have found the size of the BH at the transition temperature decreases.

  • 3 authors
·
Dec 14, 2021

Quarks to Cosmos: Particles and Plasma in Cosmological evolution

We describe in the context of the particle physics (PP) standard model (SM) `PP-SM' the understanding of the primordial properties and composition of the Universe in the temperature range 130GeV>T>20keV. The Universe evolution is described using FLRW cosmology. We present a global view on particle content across time and describe the different evolution eras using deceleration parameter q. We follow the arrow of time in the expanding and cooling Universe: After the PP-SM heavies (t, h, W, Z) diminish in abundance below Tsimeq 50GeV, the PP-SM plasma in the Universe is governed by the strongly interacting Quark-Gluon content. Once the temperature drops below Tsimeq 150MeV, quarks and gluons hadronize into strongly interacting matter particles. Rapid disappearance of baryonic antimatter completes at T_B=38.2MeV. We study the ensuing disappearance of strangeness and mesons in general. We show that the different eras defined by particle populations are barely separated from each other with abundance of muons fading out just prior to T=O(2.5)MeV, the era of emergence of the free-streaming neutrinos. We discuss the two relevant fundamental constants controlling the decoupling of neutrinos. We subsequently follow the primordial Universe as it passes through the hot dense electron-positron plasma epoch. The high density of positron antimatter disappears near T=20.3keV: Nuclear reactions occur in the presence of a highly mobile and relatively strongly interacting electron-positron plasma phase. We apply plasma theory methods to describe the strong screening effects between heavy dust particle (nucleons). We analyze the paramagnetic characteristics of the electron-positron plasma when exposed to an external primordial magnetic field.

  • 5 authors
·
Sep 26, 2024

Higgs-Induced Gravitational Waves: the Interplay of Non-Minimal Couplings, Kination and Top Quark Mass

We explore a minimal scenario where the sole Standard-Model Higgs is responsible for reheating the Universe after inflation, produces a significant background of gravitational waves and maintains the full classical stability of the electroweak vacuum. As the Higgs self-coupling runs toward negative values at high energy scales, a non-minimal interaction with curvature during a stiff background expansion era drives the Higgs fluctuations closer to the instability scale. This curvature-induced tachyonic instability leads to an intense production of Higgs particles, accompanied by a stochastic gravitational-wave background. The characteristic features of such signal can be directly correlated to the inflationary scale, the non-minimal coupling parameter and the top quark Yukawa coupling. We distinguish between three possible scenarios: absolute stability with low top quark masses, potential vacuum instability, and absolute stability with new physics above the instability scale. Our findings suggest that the detection of a peaked background of gravitational waves together with its inflationary tail has the potential to unveil the features of the Higgs effective potential at very high energy scales while providing a minimal explanation for the reheating phase and the emergence of the Standard-Model plasma in the early Universe. Unlike other studies in the literature, the generation of gravitational waves in our scenario does not depend on the quantum instability of the Standard Model vacuum.

  • 2 authors
·
Feb 6, 2025