Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVisualizing Deep Neural Network Decisions: Prediction Difference Analysis
This article presents the prediction difference analysis method for visualizing the response of a deep neural network to a specific input. When classifying images, the method highlights areas in a given input image that provide evidence for or against a certain class. It overcomes several shortcoming of previous methods and provides great additional insight into the decision making process of classifiers. Making neural network decisions interpretable through visualization is important both to improve models and to accelerate the adoption of black-box classifiers in application areas such as medicine. We illustrate the method in experiments on natural images (ImageNet data), as well as medical images (MRI brain scans).
PD-Quant: Post-Training Quantization based on Prediction Difference Metric
Post-training quantization (PTQ) is a neural network compression technique that converts a full-precision model into a quantized model using lower-precision data types. Although it can help reduce the size and computational cost of deep neural networks, it can also introduce quantization noise and reduce prediction accuracy, especially in extremely low-bit settings. How to determine the appropriate quantization parameters (e.g., scaling factors and rounding of weights) is the main problem facing now. Existing methods attempt to determine these parameters by minimize the distance between features before and after quantization, but such an approach only considers local information and may not result in the most optimal quantization parameters. We analyze this issue and ropose PD-Quant, a method that addresses this limitation by considering global information. It determines the quantization parameters by using the information of differences between network prediction before and after quantization. In addition, PD-Quant can alleviate the overfitting problem in PTQ caused by the small number of calibration sets by adjusting the distribution of activations. Experiments show that PD-Quant leads to better quantization parameters and improves the prediction accuracy of quantized models, especially in low-bit settings. For example, PD-Quant pushes the accuracy of ResNet-18 up to 53.14% and RegNetX-600MF up to 40.67% in weight 2-bit activation 2-bit. The code is released at https://github.com/hustvl/PD-Quant.
Double Trouble: How to not explain a text classifier's decisions using counterfactuals synthesized by masked language models?
A principle behind dozens of attribution methods is to take the prediction difference between before-and-after an input feature (here, a token) is removed as its attribution. A popular Input Marginalization (IM) method (Kim et al., 2020) uses BERT to replace a token, yielding more plausible counterfactuals. While Kim et al. (2020) reported that IM is effective, we find this conclusion not convincing as the DeletionBERT metric used in their paper is biased towards IM. Importantly, this bias exists in Deletion-based metrics, including Insertion, Sufficiency, and Comprehensiveness. Furthermore, our rigorous evaluation using 6 metrics and 3 datasets finds no evidence that IM is better than a Leave-One-Out (LOO) baseline. We find two reasons why IM is not better than LOO: (1) deleting a single word from the input only marginally reduces a classifier's accuracy; and (2) a highly predictable word is always given near-zero attribution, regardless of its true importance to the classifier. In contrast, making LIME samples more natural via BERT consistently improves LIME accuracy under several ROAR metrics.
PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models
Reward finetuning has emerged as a promising approach to aligning foundation models with downstream objectives. Remarkable success has been achieved in the language domain by using reinforcement learning (RL) to maximize rewards that reflect human preference. However, in the vision domain, existing RL-based reward finetuning methods are limited by their instability in large-scale training, rendering them incapable of generalizing to complex, unseen prompts. In this paper, we propose Proximal Reward Difference Prediction (PRDP), enabling stable black-box reward finetuning for diffusion models for the first time on large-scale prompt datasets with over 100K prompts. Our key innovation is the Reward Difference Prediction (RDP) objective that has the same optimal solution as the RL objective while enjoying better training stability. Specifically, the RDP objective is a supervised regression objective that tasks the diffusion model with predicting the reward difference of generated image pairs from their denoising trajectories. We theoretically prove that the diffusion model that obtains perfect reward difference prediction is exactly the maximizer of the RL objective. We further develop an online algorithm with proximal updates to stably optimize the RDP objective. In experiments, we demonstrate that PRDP can match the reward maximization ability of well-established RL-based methods in small-scale training. Furthermore, through large-scale training on text prompts from the Human Preference Dataset v2 and the Pick-a-Pic v1 dataset, PRDP achieves superior generation quality on a diverse set of complex, unseen prompts whereas RL-based methods completely fail.
Optimizing Calibration by Gaining Aware of Prediction Correctness
Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.
FD-Net with Auxiliary Time Steps: Fast Prediction of PDEs using Hessian-Free Trust-Region Methods
Discovering the underlying physical behavior of complex systems is a crucial, but less well-understood topic in many engineering disciplines. This study proposes a finite-difference inspired convolutional neural network framework to learn hidden partial differential equations from given data and iteratively estimate future dynamical behavior. The methodology designs the filter sizes such that they mimic the finite difference between the neighboring points. By learning the governing equation, the network predicts the future evolution of the solution by using only a few trainable parameters. In this paper, we provide numerical results to compare the efficiency of the second-order Trust-Region Conjugate Gradient (TRCG) method with the first-order ADAM optimizer.
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations
Discovering the underlying behavior of complex systems is an important topic in many science and engineering disciplines. In this paper, we propose a novel neural network framework, finite difference neural networks (FDNet), to learn partial differential equations from data. Specifically, our proposed finite difference inspired network is designed to learn the underlying governing partial differential equations from trajectory data, and to iteratively estimate the future dynamical behavior using only a few trainable parameters. We illustrate the performance (predictive power) of our framework on the heat equation, with and without noise and/or forcing, and compare our results to the Forward Euler method. Moreover, we show the advantages of using a Hessian-Free Trust Region method to train the network.
Visual explanation of black-box model: Similarity Difference and Uniqueness (SIDU) method
Explainable Artificial Intelligence (XAI) has in recent years become a well-suited framework to generate human understandable explanations of "black-box" models. In this paper, a novel XAI visual explanation algorithm known as the Similarity Difference and Uniqueness (SIDU) method that can effectively localize entire object regions responsible for prediction is presented in full detail. The SIDU algorithm robustness and effectiveness is analyzed through various computational and human subject experiments. In particular, the SIDU algorithm is assessed using three different types of evaluations (Application, Human and Functionally-Grounded) to demonstrate its superior performance. The robustness of SIDU is further studied in the presence of adversarial attack on "black-box" models to better understand its performance. Our code is available at: https://github.com/satyamahesh84/SIDU_XAI_CODE.
Training-Free Adaptive Diffusion with Bounded Difference Approximation Strategy
Diffusion models have recently achieved great success in the synthesis of high-quality images and videos. However, the existing denoising techniques in diffusion models are commonly based on step-by-step noise predictions, which suffers from high computation cost, resulting in a prohibitive latency for interactive applications. In this paper, we propose AdaptiveDiffusion to relieve this bottleneck by adaptively reducing the noise prediction steps during the denoising process. Our method considers the potential of skipping as many noise prediction steps as possible while keeping the final denoised results identical to the original full-step ones. Specifically, the skipping strategy is guided by the third-order latent difference that indicates the stability between timesteps during the denoising process, which benefits the reusing of previous noise prediction results. Extensive experiments on image and video diffusion models demonstrate that our method can significantly speed up the denoising process while generating identical results to the original process, achieving up to an average 2~5x speedup without quality degradation.
Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference
As Large Language Models (LLMs) demonstrate extensive capability in learning from documents, LLM unlearning becomes an increasingly important research area to address concerns of LLMs in terms of privacy, copyright, etc. A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality. Our code will be publicly available at https://github.com/UCSB-NLP-Chang/ULD.
TD-JEPA: Latent-predictive Representations for Zero-Shot Reinforcement Learning
Latent prediction--where agents learn by predicting their own latents--has emerged as a powerful paradigm for training general representations in machine learning. In reinforcement learning (RL), this approach has been explored to define auxiliary losses for a variety of settings, including reward-based and unsupervised RL, behavior cloning, and world modeling. While existing methods are typically limited to single-task learning, one-step prediction, or on-policy trajectory data, we show that temporal difference (TD) learning enables learning representations predictive of long-term latent dynamics across multiple policies from offline, reward-free transitions. Building on this, we introduce TD-JEPA, which leverages TD-based latent-predictive representations into unsupervised RL. TD-JEPA trains explicit state and task encoders, a policy-conditioned multi-step predictor, and a set of parameterized policies directly in latent space. This enables zero-shot optimization of any reward function at test time. Theoretically, we show that an idealized variant of TD-JEPA avoids collapse with proper initialization, and learns encoders that capture a low-rank factorization of long-term policy dynamics, while the predictor recovers their successor features in latent space. Empirically, TD-JEPA matches or outperforms state-of-the-art baselines on locomotion, navigation, and manipulation tasks across 13 datasets in ExoRL and OGBench, especially in the challenging setting of zero-shot RL from pixels.
Dataless Knowledge Fusion by Merging Weights of Language Models
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models. Oftentimes fine-tuned models are readily available but their training data is not, due to data privacy or intellectual property concerns. This creates a barrier to fusing knowledge across individual models to yield a better single model. In this paper, we study the problem of merging individual models built on different training data sets to obtain a single model that performs well both across all data set domains and can generalize on out-of-domain data. We propose a dataless knowledge fusion method that merges models in their parameter space, guided by weights that minimize prediction differences between the merged model and the individual models. Over a battery of evaluation settings, we show that the proposed method significantly outperforms baselines such as Fisher-weighted averaging or model ensembling. Further, we find that our method is a promising alternative to multi-task learning that can preserve or sometimes improve over the individual models without access to the training data. Finally, model merging is more efficient than training a multi-task model, thus making it applicable to a wider set of scenarios.
GeoMAE: Masked Geometric Target Prediction for Self-supervised Point Cloud Pre-Training
This paper tries to address a fundamental question in point cloud self-supervised learning: what is a good signal we should leverage to learn features from point clouds without annotations? To answer that, we introduce a point cloud representation learning framework, based on geometric feature reconstruction. In contrast to recent papers that directly adopt masked autoencoder (MAE) and only predict original coordinates or occupancy from masked point clouds, our method revisits differences between images and point clouds and identifies three self-supervised learning objectives peculiar to point clouds, namely centroid prediction, normal estimation, and curvature prediction. Combined with occupancy prediction, these four objectives yield an nontrivial self-supervised learning task and mutually facilitate models to better reason fine-grained geometry of point clouds. Our pipeline is conceptually simple and it consists of two major steps: first, it randomly masks out groups of points, followed by a Transformer-based point cloud encoder; second, a lightweight Transformer decoder predicts centroid, normal, and curvature for points in each voxel. We transfer the pre-trained Transformer encoder to a downstream peception model. On the nuScene Datset, our model achieves 3.38 mAP improvment for object detection, 2.1 mIoU gain for segmentation, and 1.7 AMOTA gain for multi-object tracking. We also conduct experiments on the Waymo Open Dataset and achieve significant performance improvements over baselines as well.
Instruction Makes a Difference
We introduce Instruction Document Visual Question Answering (iDocVQA) dataset and Large Language Document (LLaDoc) model, for training Language-Vision (LV) models for document analysis and predictions on document images, respectively. Usually, deep neural networks for the DocVQA task are trained on datasets lacking instructions. We show that using instruction-following datasets improves performance. We compare performance across document-related datasets using the recent state-of-the-art (SotA) Large Language and Vision Assistant (LLaVA)1.5 as the base model. We also evaluate the performance of the derived models for object hallucination using the Polling-based Object Probing Evaluation (POPE) dataset. The results show that instruction-tuning performance ranges from 11X to 32X of zero-shot performance and from 0.1% to 4.2% over non-instruction (traditional task) finetuning. Despite the gains, these still fall short of human performance (94.36%), implying there's much room for improvement.
Lotus: Diffusion-based Visual Foundation Model for High-quality Dense Prediction
Leveraging the visual priors of pre-trained text-to-image diffusion models offers a promising solution to enhance zero-shot generalization in dense prediction tasks. However, existing methods often uncritically use the original diffusion formulation, which may not be optimal due to the fundamental differences between dense prediction and image generation. In this paper, we provide a systemic analysis of the diffusion formulation for the dense prediction, focusing on both quality and efficiency. And we find that the original parameterization type for image generation, which learns to predict noise, is harmful for dense prediction; the multi-step noising/denoising diffusion process is also unnecessary and challenging to optimize. Based on these insights, we introduce Lotus, a diffusion-based visual foundation model with a simple yet effective adaptation protocol for dense prediction. Specifically, Lotus is trained to directly predict annotations instead of noise, thereby avoiding harmful variance. We also reformulate the diffusion process into a single-step procedure, simplifying optimization and significantly boosting inference speed. Additionally, we introduce a novel tuning strategy called detail preserver, which achieves more accurate and fine-grained predictions. Without scaling up the training data or model capacity, Lotus achieves SoTA performance in zero-shot depth and normal estimation across various datasets. It also significantly enhances efficiency, being hundreds of times faster than most existing diffusion-based methods.
Learning Important Features Through Propagating Activation Differences
The purported "black box" nature of neural networks is a barrier to adoption in applications where interpretability is essential. Here we present DeepLIFT (Deep Learning Important FeaTures), a method for decomposing the output prediction of a neural network on a specific input by backpropagating the contributions of all neurons in the network to every feature of the input. DeepLIFT compares the activation of each neuron to its 'reference activation' and assigns contribution scores according to the difference. By optionally giving separate consideration to positive and negative contributions, DeepLIFT can also reveal dependencies which are missed by other approaches. Scores can be computed efficiently in a single backward pass. We apply DeepLIFT to models trained on MNIST and simulated genomic data, and show significant advantages over gradient-based methods. Video tutorial: http://goo.gl/qKb7pL, ICML slides: bit.ly/deeplifticmlslides, ICML talk: https://vimeo.com/238275076, code: http://goo.gl/RM8jvH.
Tuning Language Models by Proxy
Despite the general capabilities of large pretrained language models, they consistently benefit from further adaptation to better achieve desired behaviors. However, tuning these models has become increasingly resource-intensive, or impossible when model weights are private. We introduce proxy-tuning, a lightweight decoding-time algorithm that operates on top of black-box LMs to achieve the result of directly tuning the model, but by accessing only its prediction over the output vocabulary. Our method instead tunes a smaller LM, then applies the difference between the predictions of the small tuned and untuned LMs to shift the original predictions of the base model in the direction of tuning, while retaining the benefits of larger scale pretraining. In experiments, when we apply proxy-tuning to Llama2-70B using proxies of only 7B size, we can close 88% of the gap between Llama2-70B and its truly-tuned chat version, when evaluated across knowledge, reasoning, and safety benchmarks. Interestingly, when tested on TruthfulQA, proxy-tuned models are actually more truthful than directly tuned models, possibly because decoding-time guidance better retains the model's factual knowledge. We then demonstrate the generality of proxy-tuning by applying it for domain adaptation on code, and task-specific finetuning on question-answering and math problems. Our work demonstrates the promise of using small tuned LMs to efficiently customize large, potentially proprietary LMs through decoding-time guidance.
Describing Differences in Image Sets with Natural Language
How do two sets of images differ? Discerning set-level differences is crucial for understanding model behaviors and analyzing datasets, yet manually sifting through thousands of images is impractical. To aid in this discovery process, we explore the task of automatically describing the differences between two sets of images, which we term Set Difference Captioning. This task takes in image sets D_A and D_B, and outputs a description that is more often true on D_A than D_B. We outline a two-stage approach that first proposes candidate difference descriptions from image sets and then re-ranks the candidates by checking how well they can differentiate the two sets. We introduce VisDiff, which first captions the images and prompts a language model to propose candidate descriptions, then re-ranks these descriptions using CLIP. To evaluate VisDiff, we collect VisDiffBench, a dataset with 187 paired image sets with ground truth difference descriptions. We apply VisDiff to various domains, such as comparing datasets (e.g., ImageNet vs. ImageNetV2), comparing classification models (e.g., zero-shot CLIP vs. supervised ResNet), summarizing model failure modes (supervised ResNet), characterizing differences between generative models (e.g., StableDiffusionV1 and V2), and discovering what makes images memorable. Using VisDiff, we are able to find interesting and previously unknown differences in datasets and models, demonstrating its utility in revealing nuanced insights.
Benchmarking emergency department triage prediction models with machine learning and large public electronic health records
The demand for emergency department (ED) services is increasing across the globe, particularly during the current COVID-19 pandemic. Clinical triage and risk assessment have become increasingly challenging due to the shortage of medical resources and the strain on hospital infrastructure caused by the pandemic. As a result of the widespread use of electronic health records (EHRs), we now have access to a vast amount of clinical data, which allows us to develop predictive models and decision support systems to address these challenges. To date, however, there are no widely accepted benchmark ED triage prediction models based on large-scale public EHR data. An open-source benchmarking platform would streamline research workflows by eliminating cumbersome data preprocessing, and facilitate comparisons among different studies and methodologies. In this paper, based on the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) database, we developed a publicly available benchmark suite for ED triage predictive models and created a benchmark dataset that contains over 400,000 ED visits from 2011 to 2019. We introduced three ED-based outcomes (hospitalization, critical outcomes, and 72-hour ED reattendance) and implemented a variety of popular methodologies, ranging from machine learning methods to clinical scoring systems. We evaluated and compared the performance of these methods against benchmark tasks. Our codes are open-source, allowing anyone with MIMIC-IV-ED data access to perform the same steps in data processing, benchmark model building, and experiments. This study provides future researchers with insights, suggestions, and protocols for managing raw data and developing risk triaging tools for emergency care.
ModelDiff: A Framework for Comparing Learning Algorithms
We study the problem of (learning) algorithm comparison, where the goal is to find differences between models trained with two different learning algorithms. We begin by formalizing this goal as one of finding distinguishing feature transformations, i.e., input transformations that change the predictions of models trained with one learning algorithm but not the other. We then present ModelDiff, a method that leverages the datamodels framework (Ilyas et al., 2022) to compare learning algorithms based on how they use their training data. We demonstrate ModelDiff through three case studies, comparing models trained with/without data augmentation, with/without pre-training, and with different SGD hyperparameters. Our code is available at https://github.com/MadryLab/modeldiff .
Contrastive Difference Predictive Coding
Predicting and reasoning about the future lie at the heart of many time-series questions. For example, goal-conditioned reinforcement learning can be viewed as learning representations to predict which states are likely to be visited in the future. While prior methods have used contrastive predictive coding to model time series data, learning representations that encode long-term dependencies usually requires large amounts of data. In this paper, we introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events. We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL. Experiments demonstrate that, compared with prior RL methods, ours achieves 2 times median improvement in success rates and can better cope with stochastic environments. In tabular settings, we show that our method is about 20 times more sample efficient than the successor representation and 1500 times more sample efficient than the standard (Monte Carlo) version of contrastive predictive coding.
Difference-aware Knowledge Selection for Knowledge-grounded Conversation Generation
In a multi-turn knowledge-grounded dialog, the difference between the knowledge selected at different turns usually provides potential clues to knowledge selection, which has been largely neglected in previous research. In this paper, we propose a difference-aware knowledge selection method. It first computes the difference between the candidate knowledge sentences provided at the current turn and those chosen in the previous turns. Then, the differential information is fused with or disentangled from the contextual information to facilitate final knowledge selection. Automatic, human observational, and interactive evaluation shows that our method is able to select knowledge more accurately and generate more informative responses, significantly outperforming the state-of-the-art baselines. The codes are available at https://github.com/chujiezheng/DiffKS.
COVID Detection and Severity Prediction with 3D-ConvNeXt and Custom Pretrainings
Since COVID strongly affects the respiratory system, lung CT-scans can be used for the analysis of a patients health. We introduce a neural network for the prediction of the severity of lung damage and the detection of a COVID-infection using three-dimensional CT-data. Therefore, we adapt the recent ConvNeXt model to process three-dimensional data. Furthermore, we design and analyze different pretraining methods specifically designed to improve the models ability to handle three-dimensional CT-data. We rank 2nd in the 1st COVID19 Severity Detection Challenge and 3rd in the 2nd COVID19 Detection Challenge.
Yelp Dataset Challenge: Review Rating Prediction
Review websites, such as TripAdvisor and Yelp, allow users to post online reviews for various businesses, products and services, and have been recently shown to have a significant influence on consumer shopping behaviour. An online review typically consists of free-form text and a star rating out of 5. The problem of predicting a user's star rating for a product, given the user's text review for that product, is called Review Rating Prediction and has lately become a popular, albeit hard, problem in machine learning. In this paper, we treat Review Rating Prediction as a multi-class classification problem, and build sixteen different prediction models by combining four feature extraction methods, (i) unigrams, (ii) bigrams, (iii) trigrams and (iv) Latent Semantic Indexing, with four machine learning algorithms, (i) logistic regression, (ii) Naive Bayes classification, (iii) perceptrons, and (iv) linear Support Vector Classification. We analyse the performance of each of these sixteen models to come up with the best model for predicting the ratings from reviews. We use the dataset provided by Yelp for training and testing the models.
Modeling of learning curves with applications to pos tagging
An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.
Generalization in Healthcare AI: Evaluation of a Clinical Large Language Model
Advances in large language models (LLMs) provide new opportunities in healthcare for improved patient care, clinical decision-making, and enhancement of physician and administrator workflows. However, the potential of these models importantly depends on their ability to generalize effectively across clinical environments and populations, a challenge often underestimated in early development. To better understand reasons for these challenges and inform mitigation approaches, we evaluated ClinicLLM, an LLM trained on [HOSPITAL]'s clinical notes, analyzing its performance on 30-day all-cause readmission prediction focusing on variability across hospitals and patient characteristics. We found poorer generalization particularly in hospitals with fewer samples, among patients with government and unspecified insurance, the elderly, and those with high comorbidities. To understand reasons for lack of generalization, we investigated sample sizes for fine-tuning, note content (number of words per note), patient characteristics (comorbidity level, age, insurance type, borough), and health system aspects (hospital, all-cause 30-day readmission, and mortality rates). We used descriptive statistics and supervised classification to identify features. We found that, along with sample size, patient age, number of comorbidities, and the number of words in notes are all important factors related to generalization. Finally, we compared local fine-tuning (hospital specific), instance-based augmented fine-tuning and cluster-based fine-tuning for improving generalization. Among these, local fine-tuning proved most effective, increasing AUC by 0.25% to 11.74% (most helpful in settings with limited data). Overall, this study provides new insights for enhancing the deployment of large language models in the societally important domain of healthcare, and improving their performance for broader populations.
Fact Recall, Heuristics or Pure Guesswork? Precise Interpretations of Language Models for Fact Completion
Language models (LMs) can make a correct prediction based on many possible signals in a prompt, not all corresponding to recall of factual associations. However, current interpretations of LMs fail to take this into account. For example, given the query "Astrid Lindgren was born in" with the corresponding completion "Sweden", no difference is made between whether the prediction was based on knowing where the author was born or assuming that a person with a Swedish-sounding name was born in Sweden. In this paper, we present a model-specific recipe - PrISM - for constructing datasets with examples of four different prediction scenarios: generic language modeling, guesswork, heuristics recall and exact fact recall. We apply two popular interpretability methods to the scenarios: causal tracing (CT) and information flow analysis. We find that both yield distinct results for each scenario. Results for exact fact recall and generic language modeling scenarios confirm previous conclusions about the importance of mid-range MLP sublayers for fact recall, while results for guesswork and heuristics indicate a critical role of late last token position MLP sublayers. In summary, we contribute resources for a more extensive and granular study of fact completion in LMs, together with analyses that provide a more nuanced understanding of how LMs process fact-related queries.
Learning to diagnose cirrhosis from radiological and histological labels with joint self and weakly-supervised pretraining strategies
Identifying cirrhosis is key to correctly assess the health of the liver. However, the gold standard diagnosis of the cirrhosis needs a medical intervention to obtain the histological confirmation, e.g. the METAVIR score, as the radiological presentation can be equivocal. In this work, we propose to leverage transfer learning from large datasets annotated by radiologists, which we consider as a weak annotation, to predict the histological score available on a small annex dataset. To this end, we propose to compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis. Finally, we introduce a loss function combining both supervised and self-supervised frameworks for pretraining. This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75, compared to 0.77 and 0.72 for a baseline classifier.
SkipPredict: When to Invest in Predictions for Scheduling
In light of recent work on scheduling with predicted job sizes, we consider the effect of the cost of predictions in queueing systems, removing the assumption in prior research that predictions are external to the system's resources and/or cost-free. In particular, we introduce a novel approach to utilizing predictions, SkipPredict, designed to address their inherent cost. Rather than uniformly applying predictions to all jobs, we propose a tailored approach that categorizes jobs based on their prediction requirements. To achieve this, we employ one-bit "cheap predictions" to classify jobs as either short or long. SkipPredict prioritizes predicted short jobs over long jobs, and for the latter, SkipPredict applies a second round of more detailed "expensive predictions" to approximate Shortest Remaining Processing Time for these jobs. Our analysis takes into account the cost of prediction. We examine the effect of this cost for two distinct models. In the external cost model, predictions are generated by some external method without impacting job service times but incur a cost. In the server time cost model, predictions themselves require server processing time, and are scheduled on the same server as the jobs.
Recoding latent sentence representations -- Dynamic gradient-based activation modification in RNNs
In Recurrent Neural Networks (RNNs), encoding information in a suboptimal or erroneous way can impact the quality of representations based on later elements in the sequence and subsequently lead to wrong predictions and a worse model performance. In humans, challenging cases like garden path sentences (an instance of this being the infamous "The horse raced past the barn fell") can lead their language understanding astray. However, they are still able to correct their representation accordingly and recover when new information is encountered. Inspired by this, I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism: This way I hope to enable such models to dynamically adapt their inner representation of a sentence, adding a way to correct deviations as soon as they occur. This could therefore lead to more robust models using more flexible representations, even during inference time. I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail. To this end, I look at modifications based on different kinds of time-dependent error signals and how they influence the model performance. Furthermore, this work contains a study of the model's confidence in its predictions during training and for challenging test samples and the effect of the manipulation thereof. Lastly, I also study the difference in behavior of these novel models compared to a standard LSTM baseline and investigate error cases in detail to identify points of future research. I show that while the proposed approach comes with promising theoretical guarantees and an appealing intuition, it is only able to produce minor improvements over the baseline due to challenges in its practical application and the efficacy of the tested model variants.
Click-through Rate Prediction with Auto-Quantized Contrastive Learning
Click-through rate (CTR) prediction becomes indispensable in ubiquitous web recommendation applications. Nevertheless, the current methods are struggling under the cold-start scenarios where the user interactions are extremely sparse. We consider this problem as an automatic identification about whether the user behaviors are rich enough to capture the interests for prediction, and propose an Auto-Quantized Contrastive Learning (AQCL) loss to regularize the model. Different from previous methods, AQCL explores both the instance-instance and the instance-cluster similarity to robustify the latent representation, and automatically reduces the information loss to the active users due to the quantization. The proposed framework is agnostic to different model architectures and can be trained in an end-to-end fashion. Extensive results show that it consistently improves the current state-of-the-art CTR models.
Paint Transformer: Feed Forward Neural Painting with Stroke Prediction
Neural painting refers to the procedure of producing a series of strokes for a given image and non-photo-realistically recreating it using neural networks. While reinforcement learning (RL) based agents can generate a stroke sequence step by step for this task, it is not easy to train a stable RL agent. On the other hand, stroke optimization methods search for a set of stroke parameters iteratively in a large search space; such low efficiency significantly limits their prevalence and practicality. Different from previous methods, in this paper, we formulate the task as a set prediction problem and propose a novel Transformer-based framework, dubbed Paint Transformer, to predict the parameters of a stroke set with a feed forward network. This way, our model can generate a set of strokes in parallel and obtain the final painting of size 512 * 512 in near real time. More importantly, since there is no dataset available for training the Paint Transformer, we devise a self-training pipeline such that it can be trained without any off-the-shelf dataset while still achieving excellent generalization capability. Experiments demonstrate that our method achieves better painting performance than previous ones with cheaper training and inference costs. Codes and models are available.
Regression-based music emotion prediction using triplet neural networks
In this paper, we adapt triplet neural networks (TNNs) to a regression task, music emotion prediction. Since TNNs were initially introduced for classification, and not for regression, we propose a mechanism that allows them to provide meaningful low dimensional representations for regression tasks. We then use these new representations as the input for regression algorithms such as support vector machines and gradient boosting machines. To demonstrate the TNNs' effectiveness at creating meaningful representations, we compare them to different dimensionality reduction methods on music emotion prediction, i.e., predicting valence and arousal values from musical audio signals. Our results on the DEAM dataset show that by using TNNs we achieve 90% feature dimensionality reduction with a 9% improvement in valence prediction and 4% improvement in arousal prediction with respect to our baseline models (without TNN). Our TNN method outperforms other dimensionality reduction methods such as principal component analysis (PCA) and autoencoders (AE). This shows that, in addition to providing a compact latent space representation of audio features, the proposed approach has a higher performance than the baseline models.
CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction
In this paper, we introduce the Chinese AI and Law challenge dataset (CAIL2018), the first large-scale Chinese legal dataset for judgment prediction. \dataset contains more than 2.6 million criminal cases published by the Supreme People's Court of China, which are several times larger than other datasets in existing works on judgment prediction. Moreover, the annotations of judgment results are more detailed and rich. It consists of applicable law articles, charges, and prison terms, which are expected to be inferred according to the fact descriptions of cases. For comparison, we implement several conventional text classification baselines for judgment prediction and experimental results show that it is still a challenge for current models to predict the judgment results of legal cases, especially on prison terms. To help the researchers make improvements on legal judgment prediction, both \dataset and baselines will be released after the CAIL competitionhttp://cail.cipsc.org.cn/.
Loss-to-Loss Prediction: Scaling Laws for All Datasets
While scaling laws provide a reliable methodology for predicting train loss across compute scales for a single data distribution, less is known about how these predictions should change as we change the distribution. In this paper, we derive a strategy for predicting one loss from another and apply it to predict across different pre-training datasets and from pre-training data to downstream task data. Our predictions extrapolate well even at 20x the largest FLOP budget used to fit the curves. More precisely, we find that there are simple shifted power law relationships between (1) the train losses of two models trained on two separate datasets when the models are paired by training compute (train-to-train), (2) the train loss and the test loss on any downstream distribution for a single model (train-to-test), and (3) the test losses of two models trained on two separate train datasets (test-to-test). The results hold up for pre-training datasets that differ substantially (some are entirely code and others have no code at all) and across a variety of downstream tasks. Finally, we find that in some settings these shifted power law relationships can yield more accurate predictions than extrapolating single-dataset scaling laws.
pySLAM: An Open-Source, Modular, and Extensible Framework for SLAM
pySLAM is an open-source Python framework for Visual SLAM, supporting monocular, stereo, and RGB-D cameras. It provides a flexible interface for integrating both classical and modern local features, making it adaptable to various SLAM tasks. The framework includes different loop closure methods, a volumetric reconstruction pipeline, and support for depth prediction models. Additionally, it offers a suite of tools for visual odometry and SLAM applications. Designed for both beginners and experienced researchers, pySLAM encourages community contributions, fostering collaborative development in the field of Visual SLAM.
EMS-SD: Efficient Multi-sample Speculative Decoding for Accelerating Large Language Models
Speculative decoding emerges as a pivotal technique for enhancing the inference speed of Large Language Models (LLMs). Despite recent research aiming to improve prediction efficiency, multi-sample speculative decoding has been overlooked due to varying numbers of accepted tokens within a batch in the verification phase. Vanilla method adds padding tokens in order to ensure that the number of new tokens remains consistent across samples. However, this increases the computational and memory access overhead, thereby reducing the speedup ratio. We propose a novel method that can resolve the issue of inconsistent tokens accepted by different samples without necessitating an increase in memory or computing overhead. Furthermore, our proposed method can handle the situation where the prediction tokens of different samples are inconsistent without the need to add padding tokens. Sufficient experiments demonstrate the efficacy of our method. Our code is available at https://github.com/niyunsheng/EMS-SD.
Natural Language Inference over Interaction Space: ICLR 2018 Reproducibility Report
We have tried to reproduce the results of the paper "Natural Language Inference over Interaction Space" submitted to ICLR 2018 conference as part of the ICLR 2018 Reproducibility Challenge. Initially, we were not aware that the code was available, so we started to implement the network from scratch. We have evaluated our version of the model on Stanford NLI dataset and reached 86.38% accuracy on the test set, while the paper claims 88.0% accuracy. The main difference, as we understand it, comes from the optimizers and the way model selection is performed.
A Deep Look into Neural Ranking Models for Information Retrieval
Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models
High-performance Multimodal Large Language Models (MLLMs) rely heavily on data quality. This study introduces a novel dataset named Img-Diff, designed to enhance fine-grained image recognition in MLLMs by leveraging insights from contrastive learning and image difference captioning. By analyzing object differences between similar images, we challenge models to identify both matching and distinct components. We utilize the Stable-Diffusion-XL model and advanced image editing techniques to create pairs of similar images that highlight object replacements. Our methodology includes a Difference Area Generator for object differences identifying, followed by a Difference Captions Generator for detailed difference descriptions. The result is a relatively small but high-quality dataset of "object replacement" samples. We use the the proposed dataset to fine-tune state-of-the-art (SOTA) MLLMs such as MGM-7B, yielding comprehensive improvements of performance scores over SOTA models that trained with larger-scale datasets, in numerous image difference and Visual Question Answering tasks. For instance, our trained models notably surpass the SOTA models GPT-4V and Gemini on the MMVP benchmark. Besides, we investigate alternative methods for generating image difference data through "object removal" and conduct thorough evaluation to confirm the dataset's diversity, quality, and robustness, presenting several insights on synthesis of such contrastive dataset. To encourage further research and advance the field of multimodal data synthesis and enhancement of MLLMs' fundamental capabilities for image understanding, we release our codes and dataset at https://github.com/modelscope/data-juicer/tree/ImgDiff.
Novel Class Discovery: an Introduction and Key Concepts
Novel Class Discovery (NCD) is a growing field where we are given during training a labeled set of known classes and an unlabeled set of different classes that must be discovered. In recent years, many methods have been proposed to address this problem, and the field has begun to mature. In this paper, we provide a comprehensive survey of the state-of-the-art NCD methods. We start by formally defining the NCD problem and introducing important notions. We then give an overview of the different families of approaches, organized by the way they transfer knowledge from the labeled set to the unlabeled set. We find that they either learn in two stages, by first extracting knowledge from the labeled data only and then applying it to the unlabeled data, or in one stage by conjointly learning on both sets. For each family, we describe their general principle and detail a few representative methods. Then, we briefly introduce some new related tasks inspired by the increasing number of NCD works. We also present some common tools and techniques used in NCD, such as pseudo labeling, self-supervised learning and contrastive learning. Finally, to help readers unfamiliar with the NCD problem differentiate it from other closely related domains, we summarize some of the closest areas of research and discuss their main differences.
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
The goal of the change-point detection is to discover changes of time series distribution. One of the state of the art approaches of the change-point detection are based on direct density ratio estimation. In this work we show how existing algorithms can be generalized using various binary classification and regression models. In particular, we show that the Gradient Boosting over Decision Trees and Neural Networks can be used for this purpose. The algorithms are tested on several synthetic and real-world datasets. The results show that the proposed methods outperform classical RuLSIF algorithm. Discussion of cases where the proposed algorithms have advantages over existing methods are also provided.
Continual Learning with Pre-Trained Models: A Survey
Nowadays, real-world applications often face streaming data, which requires the learning system to absorb new knowledge as data evolves. Continual Learning (CL) aims to achieve this goal and meanwhile overcome the catastrophic forgetting of former knowledge when learning new ones. Typical CL methods build the model from scratch to grow with incoming data. However, the advent of the pre-trained model (PTM) era has sparked immense research interest, particularly in leveraging PTMs' robust representational capabilities. This paper presents a comprehensive survey of the latest advancements in PTM-based CL. We categorize existing methodologies into three distinct groups, providing a comparative analysis of their similarities, differences, and respective advantages and disadvantages. Additionally, we offer an empirical study contrasting various state-of-the-art methods to highlight concerns regarding fairness in comparisons. The source code to reproduce these evaluations is available at: https://github.com/sun-hailong/LAMDA-PILOT
A Stylometric Application of Large Language Models
We show that large language models (LLMs) can be used to distinguish the writings of different authors. Specifically, an individual GPT-2 model, trained from scratch on the works of one author, will predict held-out text from that author more accurately than held-out text from other authors. We suggest that, in this way, a model trained on one author's works embodies the unique writing style of that author. We first demonstrate our approach on books written by eight different (known) authors. We also use this approach to confirm R. P. Thompson's authorship of the well-studied 15th book of the Oz series, originally attributed to F. L. Baum.
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
Comparing Feature Importance and Rule Extraction for Interpretability on Text Data
Complex machine learning algorithms are used more and more often in critical tasks involving text data, leading to the development of interpretability methods. Among local methods, two families have emerged: those computing importance scores for each feature and those extracting simple logical rules. In this paper we show that using different methods can lead to unexpectedly different explanations, even when applied to simple models for which we would expect qualitative coincidence. To quantify this effect, we propose a new approach to compare explanations produced by different methods.
Towards Unsupervised Recognition of Semantic Differences in Related Documents
Automatically highlighting words that cause semantic differences between two documents could be useful for a wide range of applications. We formulate recognizing semantic differences (RSD) as a token-level regression task and study three unsupervised approaches that rely on a masked language model. To assess the approaches, we begin with basic English sentences and gradually move to more complex, cross-lingual document pairs. Our results show that an approach based on word alignment and sentence-level contrastive learning has a robust correlation to gold labels. However, all unsupervised approaches still leave a large margin of improvement. Code to reproduce our experiments is available at https://github.com/ZurichNLP/recognizing-semantic-differences
Temporal Difference Learning for Model Predictive Control
Data-driven model predictive control has two key advantages over model-free methods: a potential for improved sample efficiency through model learning, and better performance as computational budget for planning increases. However, it is both costly to plan over long horizons and challenging to obtain an accurate model of the environment. In this work, we combine the strengths of model-free and model-based methods. We use a learned task-oriented latent dynamics model for local trajectory optimization over a short horizon, and use a learned terminal value function to estimate long-term return, both of which are learned jointly by temporal difference learning. Our method, TD-MPC, achieves superior sample efficiency and asymptotic performance over prior work on both state and image-based continuous control tasks from DMControl and Meta-World. Code and video results are available at https://nicklashansen.github.io/td-mpc.
An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction
Data of sequential nature arise in many application domains in forms of, e.g. textual data, DNA sequences, and software execution traces. Different research disciplines have developed methods to learn sequence models from such datasets: (i) in the machine learning field methods such as (hidden) Markov models and recurrent neural networks have been developed and successfully applied to a wide-range of tasks, (ii) in process mining process discovery techniques aim to generate human-interpretable descriptive models, and (iii) in the grammar inference field the focus is on finding descriptive models in the form of formal grammars. Despite their different focuses, these fields share a common goal - learning a model that accurately describes the behavior in the underlying data. Those sequence models are generative, i.e, they can predict what elements are likely to occur after a given unfinished sequence. So far, these fields have developed mainly in isolation from each other and no comparison exists. This paper presents an interdisciplinary experimental evaluation that compares sequence modeling techniques on the task of next-element prediction on four real-life sequence datasets. The results indicate that machine learning techniques that generally have no aim at interpretability in terms of accuracy outperform techniques from the process mining and grammar inference fields that aim to yield interpretable models.
Method-Level Bug Severity Prediction using Source Code Metrics and LLMs
In the past couple of decades, significant research efforts are devoted to the prediction of software bugs. However, most existing work in this domain treats all bugs the same, which is not the case in practice. It is important for a defect prediction method to estimate the severity of the identified bugs so that the higher-severity ones get immediate attention. In this study, we investigate source code metrics, source code representation using large language models (LLMs), and their combination in predicting bug severity labels of two prominent datasets. We leverage several source metrics at method-level granularity to train eight different machine-learning models. Our results suggest that Decision Tree and Random Forest models outperform other models regarding our several evaluation metrics. We then use the pre-trained CodeBERT LLM to study the source code representations' effectiveness in predicting bug severity. CodeBERT finetuning improves the bug severity prediction results significantly in the range of 29%-140% for several evaluation metrics, compared to the best classic prediction model on source code metric. Finally, we integrate source code metrics into CodeBERT as an additional input, using our two proposed architectures, which both enhance the CodeBERT model effectiveness.
Towards More Accurate Prediction of Human Empathy and Emotion in Text and Multi-turn Conversations by Combining Advanced NLP, Transformers-based Networks, and Linguistic Methodologies
Based on the WASSA 2022 Shared Task on Empathy Detection and Emotion Classification, we predict the level of empathic concern and personal distress displayed in essays. For the first stage of this project we implemented a Feed-Forward Neural Network using sentence-level embeddings as features. We experimented with four different embedding models for generating the inputs to the neural network. The subsequent stage builds upon the previous work and we have implemented three types of revisions. The first revision focuses on the enhancements to the model architecture and the training approach. The second revision focuses on handling class imbalance using stratified data sampling. The third revision focuses on leveraging lexical resources, where we apply four different resources to enrich the features associated with the dataset. During the final stage of this project, we have created the final end-to-end system for the primary task using an ensemble of models to revise primary task performance. Additionally, as part of the final stage, these approaches have been adapted to the WASSA 2023 Shared Task on Empathy Emotion and Personality Detection in Interactions, in which the empathic concern, emotion polarity, and emotion intensity in dyadic text conversations are predicted.
Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction
Click-through rate prediction is one of the core tasks in commercial recommender systems. It aims to predict the probability of a user clicking a particular item given user and item features. As feature interactions bring in non-linearity, they are widely adopted to improve the performance of CTR prediction models. Therefore, effectively modelling feature interactions has attracted much attention in both the research and industry field. The current approaches can generally be categorized into three classes: (1) na\"ive methods, which do not model feature interactions and only use original features; (2) memorized methods, which memorize feature interactions by explicitly viewing them as new features and assigning trainable embeddings; (3) factorized methods, which learn latent vectors for original features and implicitly model feature interactions through factorization functions. Studies have shown that modelling feature interactions by one of these methods alone are suboptimal due to the unique characteristics of different feature interactions. To address this issue, we first propose a general framework called OptInter which finds the most suitable modelling method for each feature interaction. Different state-of-the-art deep CTR models can be viewed as instances of OptInter. To realize the functionality of OptInter, we also introduce a learning algorithm that automatically searches for the optimal modelling method. We conduct extensive experiments on four large datasets. Our experiments show that OptInter improves the best performed state-of-the-art baseline deep CTR models by up to 2.21%. Compared to the memorized method, which also outperforms baselines, we reduce up to 91% parameters. In addition, we conduct several ablation studies to investigate the influence of different components of OptInter. Finally, we provide interpretable discussions on the results of OptInter.
NAICS-Aware Graph Neural Networks for Large-Scale POI Co-visitation Prediction: A Multi-Modal Dataset and Methodology
Understanding where people go after visiting one business is crucial for urban planning, retail analytics, and location-based services. However, predicting these co-visitation patterns across millions of venues remains challenging due to extreme data sparsity and the complex interplay between spatial proximity and business relationships. Traditional approaches using only geographic distance fail to capture why coffee shops attract different customer flows than fine dining restaurants, even when co-located. We introduce NAICS-aware GraphSAGE, a novel graph neural network that integrates business taxonomy knowledge through learnable embeddings to predict population-scale co-visitation patterns. Our key insight is that business semantics, captured through detailed industry codes, provide crucial signals that pure spatial models cannot explain. The approach scales to massive datasets (4.2 billion potential venue pairs) through efficient state-wise decomposition while combining spatial, temporal, and socioeconomic features in an end-to-end framework. Evaluated on our POI-Graph dataset comprising 94.9 million co-visitation records across 92,486 brands and 48 US states, our method achieves significant improvements over state-of-the-art baselines: the R-squared value increases from 0.243 to 0.625 (a 157 percent improvement), with strong gains in ranking quality (32 percent improvement in NDCG at 10).
A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation
Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences.
On Generalizations of Some Distance Based Classifiers for HDLSS Data
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting into improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. The high-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of real data sets exhibit advantages of the proposed methods.
Comparison and Combination of Sentence Embeddings Derived from Different Supervision Signals
There have been many successful applications of sentence embedding methods. However, it has not been well understood what properties are captured in the resulting sentence embeddings depending on the supervision signals. In this paper, we focus on two types of sentence embedding methods with similar architectures and tasks: one fine-tunes pre-trained language models on the natural language inference task, and the other fine-tunes pre-trained language models on word prediction task from its definition sentence, and investigate their properties. Specifically, we compare their performances on semantic textual similarity (STS) tasks using STS datasets partitioned from two perspectives: 1) sentence source and 2) superficial similarity of the sentence pairs, and compare their performances on the downstream and probing tasks. Furthermore, we attempt to combine the two methods and demonstrate that combining the two methods yields substantially better performance than the respective methods on unsupervised STS tasks and downstream tasks.
Look Before you Leap: Estimating LLM Benchmark Scores from Descriptions
Progress in large language models is constrained by an evaluation bottleneck: build a benchmark, evaluate models and settings, then iterate. We therefore ask a simple question: can we forecast outcomes before running any experiments? We study text-only performance forecasting: estimating a model's score from a redacted task description and intended configuration, with no access to dataset instances. To support systematic study, we curate PRECOG, a corpus of redacted description-performance pairs spanning diverse tasks, domains, and metrics. Experiments show the task is challenging but feasible: models equipped with a retrieval module that excludes source papers achieve moderate prediction performance with well-calibrated uncertainty, reaching mean absolute error as low as 8.7 on the Accuracy subset at high-confidence thresholds. Our analysis indicates that stronger reasoning models engage in diverse, iterative querying, whereas current open-source models lag and often skip retrieval or gather evidence with limited diversity. We further test a zero-leakage setting, forecasting on newly released datasets or experiments before their papers are indexed, where GPT-5 with built-in web search still attains nontrivial prediction accuracy. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter experiment prioritization.
Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
The correct use of model evaluation, model selection, and algorithm selection techniques is vital in academic machine learning research as well as in many industrial settings. This article reviews different techniques that can be used for each of these three subtasks and discusses the main advantages and disadvantages of each technique with references to theoretical and empirical studies. Further, recommendations are given to encourage best yet feasible practices in research and applications of machine learning. Common methods such as the holdout method for model evaluation and selection are covered, which are not recommended when working with small datasets. Different flavors of the bootstrap technique are introduced for estimating the uncertainty of performance estimates, as an alternative to confidence intervals via normal approximation if bootstrapping is computationally feasible. Common cross-validation techniques such as leave-one-out cross-validation and k-fold cross-validation are reviewed, the bias-variance trade-off for choosing k is discussed, and practical tips for the optimal choice of k are given based on empirical evidence. Different statistical tests for algorithm comparisons are presented, and strategies for dealing with multiple comparisons such as omnibus tests and multiple-comparison corrections are discussed. Finally, alternative methods for algorithm selection, such as the combined F-test 5x2 cross-validation and nested cross-validation, are recommended for comparing machine learning algorithms when datasets are small.
LoL: A Comparative Regularization Loss over Query Reformulation Losses for Pseudo-Relevance Feedback
Pseudo-relevance feedback (PRF) has proven to be an effective query reformulation technique to improve retrieval accuracy. It aims to alleviate the mismatch of linguistic expressions between a query and its potential relevant documents. Existing PRF methods independently treat revised queries originating from the same query but using different numbers of feedback documents, resulting in severe query drift. Without comparing the effects of two different revisions from the same query, a PRF model may incorrectly focus on the additional irrelevant information increased in the more feedback, and thus reformulate a query that is less effective than the revision using the less feedback. Ideally, if a PRF model can distinguish between irrelevant and relevant information in the feedback, the more feedback documents there are, the better the revised query will be. To bridge this gap, we propose the Loss-over-Loss (LoL) framework to compare the reformulation losses between different revisions of the same query during training. Concretely, we revise an original query multiple times in parallel using different amounts of feedback and compute their reformulation losses. Then, we introduce an additional regularization loss on these reformulation losses to penalize revisions that use more feedback but gain larger losses. With such comparative regularization, the PRF model is expected to learn to suppress the extra increased irrelevant information by comparing the effects of different revised queries. Further, we present a differentiable query reformulation method to implement this framework. This method revises queries in the vector space and directly optimizes the retrieval performance of query vectors, applicable for both sparse and dense retrieval models. Empirical evaluation demonstrates the effectiveness and robustness of our method for two typical sparse and dense retrieval models.
Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings
Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning, and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) models sample-efficiently, and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.
Longitudinal prediction of DNA methylation to forecast epigenetic outcomes
Interrogating the evolution of biological changes at early stages of life requires longitudinal profiling of molecules, such as DNA methylation, which can be challenging with children. We introduce a probabilistic and longitudinal machine learning framework based on multi-mean Gaussian processes (GPs), accounting for individual and gene correlations across time. This method provides future predictions of DNA methylation status at different individual ages while accounting for uncertainty. Our model is trained on a birth cohort of children with methylation profiled at ages 0-4, and we demonstrated that the status of methylation sites for each child can be accurately predicted at ages 5-7. We show that methylation profiles predicted by multi-mean GPs can be used to estimate other phenotypes, such as epigenetic age, and enable comparison to other health measures of interest. This approach encourages epigenetic studies to move towards longitudinal design for investigating epigenetic changes during development, ageing and disease progression.
Beyond Eviction Prediction: Leveraging Local Spatiotemporal Public Records to Inform Action
There has been considerable recent interest in scoring properties on the basis of eviction risk. The success of methods for eviction prediction is typically evaluated using different measures of predictive accuracy. However, the underlying goal of such prediction is to direct appropriate assistance to households that may be at greater risk so they remain stably housed. Thus, we must ask the question of how useful such predictions are in targeting outreach efforts - informing action. In this paper, we investigate this question using a novel dataset that matches information on properties, evictions, and owners. We perform an eviction prediction task to produce risk scores and then use these risk scores to plan targeted outreach policies. We show that the risk scores are, in fact, useful, enabling a theoretical team of caseworkers to reach more eviction-prone properties in the same amount of time, compared to outreach policies that are either neighborhood-based or focus on buildings with a recent history of evictions. We also discuss the importance of neighborhood and ownership features in both risk prediction and targeted outreach.
Causal Estimation of Memorisation Profiles
Understanding memorisation in language models has practical and societal implications, e.g., studying models' training dynamics or preventing copyright infringements. Prior work defines memorisation as the causal effect of training with an instance on the model's ability to predict that instance. This definition relies on a counterfactual: the ability to observe what would have happened had the model not seen that instance. Existing methods struggle to provide computationally efficient and accurate estimates of this counterfactual. Further, they often estimate memorisation for a model architecture rather than for a specific model instance. This paper fills an important gap in the literature, proposing a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics. Using this method, we characterise a model's memorisation profile--its memorisation trends across training--by only observing its behaviour on a small set of instances throughout training. In experiments with the Pythia model suite, we find that memorisation (i) is stronger and more persistent in larger models, (ii) is determined by data order and learning rate, and (iii) has stable trends across model sizes, thus making memorisation in larger models predictable from smaller ones.
Multilingual Code-Switching for Zero-Shot Cross-Lingual Intent Prediction and Slot Filling
Predicting user intent and detecting the corresponding slots from text are two key problems in Natural Language Understanding (NLU). In the context of zero-shot learning, this task is typically approached by either using representations from pre-trained multilingual transformers such as mBERT, or by machine translating the source data into the known target language and then fine-tuning. Our work focuses on a particular scenario where the target language is unknown during training. To this goal, we propose a novel method to augment the monolingual source data using multilingual code-switching via random translations to enhance a transformer's language neutrality when fine-tuning it for a downstream task. This method also helps discover novel insights on how code-switching with different language families around the world impact the performance on the target language. Experiments on the benchmark dataset of MultiATIS++ yielded an average improvement of +4.2% in accuracy for intent task and +1.8% in F1 for slot task using our method over the state-of-the-art across 8 different languages. Furthermore, we present an application of our method for crisis informatics using a new human-annotated tweet dataset of slot filling in English and Haitian Creole, collected during Haiti earthquake disaster.
Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records
Disease risk prediction has attracted increasing attention in the field of modern healthcare, especially with the latest advances in artificial intelligence (AI). Electronic health records (EHRs), which contain heterogeneous patient information, are widely used in disease risk prediction tasks. One challenge of applying AI models for risk prediction lies in generating interpretable evidence to support the prediction results while retaining the prediction ability. In order to address this problem, we propose the method of jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their relevance to the names of risk prediction labels. This approach boosts interpretability by employing an attention mechanism and including the names of prediction tasks in the model. However, its application is only limited to the handling of textual inputs such as medical notes. In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators. To demonstrate our method, we apply LDAM to the MIMIC-III dataset to predict different disease risks. We evaluate our method both quantitatively and qualitatively. Specifically, the predictive power of LDAM will be shown, and case studies will be carried out to illustrate its interpretability.
Generative Regression Based Watch Time Prediction for Short-Video Recommendation
Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.
Eyes Will Shut: A Vision-Based Next GPS Location Prediction Model by Reinforcement Learning from Visual Map Feed Back
Next Location Prediction is a fundamental task in the study of human mobility, with wide-ranging applications in transportation planning, urban governance, and epidemic forecasting. In practice, when humans attempt to predict the next location in a trajectory, they often visualize the trajectory on a map and reason based on road connectivity and movement trends. However, the vast majority of existing next-location prediction models do not reason over maps in the way that humans do. Fortunately, the recent development of Vision-Language Models (VLMs) has demonstrated strong capabilities in visual perception and even visual reasoning. This opens up a new possibility: by rendering both the road network and trajectory onto an image and leveraging the reasoning abilities of VLMs, we can enable models to perform trajectory inference in a human-like manner. To explore this idea, we first propose a method called Vision-Guided Location Search (VGLS), which evaluates whether a general-purpose VLM is capable of trajectory-based reasoning without modifying any of its internal parameters. Based on insights from the VGLS results, we further propose our main approach: VLMLocPredictor, which is composed of two stages: In the first stage, we design two Supervised Fine-Tuning (SFT) tasks that help the VLM understand road network and trajectory structures and acquire basic reasoning ability on such visual inputs. In the second stage, we introduce Reinforcement Learning from Visual Map Feedback, enabling the model to self-improve its next-location prediction ability through interaction with the environment. Experiments conducted on datasets from four different cities show that our method achieves state-of-the-art (SOTA) performance and exhibits superior cross-city generalization compared to other LLM-based approaches.
Horizon-Length Prediction: Advancing Fill-in-the-Middle Capabilities for Code Generation with Lookahead Planning
Fill-in-the-Middle (FIM) has become integral to code language models, enabling generation of missing code given both left and right contexts. However, the current FIM training paradigm, which reorders original training sequences and then performs regular next-token prediction (NTP), often leads to models struggling to generate content that aligns smoothly with the surrounding context. Crucially, while existing works rely on rule-based post-processing to circumvent this weakness, such methods are not practically usable in open-domain code completion tasks as they depend on restrictive, dataset-specific assumptions (e.g., generating the same number of lines as in the ground truth). Moreover, model performance on FIM tasks deteriorates significantly without these unrealistic assumptions. We hypothesize that NTP alone is insufficient for models to learn effective planning conditioned on the distant right context, a critical factor for successful code infilling. To overcome this, we propose Horizon-Length Prediction (HLP), a novel training objective that teaches models to predict the number of remaining middle tokens (i.e., horizon length) at each step. HLP advances FIM with lookahead planning, enabling models to inherently learn infilling boundaries for arbitrary left and right contexts without relying on dataset-specific post-processing. Our evaluation across different models and sizes shows that HLP significantly improves FIM performance by up to 24% relatively on diverse benchmarks, across file-level and repository-level, and without resorting to unrealistic post-processing methods. Furthermore, the enhanced planning capability gained through HLP boosts model performance on code reasoning. Importantly, HLP only incurs negligible training overhead and no additional inference cost, ensuring its practicality for real-world scenarios.
State-Change Learning for Prediction of Future Events in Endoscopic Videos
Surgical future prediction, driven by real-time AI analysis of surgical video, is critical for operating room safety and efficiency. It provides actionable insights into upcoming events, their timing, and risks-enabling better resource allocation, timely instrument readiness, and early warnings for complications (e.g., bleeding, bile duct injury). Despite this need, current surgical AI research focuses on understanding what is happening rather than predicting future events. Existing methods target specific tasks in isolation, lacking unified approaches that span both short-term (action triplets, events) and long-term horizons (remaining surgery duration, phase transitions). These methods rely on coarse-grained supervision while fine-grained surgical action triplets and steps remain underexplored. Furthermore, methods based only on future feature prediction struggle to generalize across different surgical contexts and procedures. We address these limits by reframing surgical future prediction as state-change learning. Rather than forecasting raw observations, our approach classifies state transitions between current and future timesteps. We introduce SurgFUTR, implementing this through a teacher-student architecture. Video clips are compressed into state representations via Sinkhorn-Knopp clustering; the teacher network learns from both current and future clips, while the student network predicts future states from current videos alone, guided by our Action Dynamics (ActDyn) module. We establish SFPBench with five prediction tasks spanning short-term (triplets, events) and long-term (remaining surgery duration, phase and step transitions) horizons. Experiments across four datasets and three procedures show consistent improvements. Cross-procedure transfer validates generalizability.
Annotation Sensitivity: Training Data Collection Methods Affect Model Performance
When training data are collected from human annotators, the design of the annotation instrument, the instructions given to annotators, the characteristics of the annotators, and their interactions can impact training data. This study demonstrates that design choices made when creating an annotation instrument also impact the models trained on the resulting annotations. We introduce the term annotation sensitivity to refer to the impact of annotation data collection methods on the annotations themselves and on downstream model performance and predictions. We collect annotations of hate speech and offensive language in five experimental conditions of an annotation instrument, randomly assigning annotators to conditions. We then fine-tune BERT models on each of the five resulting datasets and evaluate model performance on a holdout portion of each condition. We find considerable differences between the conditions for 1) the share of hate speech/offensive language annotations, 2) model performance, 3) model predictions, and 4) model learning curves. Our results emphasize the crucial role played by the annotation instrument which has received little attention in the machine learning literature. We call for additional research into how and why the instrument impacts the annotations to inform the development of best practices in instrument design.
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Predicting the trajectories of surrounding objects is a critical task for self-driving vehicles and many other autonomous systems. Recent works demonstrate that adversarial attacks on trajectory prediction, where small crafted perturbations are introduced to history trajectories, may significantly mislead the prediction of future trajectories and induce unsafe planning. However, few works have addressed enhancing the robustness of this important safety-critical task.In this paper, we present a novel adversarial training method for trajectory prediction. Compared with typical adversarial training on image tasks, our work is challenged by more random input with rich context and a lack of class labels. To address these challenges, we propose a method based on a semi-supervised adversarial autoencoder, which models disentangled semantic features with domain knowledge and provides additional latent labels for the adversarial training. Extensive experiments with different types of attacks demonstrate that our Semisupervised Semantics-guided Adversarial Training (SSAT) method can effectively mitigate the impact of adversarial attacks by up to 73% and outperform other popular defense methods. In addition, experiments show that our method can significantly improve the system's robust generalization to unseen patterns of attacks. We believe that such semantics-guided architecture and advancement on robust generalization is an important step for developing robust prediction models and enabling safe decision-making.
A Wireless Foundation Model for Multi-Task Prediction
With the growing complexity and dynamics of the mobile communication networks, accurately predicting key system parameters, such as channel state information (CSI), user location, and network traffic, has become essential for a wide range of physical (PHY)-layer and medium access control (MAC)-layer tasks. Although traditional deep learning (DL)-based methods have been widely applied to such prediction tasks, they often struggle to generalize across different scenarios and tasks. In response, we propose a unified foundation model for multi-task prediction in wireless networks that supports diverse prediction intervals. The proposed model enforces univariate decomposition to unify heterogeneous tasks, encodes granularity for interval awareness, and uses a causal Transformer backbone for accurate predictions. Additionally, we introduce a patch masking strategy during training to support arbitrary input lengths. After trained on large-scale datasets, the proposed foundation model demonstrates strong generalization to unseen scenarios and achieves zero-shot performance on new tasks that surpass traditional full-shot baselines.
Transformer Encoder and Multi-features Time2Vec for Financial Prediction
Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph
There have been many recent investigations into prompt-based training of transformer language models for new text genres in low-resource settings. The prompt-based training approach has been found to be effective in generalizing pre-trained or fine-tuned models for transfer to resource-scarce settings. This work, for the first time, reports results on adopting prompt-based training of transformers for scholarly knowledge graph object prediction. The work is unique in the following two main aspects. 1) It deviates from the other works proposing entity and relation extraction pipelines for predicting objects of a scholarly knowledge graph. 2) While other works have tested the method on text genera relatively close to the general knowledge domain, we test the method for a significantly different domain, i.e. scholarly knowledge, in turn testing the linguistic, probabilistic, and factual generalizability of these large-scale transformer models. We find that (i) per expectations, transformer models when tested out-of-the-box underperform on a new domain of data, (ii) prompt-based training of the models achieve performance boosts of up to 40\% in a relaxed evaluation setting, and (iii) testing the models on a starkly different domain even with a clever training objective in a low resource setting makes evident the domain knowledge capture gap offering an empirically-verified incentive for investing more attention and resources to the scholarly domain in the context of transformer models.
UMMAN: Unsupervised Multi-graph Merge Adversarial Network for Disease Prediction Based on Intestinal Flora
The abundance of intestinal flora is closely related to human diseases, but diseases are not caused by a single gut microbe. Instead, they result from the complex interplay of numerous microbial entities. This intricate and implicit connection among gut microbes poses a significant challenge for disease prediction using abundance information from OTU data. Recently, several methods have shown potential in predicting corresponding diseases. However, these methods fail to learn the inner association among gut microbes from different hosts, leading to unsatisfactory performance. In this paper, we present a novel architecture, Unsupervised Multi-graph Merge Adversarial Network (UMMAN). UMMAN can obtain the embeddings of nodes in the Multi-Graph in an unsupervised scenario, so that it helps learn the multiplex association. Our method is the first to combine Graph Neural Network with the task of intestinal flora disease prediction. We employ complex relation-types to construct the Original-Graph and disrupt the relationships among nodes to generate corresponding Shuffled-Graph. We introduce the Node Feature Global Integration (NFGI) module to represent the global features of the graph. Furthermore, we design a joint loss comprising adversarial loss and hybrid attention loss to ensure that the real graph embedding aligns closely with the Original-Graph and diverges from the Shuffled-Graph. Comprehensive experiments on five classical OTU gut microbiome datasets demonstrate the effectiveness and stability of our method. (We will release our code soon.)
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
Recent developments in deep learning have made remarkable progress in speeding up the prediction of quantum chemical (QC) properties by removing the need for expensive electronic structure calculations like density functional theory. However, previous methods learned from 1D SMILES sequences or 2D molecular graphs failed to achieve high accuracy as QC properties primarily depend on the 3D equilibrium conformations optimized by electronic structure methods, far different from the sequence-type and graph-type data. In this paper, we propose a novel approach called Uni-Mol+ to tackle this challenge. Uni-Mol+ first generates a raw 3D molecule conformation from inexpensive methods such as RDKit. Then, the raw conformation is iteratively updated to its target DFT equilibrium conformation using neural networks, and the learned conformation will be used to predict the QC properties. To effectively learn this update process towards the equilibrium conformation, we introduce a two-track Transformer model backbone and train it with the QC property prediction task. We also design a novel approach to guide the model's training process. Our extensive benchmarking results demonstrate that the proposed Uni-Mol+ significantly improves the accuracy of QC property prediction in various datasets. We have made the code and model publicly available at https://github.com/dptech-corp/Uni-Mol.
Physics-Guided Fair Graph Sampling for Water Temperature Prediction in River Networks
This work introduces a novel graph neural networks (GNNs)-based method to predict stream water temperature and reduce model bias across locations of different income and education levels. Traditional physics-based models often have limited accuracy because they are necessarily approximations of reality. Recently, there has been an increasing interest of using GNNs in modeling complex water dynamics in stream networks. Despite their promise in improving the accuracy, GNNs can bring additional model bias through the aggregation process, where node features are updated by aggregating neighboring nodes. The bias can be especially pronounced when nodes with similar sensitive attributes are frequently connected. We introduce a new method that leverages physical knowledge to represent the node influence in GNNs, and then utilizes physics-based influence to refine the selection and weights over the neighbors. The objective is to facilitate equitable treatment over different sensitive groups in the graph aggregation, which helps reduce spatial bias over locations, especially for those in underprivileged groups. The results on the Delaware River Basin demonstrate the effectiveness of the proposed method in preserving equitable performance across locations in different sensitive groups.
ReAGent: Towards A Model-agnostic Feature Attribution Method for Generative Language Models
Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.
Equivariant Graph Attention Networks with Structural Motifs for Predicting Cell Line-Specific Synergistic Drug Combinations
Cancer is the second leading cause of death, with chemotherapy as one of the primary forms of treatment. As a result, researchers are turning to drug combination therapy to decrease drug resistance and increase efficacy. Current methods of drug combination screening, such as in vivo and in vitro, are inefficient due to stark time and monetary costs. In silico methods have become increasingly important for screening drugs, but current methods are inaccurate and generalize poorly to unseen anticancer drugs. In this paper, I employ a geometric deep-learning model utilizing a graph attention network that is equivariant to 3D rotations, translations, and reflections with structural motifs. Additionally, the gene expression of cancer cell lines is utilized to classify synergistic drug combinations specific to each cell line. I compared the proposed geometric deep learning framework to current state-of-the-art (SOTA) methods, and the proposed model architecture achieved greater performance on all 12 benchmark tasks performed on the DrugComb dataset. Specifically, the proposed framework outperformed other SOTA methods by an accuracy difference greater than 28%. Based on these results, I believe that the equivariant graph attention network's capability of learning geometric data accounts for the large performance improvements. The model's ability to generalize to foreign drugs is thought to be due to the structural motifs providing a better representation of the molecule. Overall, I believe that the proposed equivariant geometric deep learning framework serves as an effective tool for virtually screening anticancer drug combinations for further validation in a wet lab environment. The code for this work is made available online at: https://github.com/WeToTheMoon/EGAT_DrugSynergy.
Comparing Feature-based and Context-aware Approaches to PII Generalization Level Prediction
Protecting Personal Identifiable Information (PII) in text data is crucial for privacy, but current PII generalization methods face challenges such as uneven data distributions and limited context awareness. To address these issues, we propose two approaches: a feature-based method using machine learning to improve performance on structured inputs, and a novel context-aware framework that considers the broader context and semantic relationships between the original text and generalized candidates. The context-aware approach employs Multilingual-BERT for text representation, functional transformations, and mean squared error scoring to evaluate candidates. Experiments on the WikiReplace dataset demonstrate the effectiveness of both methods, with the context-aware approach outperforming the feature-based one across different scales. This work contributes to advancing PII generalization techniques by highlighting the importance of feature selection, ensemble learning, and incorporating contextual information for better privacy protection in text anonymization.
Using Error Decay Prediction to Overcome Practical Issues of Deep Active Learning for Named Entity Recognition
Existing deep active learning algorithms achieve impressive sampling efficiency on natural language processing tasks. However, they exhibit several weaknesses in practice, including (a) inability to use uncertainty sampling with black-box models, (b) lack of robustness to labeling noise, and (c) lack of transparency. In response, we propose a transparent batch active sampling framework by estimating the error decay curves of multiple feature-defined subsets of the data. Experiments on four named entity recognition (NER) tasks demonstrate that the proposed methods significantly outperform diversification-based methods for black-box NER taggers, and can make the sampling process more robust to labeling noise when combined with uncertainty-based methods. Furthermore, the analysis of experimental results sheds light on the weaknesses of different active sampling strategies, and when traditional uncertainty-based or diversification-based methods can be expected to work well.
SCUT-FBP5500: A Diverse Benchmark Dataset for Multi-Paradigm Facial Beauty Prediction
Facial beauty prediction (FBP) is a significant visual recognition problem to make assessment of facial attractiveness that is consistent to human perception. To tackle this problem, various data-driven models, especially state-of-the-art deep learning techniques, were introduced, and benchmark dataset become one of the essential elements to achieve FBP. Previous works have formulated the recognition of facial beauty as a specific supervised learning problem of classification, regression or ranking, which indicates that FBP is intrinsically a computation problem with multiple paradigms. However, most of FBP benchmark datasets were built under specific computation constrains, which limits the performance and flexibility of the computational model trained on the dataset. In this paper, we argue that FBP is a multi-paradigm computation problem, and propose a new diverse benchmark dataset, called SCUT-FBP5500, to achieve multi-paradigm facial beauty prediction. The SCUT-FBP5500 dataset has totally 5500 frontal faces with diverse properties (male/female, Asian/Caucasian, ages) and diverse labels (face landmarks, beauty scores within [1,~5], beauty score distribution), which allows different computational models with different FBP paradigms, such as appearance-based/shape-based facial beauty classification/regression model for male/female of Asian/Caucasian. We evaluated the SCUT-FBP5500 dataset for FBP using different combinations of feature and predictor, and various deep learning methods. The results indicates the improvement of FBP and the potential applications based on the SCUT-FBP5500.
STDA-Meta: A Meta-Learning Framework for Few-Shot Traffic Prediction
As the development of cities, traffic congestion becomes an increasingly pressing issue, and traffic prediction is a classic method to relieve that issue. Traffic prediction is one specific application of spatio-temporal prediction learning, like taxi scheduling, weather prediction, and ship trajectory prediction. Against these problems, classical spatio-temporal prediction learning methods including deep learning, require large amounts of training data. In reality, some newly developed cities with insufficient sensors would not hold that assumption, and the data scarcity makes predictive performance worse. In such situation, the learning method on insufficient data is known as few-shot learning (FSL), and the FSL of traffic prediction remains challenges. On the one hand, graph structures' irregularity and dynamic nature of graphs cannot hold the performance of spatio-temporal learning method. On the other hand, conventional domain adaptation methods cannot work well on insufficient training data, when transferring knowledge from different domains to the intended target domain.To address these challenges, we propose a novel spatio-temporal domain adaptation (STDA) method that learns transferable spatio-temporal meta-knowledge from data-sufficient cities in an adversarial manner. This learned meta-knowledge can improve the prediction performance of data-scarce cities. Specifically, we train the STDA model using a Model-Agnostic Meta-Learning (MAML) based episode learning process, which is a model-agnostic meta-learning framework that enables the model to solve new learning tasks using only a small number of training samples. We conduct numerous experiments on four traffic prediction datasets, and our results show that the prediction performance of our model has improved by 7\% compared to baseline models on the two metrics of MAE and RMSE.
UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal Prediction
Accurate Urban SpatioTemporal Prediction (USTP) is of great importance to the development and operation of the smart city. As an emerging building block, multi-sourced urban data are usually integrated as urban knowledge graphs (UrbanKGs) to provide critical knowledge for urban spatiotemporal prediction models. However, existing UrbanKGs are often tailored for specific downstream prediction tasks and are not publicly available, which limits the potential advancement. This paper presents UUKG, the unified urban knowledge graph dataset for knowledge-enhanced urban spatiotemporal predictions. Specifically, we first construct UrbanKGs consisting of millions of triplets for two metropolises by connecting heterogeneous urban entities such as administrative boroughs, POIs, and road segments. Moreover, we conduct qualitative and quantitative analysis on constructed UrbanKGs and uncover diverse high-order structural patterns, such as hierarchies and cycles, that can be leveraged to benefit downstream USTP tasks. To validate and facilitate the use of UrbanKGs, we implement and evaluate 15 KG embedding methods on the KG completion task and integrate the learned KG embeddings into 9 spatiotemporal models for five different USTP tasks. The extensive experimental results not only provide benchmarks of knowledge-enhanced USTP models under different task settings but also highlight the potential of state-of-the-art high-order structure-aware UrbanKG embedding methods. We hope the proposed UUKG fosters research on urban knowledge graphs and broad smart city applications. The dataset and source code are available at https://github.com/usail-hkust/UUKG/.
Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning
This paper presents a systematic overview and comparison of parameter-efficient fine-tuning methods covering over 40 papers published between February 2019 and February 2023. These methods aim to resolve the infeasibility and impracticality of fine-tuning large language models by only training a small set of parameters. We provide a taxonomy that covers a broad range of methods and present a detailed method comparison with a specific focus on real-life efficiency and fine-tuning multibillion-scale language models.
GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.
FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction
As an important modeling paradigm in click-through rate (CTR) prediction, the Deep & Cross Network (DCN) and its derivative models have gained widespread recognition primarily due to their success in a trade-off between computational cost and performance. This paradigm employs a cross network to explicitly model feature interactions with linear growth, while leveraging deep neural networks (DNN) to implicitly capture higher-order feature interactions. However, these models still face several key limitations: (1) The performance of existing explicit feature interaction methods lags behind that of implicit DNN, resulting in overall model performance being dominated by the DNN; (2) While these models claim to capture high-order feature interactions, they often overlook potential noise within these interactions; (3) The learning process for different interaction network branches lacks appropriate supervision signals; and (4) The high-order feature interactions captured by these models are often implicit and non-interpretable due to their reliance on DNN. To address the identified limitations, this paper proposes a novel model, called Fusing Cross Network (FCN), along with two sub-networks: Linear Cross Network (LCN) and Exponential Cross Network (ECN). FCN explicitly captures feature interactions with both linear and exponential growth, eliminating the need to rely on implicit DNN. Moreover, we introduce the Self-Mask operation to filter noise layer by layer and reduce the number of parameters in the cross network by half. To effectively train these two cross networks, we propose a simple yet effective loss function called Tri-BCE, which provides tailored supervision signals for each network. We evaluate the effectiveness, efficiency, and interpretability of FCN on six benchmark datasets. Furthermore, by integrating LCN and ECN, FCN achieves a new state-of-the-art performance.
GameFormer: Game-theoretic Modeling and Learning of Transformer-based Interactive Prediction and Planning for Autonomous Driving
Autonomous vehicles operating in complex real-world environments require accurate predictions of interactive behaviors between traffic participants. This paper tackles the interaction prediction problem by formulating it with hierarchical game theory and proposing the GameFormer model for its implementation. The model incorporates a Transformer encoder, which effectively models the relationships between scene elements, alongside a novel hierarchical Transformer decoder structure. At each decoding level, the decoder utilizes the prediction outcomes from the previous level, in addition to the shared environmental context, to iteratively refine the interaction process. Moreover, we propose a learning process that regulates an agent's behavior at the current level to respond to other agents' behaviors from the preceding level. Through comprehensive experiments on large-scale real-world driving datasets, we demonstrate the state-of-the-art accuracy of our model on the Waymo interaction prediction task. Additionally, we validate the model's capacity to jointly reason about the motion plan of the ego agent and the behaviors of multiple agents in both open-loop and closed-loop planning tests, outperforming various baseline methods. Furthermore, we evaluate the efficacy of our model on the nuPlan planning benchmark, where it achieves leading performance.
Latent Inter-User Difference Modeling for LLM Personalization
Large language models (LLMs) are increasingly integrated into users' daily lives, leading to a growing demand for personalized outputs. Previous work focuses on leveraging a user's own history, overlooking inter-user differences that are crucial for effective personalization. While recent work has attempted to model such differences, the reliance on language-based prompts often hampers the effective extraction of meaningful distinctions. To address these issues, we propose Difference-aware Embedding-based Personalization (DEP), a framework that models inter-user differences in the latent space instead of relying on language prompts. DEP constructs soft prompts by contrasting a user's embedding with those of peers who engaged with similar content, highlighting relative behavioral signals. A sparse autoencoder then filters and compresses both user-specific and difference-aware embeddings, preserving only task-relevant features before injecting them into a frozen LLM. Experiments on personalized review generation show that DEP consistently outperforms baseline methods across multiple metrics. Our code is available at https://github.com/SnowCharmQ/DEP.
HTSC-2025: A Benchmark Dataset of Ambient-Pressure High-Temperature Superconductors for AI-Driven Critical Temperature Prediction
The discovery of high-temperature superconducting materials holds great significance for human industry and daily life. In recent years, research on predicting superconducting transition temperatures using artificial intelligence~(AI) has gained popularity, with most of these tools claiming to achieve remarkable accuracy. However, the lack of widely accepted benchmark datasets in this field has severely hindered fair comparisons between different AI algorithms and impeded further advancement of these methods. In this work, we present the HTSC-2025, an ambient-pressure high-temperature superconducting benchmark dataset. This comprehensive compilation encompasses theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to 2025 based on BCS superconductivity theory, including the renowned X_2YH_6 system, perovskite MXH_3 system, M_3XH_8 system, cage-like BCN-doped metal atomic systems derived from LaH_{10} structural evolution, and two-dimensional honeycomb-structured systems evolving from MgB_2. The HTSC-2025 benchmark has been open-sourced at https://github.com/xqh19970407/HTSC-2025 and will be continuously updated. This benchmark holds significant importance for accelerating the discovery of superconducting materials using AI-based methods.
Modeling the Human Visual System: Comparative Insights from Response-Optimized and Task-Optimized Vision Models, Language Models, and different Readout Mechanisms
Over the past decade, predictive modeling of neural responses in the primate visual system has advanced significantly, largely driven by various DNN approaches. These include models optimized directly for visual recognition, cross-modal alignment through contrastive objectives, neural response prediction from scratch, and large language model embeddings.Likewise, different readout mechanisms, ranging from fully linear to spatial-feature factorized methods have been explored for mapping network activations to neural responses. Despite the diversity of these approaches, it remains unclear which method performs best across different visual regions. In this study, we systematically compare these approaches for modeling the human visual system and investigate alternative strategies to improve response predictions. Our findings reveal that for early to mid-level visual areas, response-optimized models with visual inputs offer superior prediction accuracy, while for higher visual regions, embeddings from LLMs based on detailed contextual descriptions of images and task-optimized models pretrained on large vision datasets provide the best fit. Through comparative analysis of these modeling approaches, we identified three distinct regions in the visual cortex: one sensitive primarily to perceptual features of the input that are not captured by linguistic descriptions, another attuned to fine-grained visual details representing semantic information, and a third responsive to abstract, global meanings aligned with linguistic content. We also highlight the critical role of readout mechanisms, proposing a novel scheme that modulates receptive fields and feature maps based on semantic content, resulting in an accuracy boost of 3-23% over existing SOTAs for all models and brain regions. Together, these findings offer key insights into building more precise models of the visual system.
DefSent+: Improving sentence embeddings of language models by projecting definition sentences into a quasi-isotropic or isotropic vector space of unlimited dictionary entries
This paper presents a significant improvement on the previous conference paper known as DefSent. The prior study seeks to improve sentence embeddings of language models by projecting definition sentences into the vector space of dictionary entries. We discover that this approach is not fully explored due to the methodological limitation of using word embeddings of language models to represent dictionary entries. This leads to two hindrances. First, dictionary entries are constrained by the single-word vocabulary, and thus cannot be fully exploited. Second, semantic representations of language models are known to be anisotropic, but pre-processing word embeddings for DefSent is not allowed because its weight is frozen during training and tied to the prediction layer. In this paper, we propose a novel method to progressively build entry embeddings not subject to the limitations. As a result, definition sentences can be projected into a quasi-isotropic or isotropic vector space of unlimited dictionary entries, so that sentence embeddings of noticeably better quality are attainable. We abbreviate our approach as DefSent+ (a plus version of DefSent), involving the following strengths: 1) the task performance on measuring sentence similarities is significantly improved compared to DefSent; 2) when DefSent+ is used to further train data-augmented models like SIMCSE, SNCSE, and SynCSE, state-of-the-art performance on measuring sentence similarities can be achieved among the approaches without using manually labeled datasets; 3) DefSent+ is also competitive in feature-based transfer for NLP downstream tasks.
A General Approach for Predicting the Behavior of the Supreme Court of the United States
Building on developments in machine learning and prior work in the science of judicial prediction, we construct a model designed to predict the behavior of the Supreme Court of the United States in a generalized, out-of-sample context. To do so, we develop a time evolving random forest classifier which leverages some unique feature engineering to predict more than 240,000 justice votes and 28,000 cases outcomes over nearly two centuries (1816-2015). Using only data available prior to decision, our model outperforms null (baseline) models at both the justice and case level under both parametric and non-parametric tests. Over nearly two centuries, we achieve 70.2% accuracy at the case outcome level and 71.9% at the justice vote level. More recently, over the past century, we outperform an in-sample optimized null model by nearly 5%. Our performance is consistent with, and improves on the general level of prediction demonstrated by prior work; however, our model is distinctive because it can be applied out-of-sample to the entire past and future of the Court, not a single term. Our results represent an important advance for the science of quantitative legal prediction and portend a range of other potential applications.
Predictive Multiplicity in Classification
Prediction problems often admit competing models that perform almost equally well. This effect challenges key assumptions in machine learning when competing models assign conflicting predictions. In this paper, we define predictive multiplicity as the ability of a prediction problem to admit competing models with conflicting predictions. We introduce formal measures to evaluate the severity of predictive multiplicity and develop integer programming tools to compute them exactly for linear classification problems. We apply our tools to measure predictive multiplicity in recidivism prediction problems. Our results show that real-world datasets may admit competing models that assign wildly conflicting predictions, and motivate the need to measure and report predictive multiplicity in model development.
Evaluating Interpolation and Extrapolation Performance of Neural Retrieval Models
A retrieval model should not only interpolate the training data but also extrapolate well to the queries that are different from the training data. While neural retrieval models have demonstrated impressive performance on ad-hoc search benchmarks, we still know little about how they perform in terms of interpolation and extrapolation. In this paper, we demonstrate the importance of separately evaluating the two capabilities of neural retrieval models. Firstly, we examine existing ad-hoc search benchmarks from the two perspectives. We investigate the distribution of training and test data and find a considerable overlap in query entities, query intent, and relevance labels. This finding implies that the evaluation on these test sets is biased toward interpolation and cannot accurately reflect the extrapolation capacity. Secondly, we propose a novel evaluation protocol to separately evaluate the interpolation and extrapolation performance on existing benchmark datasets. It resamples the training and test data based on query similarity and utilizes the resampled dataset for training and evaluation. Finally, we leverage the proposed evaluation protocol to comprehensively revisit a number of widely-adopted neural retrieval models. Results show models perform differently when moving from interpolation to extrapolation. For example, representation-based retrieval models perform almost as well as interaction-based retrieval models in terms of interpolation but not extrapolation. Therefore, it is necessary to separately evaluate both interpolation and extrapolation performance and the proposed resampling method serves as a simple yet effective evaluation tool for future IR studies.
ListConRanker: A Contrastive Text Reranker with Listwise Encoding
Reranker models aim to re-rank the passages based on the semantics similarity between the given query and passages, which have recently received more attention due to the wide application of the Retrieval-Augmented Generation. Most previous methods apply pointwise encoding, meaning that it can only encode the context of the query for each passage input into the model. However, for the reranker model, given a query, the comparison results between passages are even more important, which is called listwise encoding. Besides, previous models are trained using the cross-entropy loss function, which leads to issues of unsmooth gradient changes during training and low training efficiency. To address these issues, we propose a novel Listwise-encoded Contrastive text reRanker (ListConRanker). It can help the passage to be compared with other passages during the encoding process, and enhance the contrastive information between positive examples and between positive and negative examples. At the same time, we use the circle loss to train the model to increase the flexibility of gradients and solve the problem of training efficiency. Experimental results show that ListConRanker achieves state-of-the-art performance on the reranking benchmark of Chinese Massive Text Embedding Benchmark, including the cMedQA1.0, cMedQA2.0, MMarcoReranking, and T2Reranking datasets.
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
Predictive Multiplicity in Probabilistic Classification
Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.
Three scenarios for continual learning
Standard artificial neural networks suffer from the well-known issue of catastrophic forgetting, making continual or lifelong learning difficult for machine learning. In recent years, numerous methods have been proposed for continual learning, but due to differences in evaluation protocols it is difficult to directly compare their performance. To enable more structured comparisons, we describe three continual learning scenarios based on whether at test time task identity is provided and--in case it is not--whether it must be inferred. Any sequence of well-defined tasks can be performed according to each scenario. Using the split and permuted MNIST task protocols, for each scenario we carry out an extensive comparison of recently proposed continual learning methods. We demonstrate substantial differences between the three scenarios in terms of difficulty and in terms of how efficient different methods are. In particular, when task identity must be inferred (i.e., class incremental learning), we find that regularization-based approaches (e.g., elastic weight consolidation) fail and that replaying representations of previous experiences seems required for solving this scenario.
Universal pre-training by iterated random computation
We investigate the use of randomly generated data for the sake of pre-training a model. We justify this approach theoretically from the perspective of algorithmic complexity, building on recent research that shows that sequence models can be trained to approximate Solomonoff induction. We derive similar, but complementary theoretical results. We show empirically that synthetically generated data can be used to pre-train a model before the data is seen. We replicate earlier results that models trained this way show zero-shot in-context learning across a variety of datasets, and that this performance improves with scale. We extend earlier results to real-world data, and show that finetuning a model after pre-training offers faster convergence and better generalization.
Kaggle forecasting competitions: An overlooked learning opportunity
Competitions play an invaluable role in the field of forecasting, as exemplified through the recent M4 competition. The competition received attention from both academics and practitioners and sparked discussions around the representativeness of the data for business forecasting. Several competitions featuring real-life business forecasting tasks on the Kaggle platform has, however, been largely ignored by the academic community. We believe the learnings from these competitions have much to offer to the forecasting community and provide a review of the results from six Kaggle competitions. We find that most of the Kaggle datasets are characterized by higher intermittence and entropy than the M-competitions and that global ensemble models tend to outperform local single models. Furthermore, we find the strong performance of gradient boosted decision trees, increasing success of neural networks for forecasting, and a variety of techniques for adapting machine learning models to the forecasting task.
Hard Negatives or False Negatives: Correcting Pooling Bias in Training Neural Ranking Models
Neural ranking models (NRMs) have become one of the most important techniques in information retrieval (IR). Due to the limitation of relevance labels, the training of NRMs heavily relies on negative sampling over unlabeled data. In general machine learning scenarios, it has shown that training with hard negatives (i.e., samples that are close to positives) could lead to better performance. Surprisingly, we find opposite results from our empirical studies in IR. When sampling top-ranked results (excluding the labeled positives) as negatives from a stronger retriever, the performance of the learned NRM becomes even worse. Based on our investigation, the superficial reason is that there are more false negatives (i.e., unlabeled positives) in the top-ranked results with a stronger retriever, which may hurt the training process; The root is the existence of pooling bias in the dataset constructing process, where annotators only judge and label very few samples selected by some basic retrievers. Therefore, in principle, we can formulate the false negative issue in training NRMs as learning from labeled datasets with pooling bias. To solve this problem, we propose a novel Coupled Estimation Technique (CET) that learns both a relevance model and a selection model simultaneously to correct the pooling bias for training NRMs. Empirical results on three retrieval benchmarks show that NRMs trained with our technique can achieve significant gains on ranking effectiveness against other baseline strategies.
Naive imputation implicitly regularizes high-dimensional linear models
Two different approaches exist to handle missing values for prediction: either imputation, prior to fitting any predictive algorithms, or dedicated methods able to natively incorporate missing values. While imputation is widely (and easily) use, it is unfortunately biased when low-capacity predictors (such as linear models) are applied afterward. However, in practice, naive imputation exhibits good predictive performance. In this paper, we study the impact of imputation in a high-dimensional linear model with MCAR missing data. We prove that zero imputation performs an implicit regularization closely related to the ridge method, often used in high-dimensional problems. Leveraging on this connection, we establish that the imputation bias is controlled by a ridge bias, which vanishes in high dimension. As a predictor, we argue in favor of the averaged SGD strategy, applied to zero-imputed data. We establish an upper bound on its generalization error, highlighting that imputation is benign in the d sqrt n regime. Experiments illustrate our findings.
Planning In Natural Language Improves LLM Search For Code Generation
While scaling training compute has led to remarkable improvements in large language models (LLMs), scaling inference compute has not yet yielded analogous gains. We hypothesize that a core missing component is a lack of diverse LLM outputs, leading to inefficient search due to models repeatedly sampling highly similar, yet incorrect generations. We empirically demonstrate that this lack of diversity can be mitigated by searching over candidate plans for solving a problem in natural language. Based on this insight, we propose PLANSEARCH, a novel search algorithm which shows strong results across HumanEval+, MBPP+, and LiveCodeBench (a contamination-free benchmark for competitive coding). PLANSEARCH generates a diverse set of observations about the problem and then uses these observations to construct plans for solving the problem. By searching over plans in natural language rather than directly over code solutions, PLANSEARCH explores a significantly more diverse range of potential solutions compared to baseline search methods. Using PLANSEARCH on top of Claude 3.5 Sonnet achieves a state-of-the-art pass@200 of 77.0% on LiveCodeBench, outperforming both the best score achieved without search (pass@1 = 41.4%) and using standard repeated sampling (pass@200 = 60.6%). Finally, we show that, across all models, search algorithms, and benchmarks analyzed, we can accurately predict performance gains due to search as a direct function of the diversity over generated ideas.
Revisiting Image Pyramid Structure for High Resolution Salient Object Detection
Salient object detection (SOD) has been in the spotlight recently, yet has been studied less for high-resolution (HR) images. Unfortunately, HR images and their pixel-level annotations are certainly more labor-intensive and time-consuming compared to low-resolution (LR) images and annotations. Therefore, we propose an image pyramid-based SOD framework, Inverse Saliency Pyramid Reconstruction Network (InSPyReNet), for HR prediction without any of HR datasets. We design InSPyReNet to produce a strict image pyramid structure of saliency map, which enables to ensemble multiple results with pyramid-based image blending. For HR prediction, we design a pyramid blending method which synthesizes two different image pyramids from a pair of LR and HR scale from the same image to overcome effective receptive field (ERF) discrepancy. Our extensive evaluations on public LR and HR SOD benchmarks demonstrate that InSPyReNet surpasses the State-of-the-Art (SotA) methods on various SOD metrics and boundary accuracy.
Deep Generative Modeling with Spatial and Network Images: An Explainable AI (XAI) Approach
This article addresses the challenge of modeling the amplitude of spatially indexed low frequency fluctuations (ALFF) in resting state functional MRI as a function of cortical structural features and a multi-task coactivation network in the Adolescent Brain Cognitive Development (ABCD) Study. It proposes a generative model that integrates effects of spatially-varying inputs and a network-valued input using deep neural networks to capture complex non-linear and spatial associations with the output. The method models spatial smoothness, accounts for subject heterogeneity and complex associations between network and spatial images at different scales, enables accurate inference of each images effect on the output image, and allows prediction with uncertainty quantification via Monte Carlo dropout, contributing to one of the first Explainable AI (XAI) frameworks for heterogeneous imaging data. The model is highly scalable to high-resolution data without the heavy pre-processing or summarization often required by Bayesian methods. Empirical results demonstrate its strong performance compared to existing statistical and deep learning methods. We applied the XAI model to the ABCD data which revealed associations between cortical features and ALFF throughout the entire brain. Our model performed comparably to existing methods in predictive accuracy but provided superior uncertainty quantification and faster computation, demonstrating its effectiveness for large-scale neuroimaging analysis. Open-source software in Python for XAI is available.
Predicting Crop Yield With Machine Learning: An Extensive Analysis Of Input Modalities And Models On a Field and sub-field Level
We introduce a simple yet effective early fusion method for crop yield prediction that handles multiple input modalities with different temporal and spatial resolutions. We use high-resolution crop yield maps as ground truth data to train crop and machine learning model agnostic methods at the sub-field level. We use Sentinel-2 satellite imagery as the primary modality for input data with other complementary modalities, including weather, soil, and DEM data. The proposed method uses input modalities available with global coverage, making the framework globally scalable. We explicitly highlight the importance of input modalities for crop yield prediction and emphasize that the best-performing combination of input modalities depends on region, crop, and chosen model.
EnergyPatchTST: Multi-scale Time Series Transformers with Uncertainty Estimation for Energy Forecasting
Accurate and reliable energy time series prediction is of great significance for power generation planning and allocation. At present, deep learning time series prediction has become the mainstream method. However, the multi-scale time dynamics and the irregularity of real data lead to the limitations of the existing methods. Therefore, we propose EnergyPatchTST, which is an extension of the Patch Time Series Transformer specially designed for energy forecasting. The main innovations of our method are as follows: (1) multi-scale feature extraction mechanism to capture patterns with different time resolutions; (2) probability prediction framework to estimate uncertainty through Monte Carlo elimination; (3) integration path of future known variables (such as temperature and wind conditions); And (4) Pre-training and Fine-tuning examples to enhance the performance of limited energy data sets. A series of experiments on common energy data sets show that EnergyPatchTST is superior to other commonly used methods, the prediction error is reduced by 7-12%, and reliable uncertainty estimation is provided, which provides an important reference for time series prediction in the energy field.
D-CPT Law: Domain-specific Continual Pre-Training Scaling Law for Large Language Models
Continual Pre-Training (CPT) on Large Language Models (LLMs) has been widely used to expand the model's fundamental understanding of specific downstream domains (e.g., math and code). For the CPT on domain-specific LLMs, one important question is how to choose the optimal mixture ratio between the general-corpus (e.g., Dolma, Slim-pajama) and the downstream domain-corpus. Existing methods usually adopt laborious human efforts by grid-searching on a set of mixture ratios, which require high GPU training consumption costs. Besides, we cannot guarantee the selected ratio is optimal for the specific domain. To address the limitations of existing methods, inspired by the Scaling Law for performance prediction, we propose to investigate the Scaling Law of the Domain-specific Continual Pre-Training (D-CPT Law) to decide the optimal mixture ratio with acceptable training costs for LLMs of different sizes. Specifically, by fitting the D-CPT Law, we can easily predict the general and downstream performance of arbitrary mixture ratios, model sizes, and dataset sizes using small-scale training costs on limited experiments. Moreover, we also extend our standard D-CPT Law on cross-domain settings and propose the Cross-Domain D-CPT Law to predict the D-CPT law of target domains, where very small training costs (about 1% of the normal training costs) are needed for the target domains. Comprehensive experimental results on six downstream domains demonstrate the effectiveness and generalizability of our proposed D-CPT Law and Cross-Domain D-CPT Law.
Neural auto-designer for enhanced quantum kernels
Quantum kernels hold great promise for offering computational advantages over classical learners, with the effectiveness of these kernels closely tied to the design of the quantum feature map. However, the challenge of designing effective quantum feature maps for real-world datasets, particularly in the absence of sufficient prior information, remains a significant obstacle. In this study, we present a data-driven approach that automates the design of problem-specific quantum feature maps. Our approach leverages feature-selection techniques to handle high-dimensional data on near-term quantum machines with limited qubits, and incorporates a deep neural predictor to efficiently evaluate the performance of various candidate quantum kernels. Through extensive numerical simulations on different datasets, we demonstrate the superiority of our proposal over prior methods, especially for the capability of eliminating the kernel concentration issue and identifying the feature map with prediction advantages. Our work not only unlocks the potential of quantum kernels for enhancing real-world tasks but also highlights the substantial role of deep learning in advancing quantum machine learning.
SwinFace: A Multi-task Transformer for Face Recognition, Expression Recognition, Age Estimation and Attribute Estimation
In recent years, vision transformers have been introduced into face recognition and analysis and have achieved performance breakthroughs. However, most previous methods generally train a single model or an ensemble of models to perform the desired task, which ignores the synergy among different tasks and fails to achieve improved prediction accuracy, increased data efficiency, and reduced training time. This paper presents a multi-purpose algorithm for simultaneous face recognition, facial expression recognition, age estimation, and face attribute estimation (40 attributes including gender) based on a single Swin Transformer. Our design, the SwinFace, consists of a single shared backbone together with a subnet for each set of related tasks. To address the conflicts among multiple tasks and meet the different demands of tasks, a Multi-Level Channel Attention (MLCA) module is integrated into each task-specific analysis subnet, which can adaptively select the features from optimal levels and channels to perform the desired tasks. Extensive experiments show that the proposed model has a better understanding of the face and achieves excellent performance for all tasks. Especially, it achieves 90.97% accuracy on RAF-DB and 0.22 epsilon-error on CLAP2015, which are state-of-the-art results on facial expression recognition and age estimation respectively. The code and models will be made publicly available at https://github.com/lxq1000/SwinFace.
UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model in Data Science
Recent advancements in NLP have witnessed the groundbreaking impact of pretrained models, yielding impressive outcomes across various tasks. This study seeks to extend the power of pretraining methodologies to facilitating the prediction over tables in data science, a domain traditionally overlooked, yet inherently challenging due to the plethora of table schemas intrinsic to different tasks. The primary research questions underpinning this work revolve around the establishment of a universal pretraining protocol for tables with varied structures, the generalizability and transferability of learned knowledge across tasks, the adaptation to diverse downstream applications, and the incorporation of incremental columns over time. In response to these challenges, we introduce UniTabE, a straightforward yet effective method designed to process tables in a uniform manner, devoid of constraints imposed by specific table structures. UniTabE's core concept relies on representing each basic table element with a module, termed TabUnit. This is subsequently followed by a Transformer encoder to refine the representation. Moreover, our model is designed to facilitate pretraining and finetuning through the utilization of free-form prompts. In order to implement the pretraining phase, we curated an expansive tabular dataset comprising approximately 13B samples, meticulously gathered from the Kaggle platform. This research primarily centers on classification and regression tasks involving tabular data, and conducts rigorous experimental testing and analyses to validate the effectiveness of our methodology. The experimental results demonstrate UniTabE's superior performance against several baselines across massive benchmarks. This, therefore, underscores UniTabE's potential to significantly enhance the semantic representation of tabular data, thereby marking a significant stride for tabular data analysis.
PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation with GPT-4 in Cloud Incident Root Cause Analysis
Major cloud providers have employed advanced AI-based solutions like large language models to aid humans in identifying the root causes of cloud incidents. Despite the growing prevalence of AI-driven assistants in the root cause analysis process, their effectiveness in assisting on-call engineers is constrained by low accuracy due to the intrinsic difficulty of the task, a propensity for LLM-based approaches to hallucinate, and difficulties in distinguishing these well-disguised hallucinations. To address this challenge, we propose to perform confidence estimation for the predictions to help on-call engineers make decisions on whether to adopt the model prediction. Considering the black-box nature of many LLM-based root cause predictors, fine-tuning or temperature-scaling-based approaches are inapplicable. We therefore design an innovative confidence estimation framework based on prompting retrieval-augmented large language models (LLMs) that demand a minimal amount of information from the root cause predictor. This approach consists of two scoring phases: the LLM-based confidence estimator first evaluates its confidence in making judgments in the face of the current incident that reflects its ``grounded-ness" level in reference data, then rates the root cause prediction based on historical references. An optimization step combines these two scores for a final confidence assignment. We show that our method is able to produce calibrated confidence estimates for predicted root causes, validate the usefulness of retrieved historical data and the prompting strategy as well as the generalizability across different root cause prediction models. Our study takes an important move towards reliably and effectively embedding LLMs into cloud incident management systems.
Reverse Engineering of Imperceptible Adversarial Image Perturbations
It has been well recognized that neural network based image classifiers are easily fooled by images with tiny perturbations crafted by an adversary. There has been a vast volume of research to generate and defend such adversarial attacks. However, the following problem is left unexplored: How to reverse-engineer adversarial perturbations from an adversarial image? This leads to a new adversarial learning paradigm--Reverse Engineering of Deceptions (RED). If successful, RED allows us to estimate adversarial perturbations and recover the original images. However, carefully crafted, tiny adversarial perturbations are difficult to recover by optimizing a unilateral RED objective. For example, the pure image denoising method may overfit to minimizing the reconstruction error but hardly preserve the classification properties of the true adversarial perturbations. To tackle this challenge, we formalize the RED problem and identify a set of principles crucial to the RED approach design. Particularly, we find that prediction alignment and proper data augmentation (in terms of spatial transformations) are two criteria to achieve a generalizable RED approach. By integrating these RED principles with image denoising, we propose a new Class-Discriminative Denoising based RED framework, termed CDD-RED. Extensive experiments demonstrate the effectiveness of CDD-RED under different evaluation metrics (ranging from the pixel-level, prediction-level to the attribution-level alignment) and a variety of attack generation methods (e.g., FGSM, PGD, CW, AutoAttack, and adaptive attacks).
Empirical analysis of Binding Precedent efficiency in the Brazilian Supreme Court via Similar Case Retrieval
Binding precedents (S\'umulas Vinculantes) constitute a juridical instrument unique to the Brazilian legal system and whose objectives include the protection of the Federal Supreme Court against repetitive demands. Studies of the effectiveness of these instruments in decreasing the Court's exposure to similar cases, however, indicate that they tend to fail in such a direction, with some of the binding precedents seemingly creating new demands. We empirically assess the legal impact of five binding precedents, 11, 14, 17, 26 and 37, at the highest court level through their effects on the legal subjects they address. This analysis is only possible through the comparison of the Court's ruling about the precedents' themes before they are created, which means that these decisions should be detected through techniques of Similar Case Retrieval. The contributions of this article are therefore twofold: on the mathematical side, we compare the uses of different methods of Natural Language Processing -- TF-IDF, LSTM, BERT, and regex -- for Similar Case Retrieval, whereas on the legal side, we contrast the inefficiency of these binding precedents with a set of hypotheses that may justify their repeated usage. We observe that the deep learning models performed significantly worse in the specific Similar Case Retrieval task and that the reasons for binding precedents to fail in responding to repetitive demand are heterogeneous and case-dependent, making it impossible to single out a specific cause.
Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level Graph Representation Learning
Graph representation learning is a fundamental research theme and can be generalized to benefit multiple downstream tasks from the node and link levels to the higher graph level. In practice, it is desirable to develop task-agnostic general graph representation learning methods that are typically trained in an unsupervised manner. Related research reveals that the power of graph representation learning methods depends on whether they can differentiate distinct graph structures as different embeddings and map isomorphic graphs to consistent embeddings (i.e., the isomorphic consistency of graph models). However, for task-agnostic general graph representation learning, existing unsupervised graph models, represented by the variational graph auto-encoders (VGAEs), can only keep the isomorphic consistency within the subgraphs of 1-hop neighborhoods and thus usually manifest inferior performance on the more difficult higher-level tasks. To overcome the limitations of existing unsupervised methods, in this paper, we propose the Isomorphic-Consistent VGAE (IsoC-VGAE) for multi-level task-agnostic graph representation learning. We first devise a decoding scheme to provide a theoretical guarantee of keeping the isomorphic consistency under the settings of unsupervised learning. We then propose the Inverse Graph Neural Network (Inv-GNN) decoder as its intuitive realization, which trains the model via reconstructing the GNN node embeddings with multi-hop neighborhood information, so as to maintain the high-order isomorphic consistency within the VGAE framework. We conduct extensive experiments on the representative graph learning tasks at different levels, including node classification, link prediction and graph classification, and the results verify that our proposed model generally outperforms both the state-of-the-art unsupervised methods and representative supervised methods.
Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities
Recent Vision-and-Language Navigation (VLN) advancements are promising, but their idealized assumptions about robot movement and control fail to reflect physically embodied deployment challenges. To bridge this gap, we introduce VLN-PE, a physically realistic VLN platform supporting humanoid, quadruped, and wheeled robots. For the first time, we systematically evaluate several ego-centric VLN methods in physical robotic settings across different technical pipelines, including classification models for single-step discrete action prediction, a diffusion model for dense waypoint prediction, and a train-free, map-based large language model (LLM) integrated with path planning. Our results reveal significant performance degradation due to limited robot observation space, environmental lighting variations, and physical challenges like collisions and falls. This also exposes locomotion constraints for legged robots in complex environments. VLN-PE is highly extensible, allowing seamless integration of new scenes beyond MP3D, thereby enabling more comprehensive VLN evaluation. Despite the weak generalization of current models in physical deployment, VLN-PE provides a new pathway for improving cross-embodiment's overall adaptability. We hope our findings and tools inspire the community to rethink VLN limitations and advance robust, practical VLN models. The code is available at https://crystalsixone.github.io/vln_pe.github.io/.
